Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (506)

Search Parameters:
Keywords = oil recovery factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1745 KiB  
Article
A Prediction Method for Technically Recoverable Reserves Based on a Novel Relationship Between the Relative Permeability Ratio and Saturation
by Dongqi Wang, Jiaxing Wen, Yang Sun and Daiyin Yin
Eng 2025, 6(8), 182; https://doi.org/10.3390/eng6080182 - 2 Aug 2025
Viewed by 125
Abstract
Upon reaching stabilized production in waterflooded reservoirs, waterflood performance curves are conventionally used to predict technically recoverable reserves (TRRs). However, as reservoirs enter high water-cut stages, the relationship between the relative permeability ratio and saturation becomes nonlinear, causing deflection in waterflood performance curves. [...] Read more.
Upon reaching stabilized production in waterflooded reservoirs, waterflood performance curves are conventionally used to predict technically recoverable reserves (TRRs). However, as reservoirs enter high water-cut stages, the relationship between the relative permeability ratio and saturation becomes nonlinear, causing deflection in waterflood performance curves. This leads to systematic overestimation of both predicted TRR and ultimate recovery factors. To overcome these limitations in conventional TRR prediction methods, this study establishes a novel relative permeability ratio-saturation relationship based on characteristic relative permeability curve behaviors. The proposed model is validated for three distinct fluid-rock interaction types. We further develop a permeability-driven forecasting model for oil production rates and water cuts. Comparative analyses with a conventional waterflood curve methodology demonstrate significant accuracy improvements. The results show that while traditional methods predict TRR ranging from 78.40 to 92.29 million tons, our model yields 70.73 million tons—effectively resolving overestimation issues caused by curve deflection during high water-cut phases. This approach establishes a robust framework for determining critical development parameters, including economic field lifespan, strategy adjustments, and ultimate recovery factor. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

20 pages, 4663 KiB  
Article
Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR
by Dunqing Liu, Chengzhi Jia and Keji Chen
Energies 2025, 18(15), 4111; https://doi.org/10.3390/en18154111 - 2 Aug 2025
Viewed by 128
Abstract
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in [...] Read more.
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in light shale oil or tight oil. However, the representativeness of these simulated oils for low-maturity crude oils with higher viscosity and greater content of resins and asphaltenes requires further research. In this study, imbibition experiments were conducted and T2 and T1T2 nuclear magnetic resonance (NMR) spectra were adopted to investigate the oil recovery characteristics among resin–asphaltene-rich Jimusar shale oil and two WMOs. The overall imbibition recovery rates, pore scale recovery characteristics, mobility variations among oils with different occurrence states, as well as key factors influencing imbibition efficiency were analyzed. The results show the following: (1) WMO, kerosene, or alkanes with matched apparent viscosity may not comprehensively replicate the imbibition behavior of resin–asphaltene-rich crude oils. These simplified systems fail to capture the pore-scale occurrence characteristics of resins/asphaltenes, their influence on pore wettability alteration, and may consequently overestimate the intrinsic imbibition displacement efficiency in reservoir formations. (2) Surfactant optimization must holistically address the intrinsic coupling between interfacial tension reduction, wettability modification, and pore-scale crude oil mobilization mechanisms. The alteration of overall wettability exhibits higher priority over interfacial tension in governing displacement dynamics. (3) Imbibition displacement exhibits selective mobilization characteristics for oil phases in pores. Specifically, when the oil phase contains complex hydrocarbon components, lighter fractions in larger pores are preferentially mobilized; when the oil composition is homogeneous, oil in smaller pores is mobilized first. Full article
(This article belongs to the Special Issue New Progress in Unconventional Oil and Gas Development: 2nd Edition)
Show Figures

