Comprehensive Review of Smart Water Enhanced Oil Recovery Based on Patents and Articles
Abstract
1. Introduction
2. Materials and Methods
2.1. Patents
(eor or ooip or oil recovery or enhanced oil recovery or (“tertiar* oil recov*”) or “secondary petroleum recov*”) AND (smart water or low salinity injection or low salinity flooding or low salinity water flood or low salinity brine injection)
2.2. Articles
(enhanced AND oil AND recov* OR eor OR ooip OR water AND flooding OR sweep AND efficienc* OR oil AND recovery OR enhanced AND oil AND recovery OR “tertiar* oil recov*” OR “secondary petroleum recov*” OR “primary petroleum recov*”) AND (“low salinit* water*” OR “baixa salinid*” OR “baja* salinidad*” OR “smart water*” OR smartwater*) AND (LIMIT-TO (DOCTYPE, “ar”)
(eor or ooip or oil recovery or enhanced oil recovery or (“tertiar* oil recov*”) or “secondary petroleum recov*”)
3. Results and Discussion
3.1. General Comparative Analysis
3.2. Articles Analysis
- Basic Themes: Contact angle measurements; natural surfactants; and surface-active agents.
- Emerging or Declining Themes: Carbon dioxide; formation permeability; and naturally fractured reservoirs.
- Niche Themes: Aerogels; gels; and free radicals.
- Motor Themes: Wetting; reservoir water; and wettability alteration.
3.3. Patents Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EOR | Enhanced Oil Recovery |
GEOR | Green Enhanced Oil Recovery |
SDG | Sustainable Development Goals |
TRL | Technology Readiness Level |
Smart water | Low salinity water |
References
- U.S. Energy Information Administration Oil Producers and Consumers. Available online: https://www.eia.gov/tools/faqs/faq.php?id=709&t=6 (accessed on 4 August 2025).
- Heriot Watt University Statistical Review of World Energy 2023. Available online: https://www.energyinst.org/statistical-review (accessed on 4 August 2025).
- Joseph, J.A. The Ethical Interface of Sustainable Prosperity in the Teachings of Pope Francis. J. Dharma 2021, 46, 279–294. [Google Scholar]
- Fincham, G. “A World Not Our Own to Define”: Ecological Solutions to Global Catastrophe in the Works of Barry Lopez. Engl. Acad. Rev. 2024, 41, 33–46. [Google Scholar] [CrossRef]
- Delgado-Alvarado, E.; Morales-Gonzalez, E.A.; Gonzalez-Calderon, J.A.; Peréz-Peréz, M.C.I.; Delgado-Maciel, J.; Peña-Juarez, M.G.; Hernandez-Hernandez, J.; Elvira-Hernandez, E.A.; Figueroa-Navarro, M.A.; Herrera-May, A.L. Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges. Technologies 2025, 13, 336. [Google Scholar] [CrossRef]
- Ochoa-Correa, D.; Arévalo, P.; Martinez, S. Pathways to 100% Renewable Energy in Island Systems: A Systematic Review of Challenges, Solutions Strategies, and Success Cases. Technologies 2025, 13, 180. [Google Scholar] [CrossRef]
- Govindarajan, U.H.; Zhang, C.; Raut, R.D.; Narang, G.; Galdelli, A. A Review of Academic and Patent Progress on Internet of Things (IoT) Technologies for Enhanced Environmental Solutions. Technologies 2025, 13, 64. [Google Scholar] [CrossRef]
- de Mendonca, M.J.C.; Pereira Junior, A.O.; Pessanha, J.F.M.; Pereira, R.M.; Hunt, J.D. Measuring the Economic Impact of Pre-Salt Layer on the Productivity of the Oil and Natural Gas Sector. Resources 2025, 14, 32. [Google Scholar] [CrossRef]
- Petrobras, S.A. Santos Basin. Available online: https://petrobras.com.br/en/pre-sal? (accessed on 24 September 2025).
- Pooler, M. Brazil Wants to Be a Climate Champion and an Oil Giant. Can It Be Both? Available online: https://www.ft.com/content/8d25d4d5-0258-4676-81ab-30bb711f4fd2? (accessed on 24 September 2025).
- Branco, P.M. Petróleo do Pré-Sal. Available online: https://www.sgb.gov.br/petroleo-do-pre-sal? (accessed on 24 September 2025).
- ANP Brazil 2024 Annual Oil & Gas Production. Available online: https://brazilenergyinsight.com/2025/02/03/anp-brazil-2024-annual-oil-gas-production/ (accessed on 24 September 2025).
- United Nations Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 18 July 2025).
- United Nations Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 18 July 2025).
- Vilardo, C.; Campos, A. Pre-Salt Oil and Its Contribution to Sustainable Development in Brazil: A Preliminary Assessment. Available online: https://conferences.iaia.org/2011/pdf/presentations/IAIA11%20-%20Cristiano%20Vilardo%20-%20Pre-salt%20contribution%20to%20SD%20in%20Brazil.pdf? (accessed on 24 September 2025).
- Petrobras, S.A. Relatório de Sustentabilidade 2024. Available online: https://sustentabilidade.petrobras.com.br (accessed on 25 September 2025).
- Massarweh, O.; Abushaikha, A.S. The Use of Surfactants in Enhanced Oil Recovery: A Review of Recent Advances. Energy Rep. 2020, 6, 3150–3178. [Google Scholar] [CrossRef]
- US Department of Energy Enhanced Oil Recovery. Available online: https://www.energy.gov/fecm/enhanced-oil-recovery#:~:text=However%2C%20with%20much%20of%20the,reservoir’s%20original%20oil%20in%20place (accessed on 5 August 2025).
