Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (311)

Search Parameters:
Keywords = oil-water emulsification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1635 KB  
Review
Exploring the Potential of Lupin Fermentation with Exopolysaccharide-Producing Lactic Acid Bacteria to Enhance Techno-Functional Properties
by Dhananga Senanayake, Peter J. Torley, Jayani Chandrapala and Netsanet Shiferaw Terefe
Fermentation 2026, 12(1), 34; https://doi.org/10.3390/fermentation12010034 - 6 Jan 2026
Viewed by 598
Abstract
Lupin (Lupinus spp.), a legume known for its high protein content, holds great promise as a sustainable protein source to meet future global demands. Despite its nutritional benefits, including substantial dietary fibre and bioactive compounds, lupin remains underutilised in human diets due [...] Read more.
Lupin (Lupinus spp.), a legume known for its high protein content, holds great promise as a sustainable protein source to meet future global demands. Despite its nutritional benefits, including substantial dietary fibre and bioactive compounds, lupin remains underutilised in human diets due to several techno-functional and sensory limitations. This review delves into the techno-functional limitations of lupin, which include poor foaming capacity, low water and oil absorption, inadequate emulsification properties, and poor solubility. Lupin’s techno-functional limits are tied to the compact, heat-stable nature of its conglutin storage proteins and high insoluble fibre content. While research has been conducted on fermenting other legumes such as soybeans, chickpeas, peas, and lentils with Exopolysaccharide (EPS) producing bacteria, its application to lupin remains largely unexplored. Crucially, this work is one of the first reviews to exclusively link lupin’s unique protein and fibre structure with the specific polymer chemistry of bacterial EPS as a targeted modification strategy. Current research findings suggest that EPS-producing Lactic Acid Bacteria (LAB) fermentation can significantly improve the techno-functional properties of legumes, indicating strong potential for similar benefits with lupin. The analysis highlights various studies demonstrating the ability of EPS-producing LAB to improve water retention, emulsification, and overall palatability of legume-based products. Furthermore, it emphasises the need for continued research in the realm of fermentation with EPS-producing bacteria to enhance the utilisation of lupin in food applications. By addressing these challenges, fermented lupin could become a more appealing and nutritious option, contributing significantly to global food security and nutrition. Full article
(This article belongs to the Special Issue Feature Review Papers on Fermentation for Food and Beverages 2025)
Show Figures

Figure 1

20 pages, 5514 KB  
Article
The Remarkable Properties of Oil-in-Water Zein Protein Microcapsules
by Alessandra Quarta, Chiara Del Balzo, Francesca Cavalieri, Raffaella Lettieri and Mariano Venanzi
Molecules 2026, 31(1), 153; https://doi.org/10.3390/molecules31010153 - 1 Jan 2026
Viewed by 287
Abstract
Zein (ZP) is the major storage protein of corn (maize). It is safe, biodegradable, edible, and characterized by unique self-assembly properties. These properties were exploited to prepare ZP microcapsules filled with soybean oil (SO) by ultrasound-assisted emulsification of oil-in-water (o/w) dispersions under optimal [...] Read more.
Zein (ZP) is the major storage protein of corn (maize). It is safe, biodegradable, edible, and characterized by unique self-assembly properties. These properties were exploited to prepare ZP microcapsules filled with soybean oil (SO) by ultrasound-assisted emulsification of oil-in-water (o/w) dispersions under optimal experimental conditions. The morphology and stability of o/w ZP/SO microcapsules were investigated by optical spectroscopy (electronic circular dichroism and fluorescence) and dynamic light scattering, as well as bright-field, laser confocal fluorescence, and scanning electron microscopies. The results showed that ZP formed a stable protein shell protecting the inner oily phase from diffusion of the confined compounds. It was also found that ZP/SO microcapsules, stored under suitable conditions, could be redissolved in water, maintaining their spherical morphology. Proof-of-principle studies on the inclusion and release of curcumin, a very active anti-inflammatory and nutraceutical substance, from ZP/SO microcapsules under temperature and pH stimuli are also reported. Full article
(This article belongs to the Special Issue Peptide and Protein-Based Materials: Technology and Applications)
Show Figures