Figure 1

19 pages, 3532 KiB  
Article
Machine Learning Prediction of CO2 Diffusion in Brine: Model Development and Salinity Influence Under Reservoir Conditions
by Qaiser Khan, Peyman Pourafshary, Fahimeh Hadavimoghaddam and Reza Khoramian
Appl. Sci. 2025, 15(15), 8536; https://doi.org/10.3390/app15158536 (registering DOI) - 31 Jul 2025
Viewed by 115
Abstract
The diffusion coefficient (DC) of CO2 in brine is a key parameter in geological carbon sequestration and CO2-Enhanced Oil Recovery (EOR), as it governs mass transfer efficiency and storage capacity. This study employs three machine learning (ML) models—Random Forest (RF), [...] Read more.
The diffusion coefficient (DC) of CO2 in brine is a key parameter in geological carbon sequestration and CO2-Enhanced Oil Recovery (EOR), as it governs mass transfer efficiency and storage capacity. This study employs three machine learning (ML) models—Random Forest (RF), Gradient Boost Regressor (GBR), and Extreme Gradient Boosting (XGBoost)—to predict DC based on pressure, temperature, and salinity. The dataset, comprising 176 data points, spans pressures from 0.10 to 30.00 MPa, temperatures from 286.15 to 398.00 K, salinities from 0.00 to 6.76 mol/L, and DC values from 0.13 to 4.50 × 10−9 m2/s. The data was split into 80% for training and 20% for testing to ensure reliable model evaluation. Model performance was assessed using R2, RMSE, and MAE. The RF model demonstrated the best performance, with an R2 of 0.95, an RMSE of 0.03, and an MAE of 0.11 on the test set, indicating high predictive accuracy and generalization capability. In comparison, GBR achieved an R2 of 0.925, and XGBoost achieved an R2 of 0.91 on the test set. Feature importance analysis consistently identified temperature as the most influential factor, followed by salinity and pressure. This study highlights the potential of ML models for predicting CO2 diffusion in brine, providing a robust, data-driven framework for optimizing CO2-EOR processes and carbon storage strategies. The findings underscore the critical role of temperature in diffusion behavior, offering valuable insights for future modeling and operational applications. Full article
Show Figures

Figure 1

13 pages, 1486 KiB  
Article
Evaluation of Miscible Gas Injection Strategies for Enhanced Oil Recovery in High-Salinity Reservoirs
by Mohamed Metwally and Emmanuel Gyimah
Processes 2025, 13(8), 2429; https://doi.org/10.3390/pr13082429 - 31 Jul 2025
Viewed by 229
Abstract
This study presents a comprehensive evaluation of miscible gas injection (MGI) strategies for enhanced oil recovery (EOR) in high-salinity reservoirs, with a focus on the Raleigh Oil Field. Using a calibrated Equation of State (EOS) model in CMG WinProp™, eight gas injection scenarios [...] Read more.
This study presents a comprehensive evaluation of miscible gas injection (MGI) strategies for enhanced oil recovery (EOR) in high-salinity reservoirs, with a focus on the Raleigh Oil Field. Using a calibrated Equation of State (EOS) model in CMG WinProp™, eight gas injection scenarios were simulated to assess phase behavior, miscibility, and swelling factors. The results indicate that carbon dioxide (CO2) and enriched separator gas offer the most technically and economically viable options, with CO2 demonstrating superior swelling performance and lower miscibility pressure requirements. The findings underscore the potential of CO2-EOR as a sustainable and effective recovery method in pressure-depleted, high-salinity environments. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Figure 1