- Escoffier, M.; Hache, E.; Mignon, V.; Paris, A. Determinants of Solar Photovoltaic Deployment in the Electricity Mix: Do Oil Prices Really Matter? Energy Econ. 2021, 97, 105024. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.; Haq, B.; Al-Shehri, D.; Muhammed, N.S.; Mahmoud, M. Surfactant Formulation for Green Enhanced Oil Recovery. Energy Rep. 2022, 8, 7800–7813. [Google Scholar] [CrossRef]
- Haq, B.; Liu, J.; Liu, K. Green Enhanced Oil Recovery (GEOR). APPEA J. 2017, 57, 150. [Google Scholar] [CrossRef]
- Haq, B.; Liu, J.; Liu, K.; Al Shehri, D. The Role of Biodegradable Surfactant in Microbial Enhanced Oil Recovery. J. Pet. Sci. Eng. 2020, 189, 106688. [Google Scholar] [CrossRef]
- Haq, B. Green Enhanced Oil Recovery for Carbonate Reservoirs. Polymers 2021, 13, 3269. [Google Scholar] [CrossRef]
- Hao, J.; Mohammadkhani, S.; Shahverdi, H.; Esfahany, M.N.; Shapiro, A. Mechanisms of Smart Waterflooding in Carbonate Oil Reservoirs—A Review. J. Pet. Sci. Eng. 2019, 179, 276–291. [Google Scholar] [CrossRef]
- Mwakipunda, G.C.; Jia, R.; Mgimba, M.M.; Ngata, M.R.; Mmbuji, A.O.; Said, A.A.; Yu, L. A Critical Review on Low Salinity Waterflooding for Enhanced Oil Recovery: Experimental Studies, Simulations, and Field Applications. Geoenergy Sci. Eng. 2023, 227, 211936. [Google Scholar] [CrossRef]
- Shen, H.; Yang, Z.; Li, X.; Peng, Y.; Lin, M.; Zhang, J.; Dong, Z. CO2-Responsive Agent for Restraining Gas Channeling during CO2 Flooding in Low Permeability Reservoirs. Fuel 2021, 292, 120306. [Google Scholar] [CrossRef]
- Santos, D.; Barros, V.S.; Silva, M.L.P.; Sales, H.M.M.S.; Borges, G.R.; Franceschi, E.; Dariva, C. Strontium-Based Low Salinity Water as an IOR/EOR Method: Oil-Brine Interaction. J. Pet. Sci. Eng. 2021, 202, 108549. [Google Scholar] [CrossRef]
- Jerauld, G.R.; Lin, C.Y.; Webb, K.J.; Seccombe, J.C. Modeling Low-Salinity Waterflooding. SPE Reserv. Eval. Eng. 2008, 11, 1000–1012. [Google Scholar] [CrossRef]
- Collins, I.R.; Jerauld, G.R.; Lager, A.; McGuire, P.L.; Webb, K. Hydrocarbon Recovery Process. PCT Patent WO2008/029124, 6 March 2008. [Google Scholar]
- Quintella, C.M.; Rodrigues, P.D.; Nicoleti, J.L.; Ramos-de-Souza, E.; Carvalho, E.B.; Hanna, S.A. EOR Technology (Patents) and Science (Articles) Assessment of BRICS and NonBRICS with Growth Rates and Specializations within Responsible Global Energy Transition: A Critical Review. Energies 2024, 17, 3197. [Google Scholar] [CrossRef]
- Quintella, C.M. Environmental Protection in Enhanced Oil Recovery and Its Waste and Effluents Treatment: A Critical Patent-Based Review of BRICS and Non-BRICS (2004–2023). Sustainability 2025, 17, 2896. [Google Scholar] [CrossRef]
- NASA. The TRL Scale as a Research & Innovation Policy Tool. NASA EARTO Recommendations. Available online: https://www.earto.eu/wp-content/uploads/The_TRL_Scale_as_a_R_I_Policy_Tool_-_EARTO_Recommendations_-_Final.pdf (accessed on 5 August 2025).
- Nesta, L.; Patel, P. National Patterns of Technology Accumulation: Use of Patent Statistics. In Handbook of Quantitative Science and Technology Research; Kluwer Academic Publishers: Dordrecht, The Netherlands; pp. 531–551.
- Quintella, C.M.; Hanna, S.A.; dos Santos, S.C. Brazil’s Biotechnology Assessment of Potential to Achieve Sustainable Development Goals, Benchmarking against the USA. World Pat. Inf. 2024, 77, 102275. [Google Scholar] [CrossRef]
- Almgren, R.; Skobelev, D. Evolution of Technology and Technology Governance. J. Open Innov. Technol. Mark. Complex 2020, 6, 22. [Google Scholar] [CrossRef]
- European Patent Office. Worldwide Database. Available online: https://worldwide.espacenet.com (accessed on 5 August 2025).
- Questel Orbit. The Fampat Collection. Available online: https://intelligence.help.questel.com/en/support/solutions/articles/77000436698-fampat-family-construction-rules (accessed on 5 August 2025).
- Gomes Costa, B.M.; Nannini da Silva Florencio, M.; de Oliveira Junior, A.M. Analysis of Technological Production in Biotechnology in Northeast Brazil. World Pat. Inf. 2018, 52, 42–49. [Google Scholar] [CrossRef]
- Voyant Tools. Available online: https://voyant-tools.org (accessed on 5 August 2025).
- Bibliometrix Biblioshiny. Available online: https://www.bibliometrix.org/home/index.php/layout/biblioshiny (accessed on 28 August 2025).
- Jang, J.H.; Park, B.J.; Shin, S.H.; Lee, E.G.; Kim, J.H.; Han, H.S.; Choi, B.G. Movable Smart Water System. Korea Patent KR10-1995822, 27 June 2019. [Google Scholar]
- Park, J.W.; Moon, C.H.; Park, B.J.; Kim, J.H.; Jung, E.T.; Oh, S.H. System for Manufacturing Smart Water. Korea Patent KR10-2338769, 8 December 2021. [Google Scholar]
- Al-Shalabi, E.W.; Sepehrnoori, K. A Comprehensive Review of Low Salinity/Engineered Water Injections and Their Applications in Sandstone and Carbonate Rocks. J. Pet. Sci. Eng. 2016, 139, 137–161. [Google Scholar] [CrossRef]
- Liu, F.; Wang, M. Review of Low Salinity Waterflooding Mechanisms: Wettability Alteration and Its Impact on Oil Recovery. Fuel 2020, 267, 117112. [Google Scholar] [CrossRef]
- RezaeiDoust, A.; Puntervold, T.; Austad, T. Chemical Verification of the EOR Mechanism by Using Low Saline/Smart Water in Sandstone. Energy Fuels 2011, 25, 2151–2162. [Google Scholar] [CrossRef]
- Austad, T.; Shariatpanahi, S.F.; Strand, S.; Aksulu, H.; Puntervold, T. Low Salinity EOR Effects in Limestone Reservoir Cores Containing Anhydrite: A Discussion of the Chemical Mechanism. Energy Fuels 2015, 29, 6903–6911. [Google Scholar] [CrossRef]
- Nasralla, R.A.; Nasr-El-Din, H.A. Impact of Cation Type and Concentration in Injected Brine on Oil Recovery in Sandstone Reservoirs. J. Pet. Sci. Eng. 2014, 122, 384–395. [Google Scholar] [CrossRef]