Graphical abstract

21 pages, 3531 KB  
Article
Plant Proteins as Alternative Natural Emulsifiers in Food Emulsions
by Dominika Kaczmarek, Marta Pokora-Carzynska, Leslaw Juszczak, Ewelina Jamroz and Janusz Kapusniak
Foods 2025, 14(24), 4291; https://doi.org/10.3390/foods14244291 - 13 Dec 2025
Viewed by 879
Abstract
The growing interest in plant-based ingredients in food production has increased the demand for effective alternatives to animal-derived emulsifiers. In this study, the physicochemical and functional properties of selected commercial plant protein preparations as natural emulsifiers in food emulsions were assessed. Emulsifying activity [...] Read more.
The growing interest in plant-based ingredients in food production has increased the demand for effective alternatives to animal-derived emulsifiers. In this study, the physicochemical and functional properties of selected commercial plant protein preparations as natural emulsifiers in food emulsions were assessed. Emulsifying activity and stability (EA, ES), foaming capacity and stability (FC, FS), water and oil absorption (WAC, OAC), color (CIE Lab*), viscosity, surface tension, and zeta potential were analyzed. Pea (PP1–PP4), rice (RP1, RP2) and chickpea (CP1) proteins showed the most favorable properties, characterized by high EA values (58.3–62.5%) and emulsion stability during storage (62–65%) after 6 days. Emulsions formulated with these proteins were significantly lighter (L* > 69). PP1 exhibited more than twice the viscosity of the other samples. The lowest surface tension values (<45 mN/m) were observed for RP2 and PP1, indicating strong surface activity. Pea proteins PP1, PP2, and PP4 showed the highest system stability, with zeta potential values below –35 mV. Overall, the selected plant protein preparations, particularly pea, rice, and chickpea proteins, showed promising functional properties, confirming their potential use as natural emulsifiers in clean-label plant-based formulations and providing a basis for further product development. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

16 pages, 4519 KB  
Article
Evaluating Raw Albizia amara Plant Powder as a Plant-Derived Surface-Active Material
by Wenghong Fong, Yalini Sadasivam, Awatif Belkhiri-Baines, Valerie Pinfield and Anna Trybala
Colloids Interfaces 2025, 9(6), 81; https://doi.org/10.3390/colloids9060081 - 3 Dec 2025
Cited by 1 | Viewed by 780
Abstract
This study investigates the apparent surface-active and emulsifying behaviour of raw Albizia amara (AA) powder suspended in water, reflecting its traditional mode of use. AA suspensions (0.1–1% w/v) were prepared without extraction and evaluated for apparent surface tension, droplet size [...] Read more.
This study investigates the apparent surface-active and emulsifying behaviour of raw Albizia amara (AA) powder suspended in water, reflecting its traditional mode of use. AA suspensions (0.1–1% w/v) were prepared without extraction and evaluated for apparent surface tension, droplet size distribution, emulsification capacity, and emulsion stability. Increasing AA concentration reduced apparent surface tension from 57.13 ± 2.17 mN/m to 48.9 ± 0.06 mN/m, plateauing at higher concentrations. Both blending and high-shear mixing produced oil-in-water emulsions. Blending generated smaller initial droplets (1–10 µm), whilst high-shear mixing produced more uniform distributions (d50 = 31.23 ± 0.95 µm). Emulsion capacity and stability increased with AA concentration, reaching 95.19 ± 3.39% and 89.81 ± 0.02% at 0.8% AA. As the system contains undissolved plant material, all measurements represent the apparent behaviour of a heterogeneous suspension. The specific molecular contributors to surface activity cannot be identified within this study. These findings provide a baseline physicochemical assessment of raw AA powder and support future work involving extraction, purification, and chemical characterisation to establish the mechanisms underlying its surface-active properties. Full article
Show Figures