25 pages, 1438 KiB  
Article
Optimized Ultrasound-Assisted Extraction for Enhanced Recovery of Valuable Phenolic Compounds from Olive By-Products
by Xavier Expósito-Almellón, Álvaro Munguía-Ubierna, Carmen Duque-Soto, Isabel Borrás-Linares, Rosa Quirantes-Piné and Jesús Lozano-Sánchez
Antioxidants 2025, 14(8), 938; https://doi.org/10.3390/antiox14080938 - 30 Jul 2025
Viewed by 304
Abstract
The olive oil industry generates by-products like olive leaves and pomace, which are rich in bioactive compounds, especially polyphenols. This study applied a circular economy approach to valorize these residues using green ultrasound-assisted extraction (UAE) with GRAS solvents. Key parameters (solvent composition, ultrasound [...] Read more.
The olive oil industry generates by-products like olive leaves and pomace, which are rich in bioactive compounds, especially polyphenols. This study applied a circular economy approach to valorize these residues using green ultrasound-assisted extraction (UAE) with GRAS solvents. Key parameters (solvent composition, ultrasound amplitude, and specific energy) were optimized via Response Surface Methodology (RSM) to enhance polyphenol recovery and yield. Ethanol concentration proved to be the most influential factor. Optimal conditions for olive pomace were 100% ethanol, 46 μm amplitude, and 25 J∙mL−1 specific energy, while olive leaves required 72% ethanol with similar ultrasound settings. Under these conditions, extracts were prepared and analyzed using HPLC-ESI-QTOF-MS and DPPH assays. The optimized UAE process achieved yields of 15–20% in less than 5 min and under mild conditions. Optimal extracts showed high oleuropein content (6 mg/g in leaves, 5 mg/g in pomace), lower hydroxytyrosol levels, and minimal oxidized derivatives, suggesting reduced degradation compared to conventional methods. These findings demonstrate UAE’s effectiveness in recovering valuable phenolics from olive by-products, supporting sustainable and efficient resource use. Full article
(This article belongs to the Special Issue Bioactive Antioxidants from Agri-Food Wastes)
Show Figures

Figure 1

23 pages, 6480 KiB  
Article
Mechanism Analysis and Evaluation of Formation Physical Property Damage in CO2 Flooding in Tight Sandstone Reservoirs of Ordos Basin, China
by Qinghua Shang, Yuxia Wang, Dengfeng Wei and Longlong Chen
Processes 2025, 13(7), 2320; https://doi.org/10.3390/pr13072320 - 21 Jul 2025
Viewed by 423
Abstract
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of [...] Read more.
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of the region. Since initiating field experiments in 2012, the Ordos Basin has become a significant base for CCUS (Carbon capture, Utilization, and Storage) technology application and demonstration in China. However, over the years, projects have primarily focused on enhancing the recovery rate of CO2 flooding, while issues such as potential reservoir damage and its extent have received insufficient attention. This oversight hinder the long-term development and promotion of CO2 flooding technology in the region. Experimental results were comprehensively analyzed using techniques including nuclear magnetic resonance (NMR), X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP), and ion chromography (IG). The findings indicate that under current reservoir temperature and pressure conditions, significant asphaltene deposition and calcium carbonate precipitation do not occur during CO2 flooding. The reservoir’s characteristics-high feldspar content, low carbon mineral content, and low clay mineral content determine that the primary mechanism affecting physical properties under CO2 flooding in the Chang 4 + 5 tight sandstone reservoir is not, as traditional understand, carbon mineral dissolution or primary clay mineral expansion and migration. Instead, feldspar corrosion and secondary particles migration are the fundamental reasons for the changes in reservoir properties. As permeability increases, micro pore blockage decreases, and the damaging effect of CO2 flooding on reservoir permeability diminishes. Permeability and micro pore structure are therefore significant factors determining the damage degree of CO2 flooding inflicts on tight reservoirs. In addition, temperature and pressure have a significant impact on the extent of reservoir damage caused by CO2 flooding in the study region. At a given reservoir temperature, increasing CO2 injection pressure can mitigate reservoir damage. It is recommended to avoid conducting CO2 flooding projects in reservoirs with severe pressure attenuation, low permeability, and narrow pore throats as much as possible to prevent serious damage to the reservoir. At the same time, the production pressure difference should be reasonably controlled during the production process to reduce the risk and degree of calcium carbonate precipitation near oil production wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 3268 KiB  
Article
In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism
by Liangliang Wang, Minghua Shi, Jiaxin Li, Baiqiang Shi, Xiaoming Su, Yande Zhao, Qing Guo and Yuan Yuan
Energies 2025, 18(14), 3879; https://doi.org/10.3390/en18143879 - 21 Jul 2025
Viewed by 272
Abstract
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development [...] Read more.
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development of offshore oilfields. This study addresses the challenges hindering water flooding development in offshore oilfields by investigating the emulsification mechanism and key influencing factors based on oil–water emulsion characteristics, thereby proposing a novel in situ emulsification flooding method. Based on a fundamental analysis of oil–water properties, key factors affecting emulsion stability were examined. Core flooding experiments clarified the impact of spontaneous oil–water emulsification on water flooding recovery. Two-dimensional T1–T2 NMR spectroscopy was employed to detect pure fluid components, innovating the method for distinguishing oil–water distribution during flooding and revealing the characteristics of in situ emulsification interactions. The results indicate that emulsions formed between crude oil and formation water under varying rheometer rotational speeds (500–2500 r/min), water cuts (30–80%), and emulsification temperatures (40–85 °C) are all water-in-oil (W/O) type. Emulsion viscosity exhibits a positive correlation with shear rate, with droplet sizes primarily ranging between 2 and 7 μm and a viscosity amplification factor up to 25.8. Emulsion stability deteriorates with increasing water cut and temperature. Prolonged shearing initially increases viscosity until stabilization. In low-permeability cores, spontaneous oil–water emulsification occurs, yielding a recovery factor of only 30%. For medium- and high-permeability cores (water cuts of 80% and 50%, respectively), recovery factors increased by 9.7% and 12%. The in situ generation of micron-scale emulsions in porous media achieved a recovery factor of approximately 50%, demonstrating significantly enhanced oil recovery (EOR) potential. During emulsification flooding, the system emulsifies oil at pore walls, intensifying water–wall interactions and stripping wall-adhered oil, leading to increased T2 signal intensity and reduced relaxation time. Oil–wall interactions and collision frequencies are lower than those of water, which appears in high-relaxation regions (T1/T2 > 5). The two-dimensional NMR spectrum clearly distinguishes oil and water distributions. Full article
Show Figures