- Sharma, H.; Mohanty, K.K. An Experimental and Modeling Study to Investigate Brine-Rock Interactions during Low Salinity Water Flooding in Carbonates. J. Pet. Sci. Eng. 2018, 165, 1021–1039. [Google Scholar] [CrossRef]
- Hassenkam, T.; Pedersen, C.S.; Dalby, K.; Austad, T.; Stipp, S.L.S. Pore Scale Observation of Low Salinity Effects on Outcrop and Oil Reservoir Sandstone. Colloids Surf. A Physicochem. Eng. Asp. 2011, 390, 179–188. [Google Scholar] [CrossRef]
- Song, J.; Zeng, Y.; Wang, L.; Duan, X.; Puerto, M.; Chapman, W.G.; Biswal, S.L.; Hirasaki, G.J. Surface Complexation Modeling of Calcite Zeta Potential Measurements in Brines with Mixed Potential Determining Ions (Ca2+, CO32−, Mg2+, SO42−) for Characterizing Carbonate Wettability. J. Colloid Interface Sci. 2017, 506, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Skrettingland, K.; Holt, T.; Tweheyo, M.T.; Skjevrak, I. Snorre Low-Salinity-Water Injection—Coreflooding Experiments and Single-Well Field Pilot. SPE Reserv. Eval. Eng. 2011, 14, 182–192. [Google Scholar] [CrossRef]
- Brady, P.V.; Krumhansl, J.L. A Surface Complexation Model of Oil–Brine–Sandstone Interfaces at 100 °C: Low Salinity Waterflooding. J. Pet. Sci. Eng. 2012, 81, 171–176. [Google Scholar] [CrossRef]
- Behera, U.S.; Sangwai, J.S.; Baskaran, D.; Byun, H.-S. A Comprehensive Review on Low Salinity Water Injection for Enhanced Oil Recovery: Fundamental Insights, Laboratory and Field Studies, and Economic Aspects. Energy Fuels 2025, 39, 72–103. [Google Scholar] [CrossRef]
- Lyu, C.; Zhong, L.; Ning, Z.; Chen, M.; Cole, D.R. Review on Underlying Mechanisms of Low Salinity Waterflooding: Comparisons between Sandstone and Carbonate. Energy Fuels 2022, 36, 2407–2423. [Google Scholar] [CrossRef]
- Mumbere, W.; Sagala, F.; Gupta, U.; Bbosa, D. Reservoir Potential Unlocked: Synergies Between Low-Salinity Water Flooding, Nanoparticles and Surfactants in Enhanced Oil Recovery—A Review. ACS Omega 2025, 10, 31216–31261. [Google Scholar] [CrossRef]
- Marquez, R.; Ding, H.; Barrios, N.; Vera, R.E.; Salager, J.-L.; Al-Shalabi, E.W.; Mettu, S. Recent Advances in Enhanced Oil Recovery with Low-Salinity Waterflooding and Its Hybrid Methods in Carbonate Reservoirs. Energy Fuels 2025, 39, 8769–8799. [Google Scholar] [CrossRef]
- Haghighi, O.; Zargar, G.; Khaksar Manshad, A.; Ali, M.; Takassi, M.; Ali, J.; Keshavarz, A. Effect of Environment-Friendly Non-Ionic Surfactant on Interfacial Tension Reduction and Wettability Alteration; Implications for Enhanced Oil Recovery. Energies 2020, 13, 3988. [Google Scholar] [CrossRef]
- Saxena, N.; Saxena, A.; Mandal, A. Synthesis, Characterization and Enhanced Oil Recovery Potential Analysis through Simulation of a Natural Anionic Surfactant. J. Mol. Liq. 2019, 282, 545–556. [Google Scholar] [CrossRef]
- Khorram Ghahfarokhi, A.; Dadashi, A.; Daryasafar, A.; Moghadasi, J. Feasibility Study of New Natural Leaf-Derived Surfactants on the IFT in an Oil–Aqueous System: Experimental Investigation. J. Pet. Explor. Prod. Technol. 2015, 5, 375–382. [Google Scholar] [CrossRef]
- Dashtaki, S.R.M.; Ali, J.A.; Majeed, B.; Manshad, A.K.; Nowrouzi, I.; Iglauer, S.; Keshavarz, A. Evaluation the Role of Natural Surfactants from Tanacetum and Tarragon Plants in EOR Applications. J. Mol. Liq. 2022, 361, 119576. [Google Scholar] [CrossRef]
- Norouzpour, M.; Azdarpour, A.; Nabipour, M.; Santos, R.M.; Khaksar Manshad, A.; Iglauer, S.; Akhondzadeh, H.; Keshavarz, A. Red Beet Plant as a Novel Source of Natural Surfactant Combined with ‘Smart Water’ for EOR Purposes in Carbonate Reservoirs. J. Mol. Liq. 2023, 370, 121051. [Google Scholar] [CrossRef]
- Kalam, S.; Kamal, M.S.; Patil, S.; Hussain, S.M.S. Impact of Spacer Nature and Counter Ions on Rheological Behavior of Novel Polymer-Cationic Gemini Surfactant Systems at High Temperature. Polymers 2020, 12, 1027. [Google Scholar] [CrossRef]
- Gbadamosi, A.; Hussai, S.M.S.; Kamal, M.S.; Patil, S.; Solling, T.; Hassan, S.F.; Wang, J. Evaluating the Potential of Zwitterionic Surfactants for Enhanced Oil Recovery: Effect of Headgroups and Unsaturation. Energy Fuels 2023, 37, 5078–5086. [Google Scholar] [CrossRef]
- Quintella, C.M.; Rodrigues, P.D.; Hanna, S.A.; Nicoleti, J.L.; Carvalho, E.B.; de Medeiros, A.C.G.; Ramos-de-Souza, E.; dos Santos, E.S.; Vasconcelos, A.C.; de Moura, J.D. Sustainable Enhanced Oil Recovery Fluid Based on Synergic Effects of Cationic, Anionic, and Nonionic Surfactants in Low Salinity: SLS.; QA; and SDBS. ACS Omega 2025, 10, 8408–8419. [Google Scholar] [CrossRef]
- Qin, Z.; Arshadi, M.; Piri, M. Carbonated Water Injection and In Situ CO2 Exsolution in Oil-Wet Carbonate: A Micro-Scale Experimental Investigation. Energy Fuels 2021, 35, 6615–6632. [Google Scholar] [CrossRef]
- Moghadasi, R.; Kord, S.; Moghadasi, J.; Dashti, H. Mechanistic Understanding of Asphaltenes Surface Behavior at Oil/Water Interface: An Experimental Study. J. Mol. Liq. 2019, 285, 562–571. [Google Scholar] [CrossRef]
- Lele, P.; Syed, A.H.; Riordon, J.; Mosavat, N.; Guerrero, A.; Fadaei, H.; Sinton, D. Deformation of Microdroplets in Crude Oil for Rapid Screening of Enhanced Oil Recovery Additives. J. Pet. Sci. Eng. 2018, 165, 298–304. [Google Scholar] [CrossRef]
- Quintella, C.M.; Nascimento dos Santos, L.; Cruz Serra de Araújo, V.; Reis Gonçalves da Silva, H.; Ramos-de-Souza, E.; Bacic de Carvalho, E.; Hanna, S.A. Scientific and Technological Assessment of Xanthan and HPAM in the Low Environmental Impact Fluids for Advanced Oil Recovery (EOR). Rev. Indicação Geogr. Inov. INGI 2023, 7, 2255–2270. [Google Scholar] [CrossRef]