Graphical abstract

12 pages, 1099 KB  
Article
Protein Level and Particle Size-Dependent Stabilization of Oil-in-Water Emulsions by Sunflower Meal
by Strahinja Vidosavljević, Nikola Maravić, Zita Šereš, Aleksandar Fišteš and Nemanja Bojanić
Processes 2025, 13(12), 3882; https://doi.org/10.3390/pr13123882 - 1 Dec 2025
Viewed by 445
Abstract
Sunflower meal represents a protein- and fiber-rich by-product of the oil industry with potential application as a natural stabilizer in food emulsions. Building upon previous findings that emphasized the role of protein content in emulsion stability, the present study further investigated the combined [...] Read more.
Sunflower meal represents a protein- and fiber-rich by-product of the oil industry with potential application as a natural stabilizer in food emulsions. Building upon previous findings that emphasized the role of protein content in emulsion stability, the present study further investigated the combined effect of protein level and particle size distribution of sunflower meal fractions on the formation and stability of oil-in-water emulsions. Two sets of sunflower meal fractions were prepared from finely milled material, fractionated, and blended in controlled proportions to obtain four protein-enriched (30 ± 1%) and four cellulose-rich (15 ± 1%) fractions, each defined by particle size ranges of 250/200, 200/125, 125/100, and <100 µm. Emulsion stability was evaluated through droplet size analysis, zeta potential measurements, and creaming index determination during seven days of storage. The results demonstrated that both protein content and particle size significantly affected the emulsifying and stabilizing behavior of sunflower meal fractions. For the low-protein group (15%), larger particle sizes (250/200 µm) yielded smaller emulsion droplets (D[4.3] = 66.03 µm) and higher zeta potential values (−15.53 mV), while in the high-protein group (30%), droplet size distribution was more uniform (D[4.3] from 72.13 to 76.29 µm). During seven days of storage, all emulsions exhibited a gradual increase in creaming index, followed by partial stabilization at later time points. Emulsions prepared with sunflower meal fractions of higher-protein content showed consistently lower creaming index values, indicating improved physical stability throughout storage. Overall, the study confirmed that the interplay between composition (protein level) and physical structure (particle size) governs the emulsification efficiency of sunflower meal fractions, providing insights for their potential application as plant-based stabilizers in food systems. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Graphical abstract

15 pages, 3504 KB  
Article
Study on Enhanced Oil Recovery and Microscopic Mechanisms in Low-Permeability Reservoirs Using Nano-SiO2/CTAB System
by Tingting Cheng, Jinyi Wang, Huaizhu Liu, Jun Ding, Yuting Ren and Xinhao Gong
Processes 2025, 13(12), 3862; https://doi.org/10.3390/pr13123862 - 29 Nov 2025
Viewed by 492
Abstract
In the field of enhanced oil recovery in low-permeability reservoirs, the application of nanomaterials has attracted widespread attention. However, conventional nanomaterials exhibit issues such as large particle size and poor dispersion stability. This study selected SiO2 nanoparticles with a particle size of [...] Read more.
In the field of enhanced oil recovery in low-permeability reservoirs, the application of nanomaterials has attracted widespread attention. However, conventional nanomaterials exhibit issues such as large particle size and poor dispersion stability. This study selected SiO2 nanoparticles with a particle size of 10 nm and combined them with 12 types of commonly used oilfield surfactants. After aging at 120 °C for 48 h, using dispersion stability and interfacial tension (IFT) as evaluation criteria, hexadecyltrimethylammonium bromide (CTAB) was ultimately identified as the optimal modifier. The structure and morphology of the SiO2 particles were characterized in detail using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The system evaluated the dispersion stability of nanofluids before and after modification, as well as the interfacial properties (IFT reduced to the 10−1 mN/m range) and wettability (oil-wet surfaces reversed to strongly water-wet, with contact angles decreasing to 30°) of nanofluids with different modification degrees. Considering economic factors, the modified nano-SiO2 system with a ratio of 1:0.5 was selected. Microvisualization experiments revealed that the modified nanoscale system achieves residual oil displacement through three mechanisms: emulsification (reducing residual oil droplet size to enhance mobility), wetting reversal (lowering contact angle to weaken adhesion), and structural separation pressure (counteracting capillary forces to destabilize residual oil). Displacement experiments reveal that in rock cores with permeability ranging from 1 to 100 mD, the modified system exhibits a recovery rate trend that initially increases and then decreases. Nevertheless, it consistently enhances recovery rates, maintaining them above 12%, demonstrating strong application potential. Full article
Show Figures