Figure 1

20 pages, 4067 KiB  
Article
Research and Application of Low-Velocity Nonlinear Seepage Model for Unconventional Mixed Tight Reservoir
by Li Ma, Cong Lu, Jianchun Guo, Bo Zeng and Shiqian Xu
Energies 2025, 18(14), 3789; https://doi.org/10.3390/en18143789 - 17 Jul 2025
Viewed by 227
Abstract
Due to factors such as low porosity and permeability, thin sand body thickness, and strong interlayer heterogeneity, the fluid flow in the tight reservoir (beach-bar sandstone reservoir) exhibits obvious nonlinear seepage characteristics. Considering the time-varying physical parameters of different types of sand bodies, [...] Read more.
Due to factors such as low porosity and permeability, thin sand body thickness, and strong interlayer heterogeneity, the fluid flow in the tight reservoir (beach-bar sandstone reservoir) exhibits obvious nonlinear seepage characteristics. Considering the time-varying physical parameters of different types of sand bodies, a nonlinear seepage coefficient is derived based on permeability and capillary force, and a low-velocity nonlinear seepage model for beach bar sand reservoirs is established. Based on core displacement experiments of different types of sand bodies, the low-velocity nonlinear seepage coefficient was fitted and numerical simulation of low-velocity nonlinear seepage in beach-bar sandstone reservoirs was carried out. The research results show that the displacement pressure and flow rate of low-permeability tight reservoirs exhibit a significant nonlinear relationship. The lower the permeability and the smaller the displacement pressure, the more significant the nonlinear seepage characteristics. Compared to the bar sand reservoir, the water injection pressure in the tight reservoir of the beach sand is higher. In the nonlinear seepage model, the bottom hole pressure of the water injection well increases by 10.56% compared to the linear model, indicating that water injection is more difficult in the beach sand reservoir. Compared to matrix type beach sand reservoirs, natural fractures can effectively reduce the impact of fluid nonlinear seepage characteristics on the injection and production process of beach sand reservoirs. Based on the nonlinear seepage characteristics, the beach-bar sandstone reservoir can be divided into four flow zones during the injection production process, including linear seepage zone, nonlinear seepage zone, non-flow zone affected by pressure, and non-flow zone not affected by pressure. The research results can effectively guide the development of beach-bar sandstone reservoirs, reduce the impact of low-speed nonlinear seepage, and enhance oil recovery. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