- Ramos de Souza, E.; Rodrigues, P.D.; Sampaio, I.C.F.; Bacic, E.; Crugeira, P.J.L.; Vasconcelos, A.C.; dos Santos Silva, M.; dos Santos, J.N.; Quintella, C.M.; Pinheiro, A.L.B.; et al. Xanthan Gum Produced by Xanthomonas Campestris Using Produced Water and Crude Glycerin as an Environmentally Friendlier Agent to Enhance Oil Recovery. Fuel 2022, 310, 122421. [Google Scholar] [CrossRef]
- Hanna, S.A.; Oliveira, P.C.C.A.; Santos, A.C.C.; Souza, E.R.; Carvalho, E.B.; Quintella, C.M. Enhanced Oil Recovery with Low Environmental Impact: Mapping Science (Articles) and Technology (Patents). Rev. Indicação Geogr. Inov. INGI 2023, 7, 2052–2068. [Google Scholar] [CrossRef]
- Wang, D.; Sun, S.; Cui, K.; Li, H.; Gong, Y.; Hou, J.; Zhang, Z. Wettability Alteration in Low-Permeability Sandstone Reservoirs by “SiO2–Rhamnolipid” Nanofluid. Energy Fuels 2019, 33, 12170–12181. [Google Scholar] [CrossRef]
- Li, X.; Yue, X.; Zou, J.; Yan, R. Effect of In-Situ Emulsification of Surfactant on the Enhanced Oil Recovery in Low-Permeability Reservoirs. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 127991. [Google Scholar] [CrossRef]
- Liu, D.; Xu, J.; Zhao, H.; Zhang, X.; Zhou, H.; Wu, D.; Liu, Y.; Yu, P.; Xu, Z.; Kang, W.; et al. Nanoemulsions Stabilized by Anionic and Non-Ionic Surfactants for Enhanced Oil Recovery in Ultra-Low Permeability Reservoirs: Performance Evaluation and Mechanism Study. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128235. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, Y.; Wu, Y.; Dai, C.; Gao, M.; Yan, R.; Guo, X. Enhanced Oil Recovery Mechanism by Surfactant-Silica Nanoparticles Imbibition in Ultra-Low Permeability Reservoirs. J. Mol. Liq. 2022, 348, 118010. [Google Scholar] [CrossRef]
- Bai, Y.; Pu, C.; Liu, S.; Li, X.; Liang, L.; Liu, J. A Novel Amphiphilic Janus Nano-Silica for Enhanced Oil Recovery in Low-Permeability Reservoirs: An Experimental Study. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128279. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, P.; Huang, S.; Hao, H.; Zhang, M.; Lu, G. Performance and Applicable Limits of Multi-Stage Gas Channeling Control System for CO2 Flooding in Ultra-Low Permeability Reservoirs. J. Pet. Sci. Eng. 2020, 192, 107336. [Google Scholar] [CrossRef]
- Cui, G.; Yang, L.; Fang, J.; Qiu, Z.; Wang, Y.; Ren, S. Geochemical Reactions and Their Influence on Petrophysical Properties of Ultra-Low Permeability Oil Reservoirs during Water and CO2 Flooding. J. Pet. Sci. Eng. 2021, 203, 108672. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, M.; You, Q.; Fan, H.; Li, W.; Liu, Y.; Fang, J.; Zhao, G.; Jin, Z.; Dai, C. Smart Mobility Control Agent for Enhanced Oil Recovery during CO2 Flooding in Ultra-Low Permeability Reservoirs. Fuel 2019, 241, 442–450. [Google Scholar] [CrossRef]
- Ahmadi, M.A. Developing a Robust Surrogate Model of Chemical Flooding Based on the Artificial Neural Network for Enhanced Oil Recovery Implications. Math. Probl. Eng. 2015, 2015, 706897. [Google Scholar] [CrossRef]
- Le Van, S.; Chon, B.H. Evaluating the Critical Performances of a CO2–Enhanced Oil Recovery Process Using Artificial Neural Network Models. J. Pet. Sci. Eng. 2017, 157, 207–222. [Google Scholar] [CrossRef]
- Van, S.L.; Chon, B.H. Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks. J. Energy Resour. Technol. 2018, 140, 032906. [Google Scholar] [CrossRef]
- Bisweswar, G.; Al-Hamairi, A.; Jin, S. Carbonated Water Injection: An Efficient EOR Approach. A Review of Fundamentals and Prospects. J. Pet. Explor. Prod. Technol. 2020, 10, 673–685. [Google Scholar] [CrossRef]
- Lashkarbolooki, M.; Riazi, M.; Ayatollahi, S. Experimental Investigation of Dynamic Swelling and Bond Number of Crude Oil during Carbonated Water Flooding; Effect of Temperature and Pressure. Fuel 2018, 214, 135–143. [Google Scholar] [CrossRef]
- Cobos, J.E.; Kissami, Y.; Alkutaini, I.A.; Søgaard, E.G. Microcalorimetric Study of Carbonating Produced Water as a Promising CO2 Storage and Enhanced Oil Recovery Method. Energies 2022, 15, 2888. [Google Scholar] [CrossRef]
- Li, S.; Zhang, K.; Jia, N.; Liu, L. Evaluation of Four CO2 Injection Schemes for Unlocking Oils from Low-Permeability Formations under Immiscible Conditions. Fuel 2018, 234, 814–823. [Google Scholar] [CrossRef]
- Hao, H.; Hou, J.; Zhao, F.; Song, Z.; Hou, L.; Wang, Z. Gas Channeling Control during CO2 Immiscible Flooding in 3D Radial Flow Model with Complex Fractures and Heterogeneity. J. Pet. Sci. Eng. 2016, 146, 890–901. [Google Scholar] [CrossRef]
- Tan, Y.; Li, Q.; Xu, L.; Ghaffar, A.; Zhou, X.; Li, P. A Critical Review of Carbon Dioxide Enhanced Oil Recovery in Carbonate Reservoirs. Fuel 2022, 328, 125256. [Google Scholar] [CrossRef]
- Koleini, M.M.; Mehraban, M.F.; Ayatollahi, S. Effects of Low Salinity Water on Calcite/Brine Interface: A Molecular Dynamics Simulation Study. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 61–68. [Google Scholar] [CrossRef]
- Prabhakar, S.; Melnik, R. Influence of Mg2+, (SO4)2− and Na+ Ions of Sea Water in Crude Oil Recovery: DFT and Ab Initio Molecular Dynamics Simulations. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 53–58. [Google Scholar] [CrossRef]
- Abdolahi, S.; Rashidi, F.; Miri, R. Effects of Temperature on the Interaction of Water and Oil Components on the Carbonated Pore Wall: Molecular Dynamics Simulation Study. J. Porous Media 2022, 25, 83–107. [Google Scholar] [CrossRef]