Figure 1

32 pages, 18674 KB  
Article
An Experimental Study on Oil–Water Emulsification Mechanism During Steam Injection Process in Heavy Oil Thermal Recovery
by Hui Cai, Zhilin Qi, Yingxian Liu, Dong Liu, Chunxiao Du, Jie Tian, Wende Yan and Taotao Luo
Energies 2025, 18(23), 6250; https://doi.org/10.3390/en18236250 - 28 Nov 2025
Viewed by 366
Abstract
This article focuses on the oil–water emulsification problem during steam injection in heavy oil thermal recovery. Emulsions were prepared through one-dimensional flow experiments, and key parameters including the inversion point water cut and micro-morphological characteristics (particle size and distribution range) of the emulsions [...] Read more.
This article focuses on the oil–water emulsification problem during steam injection in heavy oil thermal recovery. Emulsions were prepared through one-dimensional flow experiments, and key parameters including the inversion point water cut and micro-morphological characteristics (particle size and distribution range) of the emulsions were systematically measured under varied conditions (temperature: 150–360 °C; salinity: 0–7500 mg/L; water cut: 10.07–72.22%). By analyzing the experimental data, the emulsification mechanism and influencing rules were revealed: under the combined conditions of high temperature (150–360 °C), high salinity (up to 7500 mg/L), and low water cut (10.07–19.35%), crude oil and formation water form oil-in-water emulsions under the shear action of porous media. During this process, active substances in crude oil react with inorganic salts in formation water to generate natural surfactants, which reduce the oil–water interfacial tension and enhance emulsion stability, enabling the emulsion to maintain stability even at a high water cut of up to 72.22%, with particle sizes ranging from 1 μm to 350 μm and distribution spans varying from 4 μm to 50 μm. The formation of such emulsions leads to a significant increase in viscosity, adversely affecting oil recovery. In production practice, it is recommended to add chemical agents during the early stage of steam huff and puff development (water cut: 10.07–37.50%). This measure aims to destroy the oil–water liquid film, promote water droplet coalescence (narrowing the particle size distribution span), and facilitate emulsion breaking and phase inversion, thereby effectively mitigating the adverse impacts of oil–water emulsions and improving heavy oil recovery efficiency. Full article
(This article belongs to the Special Issue New Advances in Oil, Gas and Geothermal Reservoirs—3rd Edition)
Show Figures

Figure 1

14 pages, 4255 KB  
Article
The Properties and Emulsion Stabilization of Fish Gelatin Regulated by Introducing Pectin
by Xi Zheng, Xin Feng, Yue Huang and Tao Zeng
Gels 2025, 11(11), 902; https://doi.org/10.3390/gels11110902 - 10 Nov 2025
Viewed by 581
Abstract
In this study, the complexes (FG-P) based on fish gelatin (FG) and pectin (P) were prepared by a simple physical blending within a range of pectin concentrations (0–2%, w/v). The structure, interface, and emulsification properties of the obtained FG-P were [...] Read more.
In this study, the complexes (FG-P) based on fish gelatin (FG) and pectin (P) were prepared by a simple physical blending within a range of pectin concentrations (0–2%, w/v). The structure, interface, and emulsification properties of the obtained FG-P were analyzed. The binding between FG and pectin was dominated by electrostatic interaction and hydrogen bonding. Introducing pectin substantially increased the viscosity of FG-P. The water contact angle of FG-P gradually decreased with increasing pectin concentration. The highly interfacial viscosity and hydrophilicity of FG-P hindered the interfacial adsorption at the oil/water phase, thereby increasing the interfacial tension and phase angle. This was further manifested as an increase in the viscous modulus and a decrease in both the total modulus and elastic modulus. Despite the inhibition of interfacial adsorption, the unabsorbed FG-P was uniformly dispersed in the continuous phase to form a compact network structure, accompanied with improved rheological properties. Correspondingly, the emulsion precipitation phenomenon was effectively inhibited, and the stability of FG-P stabilized emulsions was improved with decreased droplet size. Full article
(This article belongs to the Special Issue Food Gels: Structure and Properties (2nd Edition))
Show Figures