18 pages, 1276 KiB  
Article
A Pressure-Driven Recovery Factor Equation for Enhanced Oil Recovery Estimation in Depleted Reservoirs: A Practical Data-Driven Approach
by Tarek Al Arabi Omar Ganat
Energies 2025, 18(14), 3658; https://doi.org/10.3390/en18143658 - 10 Jul 2025
Viewed by 205
Abstract
This study presents a new equation, the dynamic recovery factor (DRF), for evaluating the recovery factor (RF) in homogeneous and heterogeneous reservoirs. The DRF method’s outcomes are validated and compared using the decline curve analysis (DCA) method. Real measured [...] Read more.
This study presents a new equation, the dynamic recovery factor (DRF), for evaluating the recovery factor (RF) in homogeneous and heterogeneous reservoirs. The DRF method’s outcomes are validated and compared using the decline curve analysis (DCA) method. Real measured field data from 15 wells in a homogenous sandstone reservoir and 10 wells in a heterogeneous carbonate reservoir are utilized for this study. The concept of the DRF approach is based on the material balance principle, which integrates several components (weighted average cumulative pressure drop (ΔPcum), total compressibility (Ct), and oil saturation (So)) for predicting RF. The motivation for this study stems from the practical restrictions of conventional RF valuation techniques, which often involve extensive datasets and use simplifying assumptions that are not applicable in complex heterogeneous reservoirs. For the homogenous reservoir, the DRF approach predicts an RF of 8%, whereas the DCA method predicted 9.2%. In the heterogeneous reservoir, the DRF approach produces an RF of 6% compared with 5% for the DCA technique. Sensitivity analysis shows that RF is very sensitive to variations in Ct, ΔPcum, and So, with values that vary from 6.00% to 10.71% for homogeneous reservoirs and 4.43% to 7.91% for heterogeneous reservoirs. Uncertainty calculation indicates that errors in Ct, ΔPcum, and So propagate to RF, with weighting factor (Wi) uncertainties causing changes of ±3.7% and ±4.4% in RF for homogeneous and heterogeneous reservoirs, respectively. This study shows the new DRF approach’s ability to provide reliable RF estimations via pressure dynamics, while DCA is used as a validation and comparison baseline. The sensitivity analyses and uncertainty analyses provide a strong foundation for RF estimation that helps to select well-informed decisions in reservoir management with reliable RF values. The novelty of the new DRF equation lies in its capability to correctly estimate RFs using limited available historical data, making it appropriate for early-stage development and data-scarce situations. Hence, the new DRF equation is applied to various reservoir qualities, and the results show a strong alignment with those obtained from DCA, demonstrating high accuracy. This agreement validates the applicability of the DRF equation in estimating recovery factors through different reservoir qualities. Full article
(This article belongs to the Special Issue Petroleum Exploration, Development and Transportation)
Show Figures