- Zhao, J.; Yao, G.; Ramisetti, S.B.; Hammond, R.B.; Wen, D. Molecular Dynamics Simulation of the Salinity Effect on the n -Decane/Water/Vapor Interfacial Equilibrium. Energy Fuels 2018, 32, 11080–11092. [Google Scholar] [CrossRef]
- Zeitler, T.R.; Greathouse, J.A.; Cygan, R.T.; Fredrich, J.T.; Jerauld, G.R. Molecular Dynamics Simulation of Resin Adsorption at Kaolinite Edge Sites: Effect of Surface Deprotonation on Interfacial Structure. J. Phys. Chem. C 2017, 121, 22787–22796. [Google Scholar] [CrossRef]
- Tetteh, J.; Bai, S.; Kubelka, J.; Piri, M. Surfactant-Induced Wettability Reversal on Oil-Wet Calcite Surfaces: Experimentation and Molecular Dynamics Simulations with Scaled-Charges. J Colloid Interface Sci 2022, 609, 890–900. [Google Scholar] [CrossRef]
- Hou, J.; Lin, S.; Du, J.; Sui, H. Study of the Adsorption Behavior of Surfactants on Carbonate Surface by Experiment and Molecular Dynamics Simulation. Front Chem 2022, 10, 847986. [Google Scholar] [CrossRef] [PubMed]
- Ramos de Souza, E.; Vasconcelos, A.C.; Melo, W.G.L.; Quintella, C.M.; de Carvalho, E.B.; dos Santos, E.S. The Stabilization of Oil-Bound Thin Brine Films over a Fixed Substrate with Electrically Charged Surfactants Subject to van Der Waals and Electrostatic Forces. Geoenergy Sci. Eng. 2023, 227, 211805. [Google Scholar] [CrossRef]
- Pu, W.-F.; Liu, R.; Li, B.; Jin, F.-Y.; Peng, Q.; Sun, L.; Du, D.-J.; Yao, F.-S. Amphoteric Hyperbranched Polymers with Multistimuli-Responsive Behavior in the Application of Polymer Flooding. RSC Adv. 2015, 5, 88002–88013. [Google Scholar] [CrossRef]
- Mahmoud, M.; Elkatatny, S.; Abdelgawad, K.Z. Using High- and Low-Salinity Seawater Injection to Maintain the Oil Reservoir Pressure without Damage. J. Pet. Explor. Prod. Technol. 2017, 7, 589–596. [Google Scholar] [CrossRef]
- Rahimi, A.; Honarvar, B.; Safari, M. The Role of Salinity and Aging Time on Carbonate Reservoir in Low Salinity Seawater and Smart Seawater Flooding. J. Pet. Sci. Eng. 2020, 187, 106739. [Google Scholar] [CrossRef]
- Velusamy, S.; Sakthivel, S.; Sangwai, J.S. Effect of Imidazolium-Based Ionic Liquids on the Interfacial Tension of the Alkane–Water System and Its Influence on the Wettability Alteration of Quartz under Saline Conditions through Contact Angle Measurements. Ind. Eng. Chem. Res. 2017, 56, 13521–13534. [Google Scholar] [CrossRef]
- Shojaati, F.; Mousavi, S.H.; Riazi, M.; Torabi, F.; Osat, M. Investigating the Effect of Salinity on the Behavior of Asphaltene Precipitation in the Presence of Emulsified Water. Ind. Eng. Chem. Res. 2017, 56, 14362–14368. [Google Scholar] [CrossRef]
- Puntervold, T.; Strand, S.; Ellouz, R.; Austad, T. Modified Seawater as a Smart EOR Fluid in Chalk. J. Pet. Sci. Eng. 2015, 133, 440–443. [Google Scholar] [CrossRef]
- Jafari Daghlian Sofla, S.; James, L.A.; Zhang, Y. Insight into the Stability of Hydrophilic Silica Nanoparticles in Seawater for Enhanced Oil Recovery Implications. Fuel 2018, 216, 559–571. [Google Scholar] [CrossRef]
- Mahmoud, M.; Attia, M.; Al-Hashim, H. EDTA Chelating Agent/Seawater Solution as Enhanced Oil Recovery Fluid for Sandstone Reservoirs. J. Pet. Sci. Eng. 2017, 152, 275–283. [Google Scholar] [CrossRef]
- Zandahvifard, M.J.; Elhambakhsh, A.; Ghasemi, M.N.; Esmaeilzadeh, F.; Parsaei, R.; Keshavarz, P.; Wang, X. Effect of Modified Fe3 O4 Magnetic NPs on the Absorption Capacity of CO2 in Water, Wettability Alteration of Carbonate Rock Surface, and Water–Oil Interfacial Tension for Oilfield Applications. Ind. Eng. Chem. Res. 2021, 60, 3421–3434. [Google Scholar] [CrossRef]
- Shehata, A.M.M.; Alotaibi, M.B.; Nasr-El-Din, H.A.A. Waterflooding in Carbonate Reservoirs: Does the Salinity Matter? SPE Reserv. Eval. Eng. 2014, 17, 304–313. [Google Scholar] [CrossRef]
- Sohal, M.A.; Thyne, G.; Søgaard, E.G. Review of Recovery Mechanisms of Ionically Modified Waterflood in Carbonate Reservoirs. Energy Fuels 2016, 30, 1904–1914. [Google Scholar] [CrossRef]
- Nowrouzi, I.; Manshad, A.K.; Mohammadi, A.H. Effects of Dissolved Binary Ionic Compounds and Different Densities of Brine on Interfacial Tension (IFT), Wettability Alteration, and Contact Angle in Smart Water and Carbonated Smart Water Injection Processes in Carbonate Oil Reservoirs. J. Mol. Liq. 2018, 254, 83–92. [Google Scholar] [CrossRef]
- Manshad, A.K.; Olad, M.; Taghipour, S.A.; Nowrouzi, I.; Mohammadi, A.H. Effects of Water Soluble Ions on Interfacial Tension (IFT) between Oil and Brine in Smart and Carbonated Smart Water Injection Process in Oil Reservoirs. J. Mol. Liq. 2016, 223, 987–993. [Google Scholar] [CrossRef]
- Awolayo, A.; Sarma, H.; AlSumaiti, A. An Experimental Investigation into the Impact of Sulfate Ions in Smart Water to Improve Oil Recovery in Carbonate Reservoirs. Transp. Porous Media 2016, 111, 649–668. [Google Scholar] [CrossRef]
- Lashkarbolooki, M.; Riazi, M.; Hajibagheri, F.; Ayatollahi, S. Low Salinity Injection into Asphaltenic-Carbonate Oil Reservoir, Mechanistical Study. J. Mol. Liq. 2016, 216, 377–386. [Google Scholar] [CrossRef]
- Kumar, A.; Mandal, A. Critical Investigation of Zwitterionic Surfactant for Enhanced Oil Recovery from Both Sandstone and Carbonate Reservoirs: Adsorption, Wettability Alteration and Imbibition Studies. Chem. Eng. Sci. 2019, 209, 115222. [Google Scholar] [CrossRef]
- Williams, J.D. Process of Supplying Water of Controlled Salinity. BP Exploration Operating Company, Applicant. PCT Patent WO2011/086346, 11 January 2011. [Google Scholar]
- Alnarabiji, M.S.; Yahya, N.; Nadeem, S.; Adil, M.; Baig, M.K.; Ghanem, O.B.; Azizi, K.; Ahmed, S.; Maulianda, B.; Klemeš, J.J.; et al. Nanofluid Enhanced Oil Recovery Using Induced ZnO Nanocrystals by Electromagnetic Energy: Viscosity Increment. Fuel 2018, 233, 632–643. [Google Scholar] [CrossRef]