Figure 1

13 pages, 2403 KB  
Article
Improvement of the Fluidity of Heavy Oil Using a Composite Viscosity Reducer
by Jiale Hu, Jingwen Yang, Peng Wang, Xuefan Gu and Gang Chen
Processes 2025, 13(11), 3547; https://doi.org/10.3390/pr13113547 - 4 Nov 2025
Cited by 1 | Viewed by 593
Abstract
Single-type viscosity reducers often fail to meet the application requirements of specific oilfields for high-viscosity heavy oils. This study focused on Henan heavy oil, systematically investigating the viscosity reduction performances of oil-soluble viscosity reducers, emulsifiers, and their composite systems. Experimental results indicated that [...] Read more.
Single-type viscosity reducers often fail to meet the application requirements of specific oilfields for high-viscosity heavy oils. This study focused on Henan heavy oil, systematically investigating the viscosity reduction performances of oil-soluble viscosity reducers, emulsifiers, and their composite systems. Experimental results indicated that the oil-soluble ethylene-vinyl acetate copolymer (EVA) achieved optimal efficiency at a concentration of 500 ppm, with a viscosity reduction rate of 44.2%. Among the screened emulsifiers, acrylonitrile-ethylene-styrene (AES) exhibited the highest viscosity reduction rate (99.9%), which basically complied with relevant industrial application standards. When EVA and AES were compounded, the resulting composite reducer showed a significantly higher viscosity reduction rate than single EVA, and the stability of the formed oil-in-water (O/W) emulsion was further enhanced. The synergistic mechanism was clarified as follows: EVA first disrupts the aggregation of heavy components (resins and asphaltenes) and modifies wax crystal morphology, creating a favorable microfoundation for subsequent emulsification; AES then promotes the formation of stable O/W emulsions, ultimately achieving a “1 + 1 > 2” synergistic viscosity reduction effect. Furthermore, the potential action mechanism of the EVA-AES composite system was verified using multiple characterization techniques. This study provides a valuable reference for the selection and practical application of heavy oil viscosity reducers in oilfield operations. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

24 pages, 8369 KB  
Article
Development of Efficient In-Situ Cleaning Methods for Stained Textile Relics
by Yuhui Wei, Jinxia Guo, Zhaowei Su, Kui Yu, Xue Ling, Zhenlin Zhang, Kaixuan Liu and Wei Pan
Gels 2025, 11(10), 830; https://doi.org/10.3390/gels11100830 - 16 Oct 2025
Viewed by 956
Abstract
To address limitations such as cleaning difficulties or secondary contamination/damage of cultural relics caused by the uncontrollable diffusion of water/cleaning agent/dirty liquids during the cleaning process in traditional cleaning methods, this study, using cotton textiles as an example, systematically investigated the cleaning efficacy [...] Read more.
To address limitations such as cleaning difficulties or secondary contamination/damage of cultural relics caused by the uncontrollable diffusion of water/cleaning agent/dirty liquids during the cleaning process in traditional cleaning methods, this study, using cotton textiles as an example, systematically investigated the cleaning efficacy of four in situ methods (blank gel, cleaning gel, ultrasonic emulsification, and gel + ultrasonic emulsification synergistic cleaning) on eight types of stains, including sand, clay, rust, blood, ink, oil, and mixed solid/liquid stains. Building upon this, this study proposed an efficient, targeted, in situ, and controllable cleaning strategy tailored for fragile, stained textile relics. Results demonstrated that, regardless of the stain type, the synergistic cleaning method of G+U (gel poultice + ultrasonic emulsification) consistently outperformed the cleaning methods of blank gel poultice, cleaning gel poultice, and ultrasonic emulsification. Furthermore, the gel loaded with cleaning agents was always more effective than the blank gel (unloaded cleaning agents). The poultice methods of blank gel and cleaning gel were better suited for solid stains, while the ultrasonic emulsification cleaning method was more effective for liquid stains. Meanwhile, it was also found that the optimal cleaning method proposed in this study (the G+U synergistic cleaning method) was a cleaning method that restricted the cleaning agent within the gel network/emulsion system, and utilized the porous network physical structure of gel, the chemical action of emulsion’s wetting/dissolving dirt, and the cavitation synergistic effect of ultrasound to achieve the targeted removal of contaminants from relics’ surfaces. Crucially, the cleaning process of G+U also had the characteristics of controlling the cleaning area at the designated position and effectively regulating the diffusion rate of the cleaning solution within the treatment zone, as well as the reaction intensity. Therefore, the proposed optimal (the synergistic cleaning method of G+U) cleaning method conforms to the significant implementation of the “minimal intervention and maximal preservation” principle in modern cultural heritage conservation. Consequently, the synergistic cleaning method of G+U holds promise for practical application in artifact cleaning work. Full article
Show Figures