Figure 1

24 pages, 13675 KiB  
Article
Microscopic Investigation of the Effect of Different Wormhole Configurations on CO2-Based Cyclic Solvent Injection in Post-CHOPS Reservoirs
by Sepideh Palizdan, Farshid Torabi and Afsar Jaffar Ali
Processes 2025, 13(7), 2194; https://doi.org/10.3390/pr13072194 - 9 Jul 2025
Viewed by 230
Abstract
Cyclic Solvent Injection (CSI), one of the most promising solvent-based enhanced oil recovery (EOR) methods, has attracted the oil industry’s interest due to its energy efficiency, produced oil quality, and environmental suitability. Previous studies revealed that foamy oil flow is considered as one [...] Read more.
Cyclic Solvent Injection (CSI), one of the most promising solvent-based enhanced oil recovery (EOR) methods, has attracted the oil industry’s interest due to its energy efficiency, produced oil quality, and environmental suitability. Previous studies revealed that foamy oil flow is considered as one of the main mechanisms of the CSI process. However, due to the presence of complex high-permeable channels known as wormholes in Post-Cold Heavy Oil Production with Sands (Post-CHOPS) reservoirs, understanding the effect of each operational parameter on the performance of the CSI process in these reservoirs requires a pore-scale investigation of different wormhole configurations. Therefore, in this project, a comprehensive microfluidic experimental investigation into the effect of symmetrical and asymmetrical wormholes during the CSI process has been conducted. A total of 11 tests were designed, considering four different microfluidic systems with various wormhole configurations. Various operational parameters, including solvent type, pressure depletion rate, and the number of cycles, were considered to assess their effects on foamy oil behavior in post-CHOPS reservoirs in the presence of wormholes. The finding revealed that the wormhole configuration plays a crucial role in controlling the oil production behavior. While the presence of the wormhole in a symmetrical design could positively improve oil production, it would restrict oil production in an asymmetrical design. To address this challenge, we used the solvent mixture containing 30% propane that outperformed CO2, overcame the impact of the asymmetrical wormhole, and increased the total recovery factor by 14% under a 12 kPa/min pressure depletion rate compared to utilizing pure CO2. Moreover, the results showed that applying a lower pressure depletion rate at 4 kPa/min could recover a slightly higher amount of oil, approximately 2%, during the first cycle compared to tests conducted under higher pressure depletion rates. However, in later cycles, a higher pressure depletion rate at 12 kPa/min significantly improved foamy oil flow quality and, subsequently, heavy oil recovery. The interesting finding, as observed, is the gap difference between the total recovery factor at the end of the cycle and the recovery factor after the first cycle, which increases noticeably with higher pressure depletion rate, increasing from 9.5% under 4 kPa/min to 16% under 12 kPa/min. Full article
(This article belongs to the Special Issue Flow Mechanisms and Enhanced Oil Recovery)
Show Figures

Figure 1

18 pages, 4609 KiB  
Article
Optimizing Solvent-Assisted SAGD in Deep Extra-Heavy Oil Reservoirs: Mechanistic Insights and a Case Study in Liaohe
by Ying Zhou, Siyuan Huang, Simin Yang, Qi Jiang, Zhongyuan Wang, Hongyuan Wang, Lifan Yue and Tengfei Ma
Energies 2025, 18(14), 3599; https://doi.org/10.3390/en18143599 - 8 Jul 2025
Viewed by 292
Abstract
This study investigates the feasibility and optimization of Expanding Solvent Steam-Assisted Gravity Drainage (ES-SAGD) in deep extra-heavy oil reservoirs, with a focus on the Shu 1-38-32 block in the Liaohe Basin. A modified theoretical model that accounts for steam quality reduction with increasing [...] Read more.
This study investigates the feasibility and optimization of Expanding Solvent Steam-Assisted Gravity Drainage (ES-SAGD) in deep extra-heavy oil reservoirs, with a focus on the Shu 1-38-32 block in the Liaohe Basin. A modified theoretical model that accounts for steam quality reduction with increasing reservoir depth was applied to evaluate SAGD performance. The results demonstrate that declining steam quality at greater burial depths significantly reduces thermal efficiency, the oil–steam ratio (OSR), and overall recovery in conventional SAGD operations. To overcome these challenges, numerical simulations were conducted to evaluate the effect of hexane co-injection in ES-SAGD. A 3 vol% hexane concentration was found to improve oil recovery by 17.3%, increase the peak oil production rate by 36.5%, and raise the cumulative oil–steam ratio from 0.137 to 0.218 compared to conventional SAGD. Sensitivity analyses further revealed that optimal performance is achieved with cyclic injection during the horizontal expansion stage and chamber pressures maintained above 3 MPa. Field-scale forecasting based on five SAGD well pairs showed that the proposed ES-SAGD configuration could enhance the cumulative recovery factor from 28.7% to 63.3% over seven years. These findings clarify the fundamental constraints imposed by steam quality in deep reservoirs and provide practical strategies for optimizing solvent-assisted SAGD operations under such conditions. Full article
Show Figures