- Chaturvedi, K.R.; Narukulla, R.; Trivedi, J.; Sharma, T. Effect of Single-Step Silica Nanoparticle on Rheological Characterization of Surfactant Based CO2 Foam for Effective Carbon Utilization in Subsurface Applications. J. Mol. Liq. 2021, 341, 116905. [Google Scholar] [CrossRef]
- Esmaeilnezhad, E.; Van, S.L.; Chon, B.H.; Choi, H.J.; Schaffie, M.; Gholizadeh, M.; Ranjbar, M. An Experimental Study on Enhanced Oil Recovery Utilizing Nanoparticle Ferrofluid through the Application of a Magnetic Field. J. Ind. Eng. Chem. 2018, 58, 319–327. [Google Scholar] [CrossRef]
- Yin, T.; Yang, Z.; Dong, Z.; Lin, M.; Zhang, J. Physicochemical Properties and Potential Applications of Silica-Based Amphiphilic Janus Nanosheets for Enhanced Oil Recovery. Fuel 2019, 237, 344–351. [Google Scholar] [CrossRef]
- Yoon, K.Y.; Son, H.A.; Choi, S.K.; Kim, J.W.; Sung, W.M.; Kim, H.T. Core Flooding of Complex Nanoscale Colloidal Dispersions for Enhanced Oil Recovery by in Situ Formation of Stable Oil-in-Water Pickering Emulsions. Energy Fuels 2016, 30, 2628–2635. [Google Scholar] [CrossRef]
- Garmroudi, A.; Kheirollahi, M.; Mousavi, S.A.; Fattahi, M.; Mahvelati, E.H. Effects of Graphene Oxide/TiO2 Nanocomposite, Graphene Oxide Nanosheets and Cedr Extraction Solution on IFT Reduction and Ultimate Oil Recovery from a Carbonate Rock. Petroleum 2022, 8, 476–482. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, X.; Wang, L.; Yang, H.; Wang, D.; Fu, M. Experimental Study of Effective Amphiphilic Graphene Oxide Flooding for an Ultralow-Permeability Reservoir. Energy Fuels 2018, 32, 11269–11278. [Google Scholar] [CrossRef]
- Rock, A.; Hincapie, R.E.; Tahir, M.; Langanke, N.; Ganzer, L. On the Role of Polymer Viscoelasticity in Enhanced Oil Recovery: Extensive Laboratory Data and Review. Polymers 2020, 12, 2276. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, X.; Yu, T.; Zhou, N.; Zhong, H.; Zhu, J. Formation and Rupture Mechanisms of Visco-Elastic Interfacial Films in Polymer-Stabilized Emulsions. J. Dispers Sci. Technol. 2019, 40, 612–626. [Google Scholar] [CrossRef]
- Li, Y.; Dai, C.; Zhou, H.; Wang, X.; Lv, W.; Wu, Y.; Zhao, M. A Novel Nanofluid Based on Fluorescent Carbon Nanoparticles for Enhanced Oil Recovery. Ind. Eng. Chem. Res. 2017, 56, 12464–12470. [Google Scholar] [CrossRef]
- Hendraningrat, L.; Torsæter, O. Effects of the Initial Rock Wettability on Silica-Based Nanofluid-Enhanced Oil Recovery Processes at Reservoir Temperatures. Energy Fuels 2014, 28, 6228–6241. [Google Scholar] [CrossRef]
- Aghajanzadeh, M.R.; Ahmadi, P.; Sharifi, M.; Riazi, M. Wettability Modification of Oil-Wet Carbonate Reservoirs Using Silica-Based Nanofluid: An Experimental Approach. J. Pet. Sci. Eng. 2019, 178, 700–710. [Google Scholar] [CrossRef]
- Yuan, B.; Moghanloo, R.G.; Wang, W. Using Nanofluids to Control Fines Migration for Oil Recovery: Nanofluids Co-Injection or Nanofluids Pre-Flush? A Comprehensive Answer. Fuel 2018, 215, 474–483. [Google Scholar] [CrossRef]
- Assef, Y.; Arab, D.; Pourafshary, P. Application of Nanofluid to Control Fines Migration to Improve the Performance of Low Salinity Water Flooding and Alkaline Flooding. J. Pet. Sci. Eng. 2014, 124, 331–340. [Google Scholar] [CrossRef]
- Jha, N.K.; Lebedev, M.; Iglauer, S.; Ali, M.; Roshan, H.; Barifcani, A.; Sangwai, J.S.; Sarmadivaleh, M. Pore Scale Investigation of Low Salinity Surfactant Nanofluid Injection into Oil Saturated Sandstone via X-Ray Micro-Tomography. J. Colloid Interface Sci. 2020, 562, 370–380. [Google Scholar] [CrossRef]
- Ali, J.A.; Kolo, K.; Manshad, A.K.; Stephen, K.D. Potential Application of Low-Salinity Polymeric-Nanofluid in Carbonate Oil Reservoirs: IFT Reduction, Wettability Alteration, Rheology and Emulsification Characteristics. J. Mol. Liq. 2019, 284, 735–747. [Google Scholar] [CrossRef]
- Radnia, H.; Rashidi, A.; Solaimany Nazar, A.R.; Eskandari, M.M.; Jalilian, M. A Novel Nanofluid Based on Sulfonated Graphene for Enhanced Oil Recovery. J. Mol. Liq. 2018, 271, 795–806. [Google Scholar] [CrossRef]
- Schneider, M.; Cesca, K.; de Amorim, S.M.; Hotza, D.; Rodríguez-Castellón, E.; Moreira, R.F.P.M. Synthesis and Characterization of Silica-Based Nanofluids for Enhanced Oil Recovery. J. Mater. Res. Technol. 2023, 24, 4143–4152. [Google Scholar] [CrossRef]
- Al-Yaari, A.; Ching, D.L.C.; Sakidin, H.; Muthuvalu, M.S.; Zafar, M.; Alyousifi, Y.; Saeed, A.A.H.; Haruna, A. Optimum Volume Fraction and Inlet Temperature of an Ideal Nanoparticle for Enhanced Oil Recovery by Nanofluid Flooding in a Porous Medium. Processes 2023, 11, 401. [Google Scholar] [CrossRef]
- Da, Q.; Yao, C.; Zhang, X.; Li, L.; Lei, G. Investigation on Flow Resistance Reduction and EOR Mechanisms by Activated Silica Nanofluids: Merging Microfluidic Experimental and CFD Modeling Approaches. J. Mol. Liq. 2022, 368, 120646. [Google Scholar] [CrossRef]
- Liang, T.; Wang, H.; Yang, C. Mechanisms and Effects of Amphiphilic Lamellar Nanofluid for Enhanced Oil Recovery in Low Permeability Reservoirs. J. Mol. Liq. 2024, 397, 124043. [Google Scholar] [CrossRef]
- Dibaji, A.S.; Rashidi, A.; Baniyaghoob, S.; Shahrabadi, A. Synthesizing CNT-TiO2 Nanocomposite and Experimental Pore-Scale Displacement of Crude Oil during Nanofluid Flooding. Pet. Explor. Dev. 2022, 49, 1430–1439. [Google Scholar] [CrossRef]