Graphical abstract

26 pages, 5351 KB  
Review
Comprehensive Review of Smart Water Enhanced Oil Recovery Based on Patents and Articles
by Cristina M. Quintella, Pamela D. Rodrigues, Jorge L. Nicoleti and Samira A. Hanna
Technologies 2025, 13(10), 457; https://doi.org/10.3390/technologies13100457 - 9 Oct 2025
Cited by 1 | Viewed by 2124
Abstract
The transition to a sustainable energy mix is essential to mitigate climate change. Enhanced Oil Recovery (EOR) using low-salinity water (smart water) has emerged as a promising strategy for reducing environmental impacts in the petroleum industry, producing a highly valuable energy source due [...] Read more.
The transition to a sustainable energy mix is essential to mitigate climate change. Enhanced Oil Recovery (EOR) using low-salinity water (smart water) has emerged as a promising strategy for reducing environmental impacts in the petroleum industry, producing a highly valuable energy source due to both its energy density and market value. This study critically reviews intermediate technological readiness levels (TRL), applying a patent-based approach (TRL 4–5) and a review of articles (TRL 3) to analyze various aspects of smart water for EOR, including its composition. A total of 23 patents from the European Patent Office (Questel Orbit) and 1395 articles from Elsevier’s Scopus database were analyzed, considering annual trends, country distribution, international collaborations, author and applicant affiliations, citation dependencies, and factorial analyses. Both patents and articles show exponential growth; however, international collaboration is more frequent in the scientific literature, while patents remain concentrated in a few countries aligned with their markets. Technologies are focused on wettability, surface complexation, CO2 interactions, emulsification, aerogels, reinjection water treatment, carbonate reservoirs, effluent treatment, nanofluidics, and ASP fluids. Recent topics include CO2 associations, permeability, fractured reservoirs, gels, reservoir water, wettability alteration, and reservoir/oil heterogeneity. The findings indicate the need for multivariated development of customized smart waters to address complex interfacial synergistic mechanisms. International Joint Industry Projects and global regulations on the safe use and composition of hybrid injections are recommended to accelerate development, reduce environmental impacts, and enhance the efficient use of existing fields, alleviating the challenges of finding new reservoirs. Full article
(This article belongs to the Special Issue Sustainable Water and Environmental Technologies of Global Relevance)
Show Figures

Graphical abstract

16 pages, 1655 KB  
Article
Emulsification Properties of Plant and Milk Protein Concentrate Blends
by Mohammadreza Khalesi, Shauna Dowling, Jack Comerford, Ciara Sweeney, Sara Esteghlal and Richard J. FitzGerald
Foods 2025, 14(19), 3406; https://doi.org/10.3390/foods14193406 - 1 Oct 2025
Cited by 1 | Viewed by 1235
Abstract
Blending is a promising strategy during the partial replacement of plant with animal proteins. This, however, may lead to alteration in the technofunctional properties of the resultant blends. In this study, partial replacement of milk protein concentrate (MPC) with different plant proteins including [...] Read more.
Blending is a promising strategy during the partial replacement of plant with animal proteins. This, however, may lead to alteration in the technofunctional properties of the resultant blends. In this study, partial replacement of milk protein concentrate (MPC) with different plant proteins including soy, rice and pea protein concentrates (SPC, RPC and PPC, respectively) was conducted to determine the effect of blending at different ratios on the technofunctional properties relevant to their emulsification behavior, e.g., emulsion stability, viscosity and water holding capacity (WHC) and oil binding capacity (OBC). It was observed that at equivalent concentrations, the plant protein concentrates had higher apparent viscosities compared to MPC and the blends. RPC–MPC, at all ratios (25:75, 50:50, and 75:25), had a lower OBC when compared with the SPC–MPC and PPC–MPC blends. The lowest OBC was 32.5, for RCP–MPC 25:75, and the highest was 116.0 for SPC–MPC 25:75. The highest solubility of PPC, RPC, and SPC was observed in their blend form at 50:50 (73.2%), 75:25 (86.5%) and 25:75 (71.1%) ratios, respectively. Plant protein–MPC blends showed higher emulsion stability than the individual plant protein concentrates. The highest emulsion stability was 100%, for RPC–MPC 50:50 and 75:25 ratios, PPC–MPC at 50:50 ratio, and SPC–MPC at 25:75 and 100:0 ratios. Among the blends, SPC–MPC 25:75, PPC–MPC 50:50 and RPC–MPC 50:50 showed the most suitable overall emulsification properties. Based on the results, blending MPC with plant protein concentrates led to promising improvements in emulsification behavior relevant to different composite protein ingredient applications. Full article
Show Figures

Figure 1

17 pages, 987 KB  
Article
Bioemulsifier Produced by Aspergillus niger UCP 1064 Isolated from Caatinga Soil as a Promising Molecule for Scaled-Up Pharmaceutical Applications
by Uiara Maria de Barros Lira Lins, Rosileide Fontenele da Silva Andrade and Galba Maria de Campos-Takaki
Fermentation 2025, 11(10), 562; https://doi.org/10.3390/fermentation11100562 - 29 Sep 2025
Viewed by 862
Abstract
This study presents the production, characterization, and potential pharmaceutical application of a bioemulsifier synthesized by Aspergillus niger UCP 1064 by submerged fermentation using agro-industrial residues (cassava wastewater and soluble starch). The compound exhibited a high emulsification index (EI24 > 88%) against hydrophobic [...] Read more.
This study presents the production, characterization, and potential pharmaceutical application of a bioemulsifier synthesized by Aspergillus niger UCP 1064 by submerged fermentation using agro-industrial residues (cassava wastewater and soluble starch). The compound exhibited a high emulsification index (EI24 > 88%) against hydrophobic substrates, effectively reduced surface tension, and remained stable across a wide range of pH (2–12), temperatures (5–100 °C), and salinity levels (0–20% NaCl). Microscopic analysis confirmed the formation of stable oil-in-water (O/W) emulsions, while biochemical tests identified the compound as a glycolipoprotein. Rheological assays demonstrated a significant reduction in oil viscosity, enhancing fluidity. Through factorial design and response surface methodology, production conditions were optimized, achieving yields of up to 3.18 g/L. A theoretical scale-up indicated technical feasibility for pharmaceutical applications; however, challenges such as process reproducibility, sterility, and regulatory compliance persist. These findings highlight the bioemulsifier’s potential as a sustainable and biocompatible alternative for drug delivery systems. Full article
(This article belongs to the Special Issue Scale-Up Challenges in Microbial Fermentation)
Show Figures

Figure 1

24 pages, 5112 KB  
Article
Thermally Stable Collagen from Black Carp (Mylopharyngodon piceus) Swim Bladder: Preparation, Structure, Rheological, and Functional Properties
by Lichi Wei, Yushuang Li, Cong Ke, Junde Chen and Jing Zhang
Foods 2025, 14(19), 3359; https://doi.org/10.3390/foods14193359 - 28 Sep 2025
Viewed by 882
Abstract
Fish-derived collagen can reduce the risk of disease transmission and has no religious or cultural restrictions. However, it has limited applications due to its poor thermal stability. In this study, black carp swim bladder collagen (BBC), classified as a type I collagen, was [...] Read more.
Fish-derived collagen can reduce the risk of disease transmission and has no religious or cultural restrictions. However, it has limited applications due to its poor thermal stability. In this study, black carp swim bladder collagen (BBC), classified as a type I collagen, was extracted. Amino acid composition analysis revealed that BBC had a higher proline hydroxylation rate of 39.57%. Fourier transform infrared spectroscopy revealed that BBC exhibited a complete triple-helix structure. The fractional viscosity curve and differential scanning calorimetry curves revealed that the thermal denaturation temperature (Td) and the melting temperature (Tm) were 30.85 °C and 107.19 °C, respectively. The dynamic rheological analysis showed that as the concentration increased from 5 mg/mL to 20 mg/mL at 0.01 Hz, the storage modulus increased from 0.979 Pa to 84.2 Pa. When the temperature exceeded the Td, the BBC solution exhibited viscous behaviour as the frequency increased. The steady-shear analysis showed that the BBC was a shear-thinning fluid. Functional properties analysis revealed that BBC exhibited better emulsification properties, foaming properties, water absorption capacity and oil absorption capacity than land-derived collagen, making it suitable for emulsifiers, bubbling beverages, and frozen meat preservation. Additionally, BBC promoted the growth of MT3C3-E1 cells and maintained the normal morphology of the cells. These results showed that BBC is a promising substitute for terrestrial collagen in functional foods, cosmetics, and biofunctional materials. Full article
Show Figures

Figure 1

15 pages, 2521 KB  
Article
Enhanced Oil Recovery Mechanism and Parameter Optimization of Huff-and-Puff Flooding with Oil Displacement Agents in the Baikouquan Oilfield
by Hui Tian, Jianye Mou, Kunlin Xue, Xingyu Yi, Hao Liu and Budong Gao
Processes 2025, 13(10), 3098; https://doi.org/10.3390/pr13103098 - 27 Sep 2025
Viewed by 554
Abstract
The Baikouquan Oilfield edge expansion wells suffer from poor reservoir properties and limited connectivity, leading to low waterflooding sweep efficiency and insufficient reservoir energy. While oil displacement agents (ODAs) are currently employed in huff-and-puff flooding to enhance recovery, there is a lack of [...] Read more.
The Baikouquan Oilfield edge expansion wells suffer from poor reservoir properties and limited connectivity, leading to low waterflooding sweep efficiency and insufficient reservoir energy. While oil displacement agents (ODAs) are currently employed in huff-and-puff flooding to enhance recovery, there is a lack of a solid basis for selecting these ODAs, and the dominant mechanisms of enhanced oil recovery (EOR) remain unclear. To address this issue, this study combines experimental work and reservoir numerical simulation to investigate the mechanisms of EOR by ODAs, optimize the selection of ODAs, and fine-tune the huff-and-puff flooding parameters. The results show that the selected nanoemulsion ODA (Nano ODA) significantly reduces the oil–water interfacial tension (IFT) by 97%, thereby increasing capillary number. Additionally, the ODA induces a shift from water–wet to neutral–wet conditions on rock surfaces, reducing capillary forces and weakening spontaneous imbibition. The Nano ODA demonstrates strong emulsification and oil-carrying ability, with an emulsification efficiency of 75%. Overall, the ODA increases the relative permeability of the oil phase, reduces residual oil saturation, and achieves a recovery improvement of more than 10% compared with conventional waterflooding. The injection volume and shut-in time were optimized for the target well, and the recovery enhancement from multiple cycles of huff-and-puff flooding was predicted. The research in this paper is expected to provide guidance for the design of huff-and-puff flooding schemes in low-permeability reservoirs. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

Back to TopTop