Figure 1

13 pages, 1060 KiB  
Article
Study on Injection Allocation Technology of Layered Water Injection in Oilfield Development
by Xianing Li, Bing Hou, He Liu, Hao Guo and Jiqun Zhang
Energies 2025, 18(13), 3502; https://doi.org/10.3390/en18133502 - 2 Jul 2025
Viewed by 193
Abstract
Reservoir heterogeneity, fluid property variations, and permeability contrasts across different geological layers result in significant disparities in water absorption capacities during oilfield development, often leading to premature water breakthrough, uneven sweep efficiency, and suboptimal waterflooding outcomes. The accurate determination of layer-specific water injection [...] Read more.
Reservoir heterogeneity, fluid property variations, and permeability contrasts across different geological layers result in significant disparities in water absorption capacities during oilfield development, often leading to premature water breakthrough, uneven sweep efficiency, and suboptimal waterflooding outcomes. The accurate determination of layer-specific water injection volumes is critical to addressing these challenges. This study focuses on a study area in China, employing comprehensive on-site investigations to evaluate the current state of layered water injection practices. The injection allocation strategy was optimized using a hybrid approach combining the splitting coefficient method and grey correlation analysis. Key challenges identified in the study area include severe reservoir heterogeneity, poor injection–production correspondence, rapid water cut escalation, and low recovery rates. Seven dominant influencing factors—the sedimentary microfacies coefficient, effective thickness, stimulation factor, well spacing, permeability, connectivity, and permeability range coefficient—were identified through grey correlation analysis. Field application of the proposed method across fourteen wells demonstrated significant improvements: a monthly oil production increase of 40 tons, a water production reduction of 399.24 m3/month, and a 2.45% decline in the water cut. The obtained results substantiate the method’s capability in resolving interlayer conflicts, optimizing oil recovery performance, and effectively controlling water channeling problems. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

24 pages, 11727 KiB  
Article
Experimental Evaluation of Residual Oil Saturation in Solvent-Assisted SAGD Using Single-Component Solvents
by Fernando Rengifo Barbosa, Amin Kordestany and Brij Maini
Energies 2025, 18(13), 3362; https://doi.org/10.3390/en18133362 - 26 Jun 2025
Viewed by 315
Abstract
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large [...] Read more.
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large energy input requirement. Large water and natural gas quantities needed for steam generation imply sizable greenhouse gas (GHG) emissions and extensive post-production water treatment. Several methods to make SAGD more energy-efficient and environmentally sustainable have been attempted. Their main goal is to reduce steam consumption whilst maintaining favourable oil production rates and ultimate oil recovery. Oil saturation within the steam chamber plays a critical role in determining both the economic viability and resource efficiency of SAGD operations. However, accurately quantifying the residual oil saturation left behind by SAGD remains a challenge. In this experimental research, sand pack Expanding Solvent SAGD (ES-SAGD) coinjection experiments are reported in which Pentane -C5H12, and Hexane -C6H14 were utilised as an additive to steam to produce Long Lake bitumen. Each solvent is assessed at three different constant concentrations through time using experiments simulating SAGD to quantify their impact. The benefits of single-component solvent coinjection gradually diminish as the SAGD process approaches its later stages. ES-SAGD pentane coinjection offers a smaller improvement in recovery factor (RF) (4% approx.) compared to hexane (8% approx.). Between these two single-component solvents, 15 vol% hexane offered the fastest recovery. The obtained data in this research provided compelling evidence that the coinjection of solvent under carefully controlled operating conditions, reduced overall steam requirement, energy consumption, and residual oil saturation allowing proper adjustment of oil and water relative permeability curve endpoints for field pilot reservoir simulations. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