- Qin, T.; Goual, L.; Piri, M.; Hu, Z.; Wen, D. Nanoparticle-Stabilized Microemulsions for Enhanced Oil Recovery from Heterogeneous Rocks. Fuel 2020, 274, 117830. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, M.; Pi, Y.; Fan, X.; Cheng, G.; Jiang, L. Experimental Study on Enhanced Oil Recovery of the Heterogeneous System after Polymer Flooding. Processes 2023, 11, 2865. [Google Scholar] [CrossRef]
- Pi, Y.; Li, Z.; Liu, L.; Cao, R.; Liu, J.; Chen, H.; Fan, X.; Zhao, M. Experimental Investigation of Preformed Particle Gel and Alkali-Surfactant-Polymer Composite System for Enhanced Oil Recovery in Heterogeneous Reservoirs. J. Energy Resour. Technol. 2023, 145, 112903. [Google Scholar] [CrossRef]
- Wang, T.; Wang, L.; Song, W.; Fan, H.; Cheremisin, A.; Yuan, C. Temperature- and Salt-Tolerant 2-Acrylamide-2-Methylpropanesulfonic Acid/AM@SiO2 Microgel Particles: Synthesis and Enhanced Oil Recovery Performance Evaluation. Ind. Eng. Chem. Res. 2023, 62, 14879–14890. [Google Scholar] [CrossRef]
- Nowrouzi, I.; Mohammadi, A.H.; Manshad, A.K. Characterization and Evaluation of a Natural Surfactant Extracted from Soapwort Plant for Alkali-Surfactant-Polymer (ASP) Slug Injection into Sandstone Oil Reservoirs. J. Mol. Liq. 2020, 318, 114369. [Google Scholar] [CrossRef]
- Dang, C.; Nghiem, L.; Nguyen, N.; Yang, C.; Chen, Z.; Bae, W. Modeling and Optimization of Alkaline-Surfactant-Polymer Flooding and Hybrid Enhanced Oil Recovery Processes. J. Pet. Sci. Eng. 2018, 169, 578–601. [Google Scholar] [CrossRef]
- Tavakkoli, O.; Kamyab, H.; Shariati, M.; Mustafa Mohamed, A.; Junin, R. Effect of Nanoparticles on the Performance of Polymer/Surfactant Flooding for Enhanced Oil Recovery: A Review. Fuel 2022, 312, 122867. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Wang, J.; Dong, X.; Chen, F. Formulation Development and Visualized Investigation of Temperature-Resistant and Salt-Tolerant Surfactant-Polymer Flooding to Enhance Oil Recovery. J. Pet. Sci. Eng. 2019, 174, 584–598. [Google Scholar] [CrossRef]
- AlSofi, A.M.; Miralles, V.; Rousseau, D.; Dokhon, W.A. An All-Inclusive Laboratory Workflow for the Development of Surfactant/Polymer Formulations for EOR in Harsh Carbonates. J. Pet. Sci. Eng. 2021, 200, 108131. [Google Scholar] [CrossRef]
- Songolzadeh, R.; Moghadasi, J. Stabilizing Silica Nanoparticles in High Saline Water by Using Ionic Surfactants for Wettability Alteration Application. Colloid Polym. Sci. 2017, 295, 145–155. [Google Scholar] [CrossRef]
- Pandey, A.; Sinha, A.S.K.; Chaturvedi, K.R.; Sharma, T. Experimental Investigation on Effect of Reservoir Conditions on Stability and Rheology of Carbon Dioxide Foams of Nonionic Surfactant and Polymer: Implications of Carbon Geo-Storage. Energy 2021, 235, 121445. [Google Scholar] [CrossRef]
- Nowrouzi, I.; Khaksar Manshad, A.; Mohammadi, A.H. Effects of Tragacanth Gum as a Natural Polymeric Surfactant and Soluble Ions on Chemical Smart Water Injection into Oil Reservoirs. J. Mol. Struct. 2020, 1200, 127078. [Google Scholar] [CrossRef]
- Cheraghian, G. Evaluation of Clay and Fumed Silica Nanoparticles on Adsorption of Surfactant Polymer during Enhanced Oil Recovery. J. Jpn. Pet. Inst. 2017, 60, 85–94. [Google Scholar] [CrossRef]
- Joshi, D.; Maurya, N.K.; Kumar, N.; Mandal, A. Experimental Investigation of Silica Nanoparticle Assisted Surfactant and Polymer Systems for Enhanced Oil Recovery. J. Pet. Sci. Eng. 2022, 216, 110791. [Google Scholar] [CrossRef]
- Behera, U.S.; Sangwai, J.S. Nanofluids of Silica Nanoparticles in Low Salinity Water with Surfactant and Polymer (SMART LowSal) for Enhanced Oil Recovery. J. Mol. Liq. 2021, 342, 117388. [Google Scholar] [CrossRef]
- Behera, U.S.; Sangwai, J.S. Silica Nanofluid in Low Salinity Seawater Containing Surfactant and Polymer: Oil Recovery Efficiency, Wettability Alteration and Adsorption Studies. J. Pet. Sci. Eng. 2022, 211, 110148. [Google Scholar] [CrossRef]
- Pal, N.; Kumar, N.; Saw, R.K.; Mandal, A. Gemini Surfactant/Polymer/Silica Stabilized Oil-in-Water Nanoemulsions: Design and Physicochemical Characterization for Enhanced Oil Recovery. J. Pet. Sci. Eng. 2019, 183, 106464. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, T.; Kumar, R.S.; Arif, M. Biosurfactant Derived from Fenugreek Seeds and Its Impact on Wettability Alteration, Oil Recovery, and Effluent Treatment of a Rock System of Mixed Composition. Energy Fuels 2023, 37, 6683–6696. [Google Scholar] [CrossRef]
- Namaee-Ghasemi, A.; Behbahani, H.S.; Kord, S.; Sharifi, A. Geochemical Simulation of Wettability Alteration and Effluent Ionic Analysis during Smart Water Flooding in Carbonate Rocks: Insights into the Mechanisms and Their Contributions. J. Mol. Liq. 2021, 326, 114854. [Google Scholar] [CrossRef]
- Sheng, J.J. Critical Review of Low-Salinity Waterflooding. J. Pet. Sci. Eng. 2014, 120, 216–224. [Google Scholar] [CrossRef]
- Manshad, A.K.; Olad, M.; Taghipour, S.A.; Nowrouzi, I.; Mohammadi, A.H. Oil Recovery Process Using an Oil Recovery Composition of Aqueous Salt Solution and Dilute Polymer for Carbonate Reservoirs. Saudi Arabian Oil Assignee. U.S. Patent US20170204322, 20 July 2017. [Google Scholar]
- Suijkerbuijk, B.M.J.M.; Boersma, D.M.; Janssen, A.J.H. Process for Reducing Viscosity of Polymer-Containing Fluid Produced in the Recovery of Oil. Shell, Applicant. U.S. Patent US20150107841, 23 April 2015. [Google Scholar]
- Janssen, A.J.H.; Suijkerbuijk, B.M.J.M. Process for Producing and Separating Oil. Shell, Applicant. U.S. Patent US20140042058, 13 February 2014. [Google Scholar]
- Day, S.; Mair, C. Produced Water Balance Tool. British Petroleum, Applicant. PCT Patent WO2019/215332. British Petroleum, Applicant. PCT Patent WO2019/215332, 14 November 2019. [Google Scholar]
- Crouch, J.H. Computerized Control System for a Desalination Plant. British Petroleum, Applicant. PCT Patent WO2019/234440, 12 December 2019. [Google Scholar]
- Crouch, J.H.; Williams, J.D. Systems and Methods for Supplying Low Salinity Injection Water. British Petroleum, Applicant. PCT Patent WO2020/099479, 22 May 2020. [Google Scholar]
- Couves, J.W.; Crouch, J.H.; Williams, J.D. Method and System of Controlling Salinity of a Low Salinity Injection Water. British Petroleum, Assignee. PCT Patent WO2019/012089, 17 January 2019. [Google Scholar]
- Couves, J.W.; Day, S.W.; Gibson, C.; Rashid, B.; Williams, J.D. Low Salinity Injection Water Composition and Generation for Enhanced Oil Recovery. British Petroleum, Assignee. Great. Britain Patent GB201914975, 27 November 2019. [Google Scholar]
- Collins, I.R.; Couves, J.W.; Crouch, J.H.; Williams, J.D. Method of Controlling Salinity of a Low Salinity Injection Water. British Petroleum. Applicant. PCT Patent WO2019/053092, 21 March 2019. [Google Scholar]
- Recio, I.A.; Reyes, E.A.; Beuterbaugh, A.M.; Benoit, D.N. Method for Improved Oil Recovery in Subterranean Formations with Circumneutral PH Flood. Halliburton Energy Services, Applicant. U.S. Patent US20220162498, 26 May 2022. [Google Scholar]
- Recio, I.A.; Reyes, E.A.; Beuterbaugh, A.M.; Bosch, R.O. Reactive Surfactant Flooding at Neutral PH. Halliburton Energy Services, Applicant. U.S. Patent US20220162929, 26 May 2022. [Google Scholar]
- Wei, K.; Si, R.; Chen, F.; Liu, Y.; Yang, H.; Fang, Q.; Xiong, P.; Liu, X.; Wang, W.; Lian, C.; et al. Antihypertensive Injection and Preparation Method Thereof. China Petroleum & Chemical, Applicant. China Patent CN112980420, 18 June 2021. [Google Scholar]
- Carvalho, E.B.; Santos, E.S.; Santos, E.V.A.O.; Gama, M.O.; Nicoleti, J.L.; Rodrigues, P.D.; Morais, V.C.; Hanna, S.A.; Souza, E.R.; Quintella, C.M.A.L.T.M.H.; et al. Low Salinity Formulation with Synergistic Combination of Surfactants for Enhanced Oil Recovery and Enhanced Oil Recovery Process. Petrogal Brasil S.A.; Federal University of Bahia; Federal Institute of Bahia; Mosaico Fluids S.A. Applicants. Brazilian Patent BR102024016296-0, 9 August 2024. [Google Scholar]
- Al-Yousef, A.A.; Ayirala, S.C. Method for Providing Reservoir Based Details. Saudi Arabian Oil Assignee. U.S. Patent US20170015893, 19 January 2017. [Google Scholar]
- Sheehy, A.J.; Govreau, B.R.; Hill, C.K.; Carroll, M.T.; Marcotte, B.W.G. Biological Augmentation of Low Salinity Water Flooding to Improve Oil Release Using Nutrient Supplementation. Titan Oil Recovery, Applicant. U.S. Patent US20140367090, 18 December 2014. [Google Scholar]
- Collins, I.R.; Couves, J.W.; Hodges, M.G.; Pedersen, C.S.; Salino, P.A.; Wicking, C.C. Method to Detect Incremental Oil Production Arising from a Low Salinity Waterflood, British Petroleum, Applicant. PCT Patent WO2017/162489, 28 September 2017. [Google Scholar]
- Collins, I.R.; Houston, S.J. Method and System for Configuring Crude Oil Displacement System. British Petroleum. Applicant. PCT Patent WO2010/139932, 15 December 2010. [Google Scholar]
- Carvalho, E.B.; Quintella, C.M.A.L.T.M.H.; Rodrigues, P.D.; Hanna, S.A.; Nicoleti, J.L.; Figueiredo, L.S.S.; Rodrigues, J.P.D.; Santos, E.S.; Souza, E.R.; Vasconcelos, A.C.; et al. Low Salinity Formulation with Synergistic Combination of Salts, Surfactants and Polymers for Enhanced Oil Recovery and Enhanced Oil Recovery Process. Petrogal Brasil S.A.; Federal University of Bahia; Federal Institute of Bahia; Mosaico Fluids S.A. Applicants. Brazilian Patent BR1020250102250, 21 May 2025. [Google Scholar]
- Carvalho, E.B.; Quintella, C.M.A.L.T.M.H.; Rodrigues, P.D.; Hanna, S.A.; Nicoleti, J.L.; Rodrigues, J.P.D.; Figueiredo, L.S.S.; Oliveira, M.C.P.; Silva, E.S.; Souza, E.R.; et al. Formulation for Addition to Seawater or Formation Water with a Synergistic Combination of Salts, Polymers and Surfactants for Enhanced Oil Recovery and Enhanced Oil Recovery Processes; Petrogal Brasil S.A.; Federal University of Bahia; Federal Institute of Bahia; Mosaico Fluids S.A. Applicants. Brazilian Patent BR1020250057778, 25 March 2025. [Google Scholar]
Document Type | EOR | Smart Water EOR |
---|---|---|
Indexed articles (TRL3) | 6643 | 1395 |
Published patents (TRL 4–5) | 25,164 | 23 |
Parent Company | Alive Patents | Average Family Size | Average Age 1 |
---|---|---|---|
BP | 10 | 14.6 | 8 |
Halliburton | 3 | 3 | 4 |
Shell | 3 | 9.7 | 10 |
Saudi Arabian Oil | 2 | 12.5 | 7 |
EPS ENE | 2 | 1 | 4 |
China Petroleum & Chemical | 1 | 1 | 3 |
Titan Oil Recovery | 1 | 3 | 10 |
North China Oil Gas Branch of Sinopec | 1 | 1 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintella, C.M.; Rodrigues, P.D.; Nicoleti, J.L.; Hanna, S.A. Comprehensive Review of Smart Water Enhanced Oil Recovery Based on Patents and Articles. Technologies 2025, 13, 457. https://doi.org/10.3390/technologies13100457
Quintella CM, Rodrigues PD, Nicoleti JL, Hanna SA. Comprehensive Review of Smart Water Enhanced Oil Recovery Based on Patents and Articles. Technologies. 2025; 13(10):457. https://doi.org/10.3390/technologies13100457
Chicago/Turabian StyleQuintella, Cristina M., Pamela D. Rodrigues, Jorge L. Nicoleti, and Samira A. Hanna. 2025. "Comprehensive Review of Smart Water Enhanced Oil Recovery Based on Patents and Articles" Technologies 13, no. 10: 457. https://doi.org/10.3390/technologies13100457
APA StyleQuintella, C. M., Rodrigues, P. D., Nicoleti, J. L., & Hanna, S. A. (2025). Comprehensive Review of Smart Water Enhanced Oil Recovery Based on Patents and Articles. Technologies, 13(10), 457. https://doi.org/10.3390/technologies13100457