24 pages, 4986 KiB  
Article
Research on Multi-Cycle Injection–Production Displacement Characteristics and Factors Influencing Storage Capacity in Oil Reservoir-Based Underground Gas Storage
by Yong Tang, Peng Zheng, Zhitao Tang, Minmao Cheng and Yong Wang
Energies 2025, 18(13), 3330; https://doi.org/10.3390/en18133330 - 25 Jun 2025
Viewed by 856
Abstract
In order to clarify the feasibility of constructing a gas storage reservoir through synergistic injection and production in the target reservoir, micro-displacement experiments and multi-cycle injection–production experiments were conducted. These experiments investigated the displacement characteristics and the factors affecting storage capacity during the [...] Read more.
In order to clarify the feasibility of constructing a gas storage reservoir through synergistic injection and production in the target reservoir, micro-displacement experiments and multi-cycle injection–production experiments were conducted. These experiments investigated the displacement characteristics and the factors affecting storage capacity during the multi-cycle injection–production process for converting the target reservoir into a gas storage facility. Microscopic displacement experiments have shown that the remaining oil is primarily distributed in the dead pores and tiny pores of the core in the form of micro-bead chains and films. The oil displacement efficiency of water flooding followed by gas flooding is 18.61% higher than that of gas flooding alone, indicating that the transition from water flooding to gas flooding can further reduce the liquid saturation and increase the storage capacity space by 2.17%. Single-tube long-core displacement experiments indicate that, during the collaborative construction of a gas storage facility, the overall oil displacement efficiency without a depletion process is approximately 24% higher than that with a depletion process. This suggests that depletion production is detrimental to enhancing oil recovery and expanding the capacity of the gas storage facility. During the cyclic injection–production stage, the crude oil recovery rate increases by 1% to 4%. As the number of cycles increases, the incremental oil displacement efficiency in each stage gradually decreases, and so does the increase in cumulative oil displacement efficiency. Better capacity expansion effects are achieved when gas is produced simultaneously from both ends. Parallel double-tube long-core displacement experiments demonstrate that, when the permeability is the same, the oil displacement efficiencies during the gas flooding stage and the cyclic injection–production stage are essentially identical. When there is a permeability contrast, the oil displacement efficiency of the high-permeability core is 9.56% higher than that of the low-permeability core. The ratio of the oil displacement efficiency between the high-permeability end and the low-permeability end is positively correlated with the permeability contrast; the greater the permeability contrast, the larger the ratio. The research findings can provide a reference for enhancing oil recovery and expanding the capacity of the target reservoir when it is converted into a gas storage facility. Full article
Show Figures

Figure 1

17 pages, 2493 KiB  
Article
Comparative Evaluation of Xanthan Gum, Guar Gum, and Scleroglucan Solutions for Mobility Control: Rheological Behavior, In-Situ Viscosity, and Injectivity in Porous Media
by Jose Maria Herrera Saravia and Rosangela Barros Zanoni Lopes Moreno
Polymers 2025, 17(13), 1742; https://doi.org/10.3390/polym17131742 - 23 Jun 2025
Viewed by 309
Abstract
Water injection is the most widely used secondary recovery method, but its low viscosity limits sweep efficiency in heterogeneous carbonate reservoirs, especially when displacing heavy crude oils. Polymer flooding overcomes this by increasing the viscosity of the injected fluid and improving the mobility [...] Read more.
Water injection is the most widely used secondary recovery method, but its low viscosity limits sweep efficiency in heterogeneous carbonate reservoirs, especially when displacing heavy crude oils. Polymer flooding overcomes this by increasing the viscosity of the injected fluid and improving the mobility ratio. In this work, we compare three biopolymers (i.e., Xanthan Gum, Scleroglucan, and Guar Gum) using a core flood test on Indiana Limestone with 16–19% porosity and 180–220 mD permeability at 60 °C and 30,905 mg/L of salinity. We injected solutions at 100–1500 ppm and 0.5–6 cm3/min to measure the Resistance Factor (RF), Residual Resistance Factor (RRF), in situ viscosity, and relative injectivity. All polymers behaved as pseudoplastic fluids with no shear thickening. The RF rose from ~1.1 in the dilute regime to 5–16 in the semi-dilute regime, and the RRF spanned 1.2–5.8, indicating moderate, reversible permeability impairment. In-site viscosity reached up to eight times that of brine, while relative injectivity remained 0.5. Xanthan Gum delivered the highest viscosity boost and strongest shear thinning, Scleroglucan offered a balance of stable viscosity and a moderate RF, and Guar Gum gave predictable but lower viscosity enhancement. These results establish practical guidelines for selecting polymer types, concentration, and flow rate in reservoir-condition polymer flood designs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop