Research and Application of Low-Velocity Nonlinear Seepage Model for Unconventional Mixed Tight Reservoir
Abstract
1. Introduction
2. Nonlinear Seepage Mathematical Model
3. Experimental Study on Nonlinear Seepage Flow
3.1. Experimental Methods
3.2. Experimental Analysis
4. Nonlinear Seepage Numerical Simulation
4.1. Beach-Bar Sandstone Reservoir
4.2. Natural Fracture Reservoir
4.3. Nonlinear Flow Analysis
5. Conclusions
- The displacement pressure and flow rate of beach-bar sandstone reservoirs exhibit a significant nonlinear relationship. The lower the permeability and the smaller the displacement pressure, the more significant the nonlinear seepage characteristics. Based on experimental results, fitting the low-velocity nonlinear seepage coefficient and establishing a low-velocity nonlinear seepage model based on time-varying physical properties can more accurately reflect the underground seepage situation of beach-bar sandstone reservoirs.
- Compared to the bar sandstone reservoir, the water injection pressure in the beach sandstone reservoir is higher. In the nonlinear seepage model, the bottom hole pressure of the water injection well increases by 9.13 MPa (an increase of 10.56%), indicating that water injection is more difficult. After one year of water injection, the cumulative oil production of the nonlinear model decreased by 60.17 m3, a decrease of 27.13%.
- In fractured sandstone reservoirs, after one year of water injection, the average daily oil production of a single well in the nonlinear model decreased by 0.22 m3/d, a decrease of 12.50%, and the average cumulative oil production of a single well decreased by 109.25 m3, a decrease of 18.08%. Compared to matrix type beach sand reservoirs, natural fractures can effectively reduce the impact of fluid nonlinear seepage characteristics on the injection and production efficiency of beach sandstone reservoirs.
- Based on the fluid flow velocity, injection pressure, and fluid flow mode in the nonlinear seepage model, the beach-bar sandstone reservoir can be divided into four flow zones during the injection–production process, including Zone I (linear seepage zone), Zone II (nonlinear seepage zone), Zone III (non-flow zone affected by pressure), and Zone IV (non-flow zone not affected by pressure).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, K.; Zhang, L.Q.; Liu, D.M. Situation of China’s oil and gas exploration and development in recent years and relevant suggestions. Acta Pet. Sin. 2022, 43, 15–28. [Google Scholar]
- Guo, J.C.; Ma, L.; Lu, C. Progress and development directions of fracturing flooding technology for tight reservoirs in China. Acta Pet. Sin. 2022, 43, 1788–1797. [Google Scholar]
- Dykstra, H.; Parsons, R.L. The Prediction of Oil Recovery by Water Flood. Secondary Recovery of Oil in the United States, 2nd ed.; API: New York, NY, USA, 1950. [Google Scholar]
- Li, Q.C.; Li, Y.D.; Cheng, Y.F.; Li, Q.; Wang, F.L.; Wei, J.; Liu, Y.W.; Zhang, C.; Song, B.J.; Yan, C.L.; et al. Numerical simulation of fracture reorientation during hydraulic fracturing in perforated horizontal well in shale reservoirs. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 1486920. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.C.; Wang, F.L.; Xu, N.; Wang, Y.L.; Bai, B.J. Settling behavior and mechanism analysis of kaolinite as a fracture proppant of hydrocarbon reservoirs in CO2 fracturing fluid. Colloids Surf. A Physicochem. Eng. Asp. 2025, 724, 137563. [Google Scholar] [CrossRef]
- Han, Z.; Pidho, J.J.; Yan, C.; Liang, Y.; Cheng, Y. Study on Multiscale Fluid–Solid Coupling Theoretical Model and Productivity Analysis of Horizontal Well in Shale Gas Reservoirs. Energy Fuels 2023, 37, 5059–5077. [Google Scholar] [CrossRef]
- Fu, Y.; Zhai, Q.; Yuan, G.; Wang, Z.; Cheng, Y.; Wang, M.; Wu, W.; Ni, G. Multi-scale nonlinear reservoir flow simulation based on digital core reconstruction. Geoenergy Sci. Eng. 2024, 242, 213218. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, H.; Deng, X.; Guan, B.; Li, J.; Yang, C.; Huang, G. Study on the Seepage Characteristics of Deep Tight Reservoirs Considering the Effects of Creep. Energy Eng. 2025, 122, 063706. [Google Scholar] [CrossRef]
- Alvaro, P.; Faruk, C. Modification of Darcy’s law for the threshold pressure gradient. J. Pet. Sci. Eng. 1999, 22, 237–240. [Google Scholar]
- Xu, J.H.; Cheng, L.S.; Zhou, Y.; Ma, L.L. A new method for calculating kickoff pressure gradient in low permeability reservoirs. Pet. Explor. Dev. 2007, 34, 594–602. [Google Scholar]
- Jiang, R.Z.; Yang, R.F.; Ma, Y.X.; Zhuang, Y.; Li, L.K. Nonlinear percolation theory and numerical simulation in low permeability reservoirs. Chin. J. Hydrodyn. 2011, 26, 444–452. [Google Scholar]
- Li, L.; Xu, P.; Li, Q.; Zheng, R.Y.; Xu, X.M.; Wu, J.F.; He, B.Y.; Bao, J.J.; Tan, D.P. A coupled LBM-LES-DEM particle flow modeling for microfluidic chip and ultrasonic-based particle aggregation control method. Appl. Math. Model. 2025, 143, 116025. [Google Scholar] [CrossRef]
- Li, Y.Z.; Duan, B.; Shang, L.; Sun, Y.C.; Gong, L.R.; Xin, C.Y.; Xing, J.P. Numerical simulation method and its application for nonlinear flow in ultra-low permeability and tight oil reservoir in Jidong Oilfield. Pet. Geol. Oilfield Dev. Daqing 2022, 41, 153–158. [Google Scholar]
- Xu, P.; Li, Q.H.; Wang, C.Y.; Li, L.; Tan, D.P.; Wu, H.P. Interlayer healing mechanism of multipath deposition 3D printing models and interlayer strength regulation method. J. Manuf. Process. 2025, 141, 1031–1047. [Google Scholar] [CrossRef]
- Cheng, S.Q.; Xu, L.X.; Zhang, D.C. Type curve matching of well test data for non-Darcy flow at low velocity. Pet. Explor. Dev. 1996, 23, 50–53. [Google Scholar]
- Song, F.Q.; Liu, C.Q.; Hu, J.G. The use of pressure build up data to calculate reservoir starting pressure gradient. Well Test. 1999, 8, 5–7. [Google Scholar]
- Deng, Y.E.; Liu, C.Q. Mathematical model of nonlinear flow law in low permeability porous media and its application. Acta Pet. Sin. 2001, 22, 72–77. [Google Scholar]
- Yang, Q.L. The Theory and Application of Nonlinear Seepage Flow in Ultra-Low Permeability Reservoirs; Institute of Percolation and Fluid Mechanics, Chinese Academy of Sciences: Beijing, China, 2007. [Google Scholar]
- Yuan, Y.R.; Han, Y.Y. Numerical simulation and application of three-dimensional oil resources migration-accumulation of fluid dynamics in porous media. Sci. China Ser. G Phys. Mech. Astron. 2008, 51, 1144–1163. [Google Scholar] [CrossRef]
- Long, T. Development of a Numerical Simulation System for Non-Darcy Flow in Low Permeability Reservoirs; Tsinghua University: Beijing, China, 2005. [Google Scholar]
- Huang, Y.Z. Research on the Nonlinear Seepage Mechanism and Variable Permeability Numerical Method of Low Permeability Rock; Tsinghua University: Beijing, China, 2006. [Google Scholar]
- Jiang, R.Z.; Li, L.K.; Xu, J.C.; Yang, R.F.; Zhuang, Y. A nonlinear mathematical model for low-permeability reservoirs and well-testing analysis. Acta Pet. Sin. 2012, 33, 264–268. [Google Scholar]
- Deng, Y.E.; Liu, C.Q. Analysis of pressure of nonlinear flow through low-permeability reservoir with vertically fractured well producing. Pet. Explor. Dev. 2003, 30, 81–83. [Google Scholar]
- Shi, Y.; Yang, Z.M.; Huang, Y.Z. The study of two phase non-linear flow in low permeability reservoir. Mech. Eng. 2008, 30, 16–17. [Google Scholar]
- Zhu, W.Y.; Li, H.; Deng, Q.J.; Ma, Q.P.; Liu, Y.J. Review on mesoscopic flow theory in porous media. Chin. J. Eng. 2022, 44, 951–962. [Google Scholar]
- Cao, R.Y.; Cheng, L.S.; Du, X.L.; Shi, J.J.; Yang, C.X. Research progress on fluids flow mechanism and mathematical model in tight oil reservoirs. J. Southwest Pet. Univ. 2021, 43, 113–136. [Google Scholar]
- Zeng, B.Q.; Cheng, L.S.; Li, C.L. Low velocity non-linear flow in ultra-low permeability reservoir. J. Pet. Sci. Eng. 2011, 80, 1–6. [Google Scholar] [CrossRef]
- Song, F.Q.; Bo, L.W.; Zhang, S.M.; Sun, Y.H. Nonlinear flow in low permeability reservoirs: Modelling and experimental verification. Adv. Geo-Energy Res. 2019, 3, 76–81. [Google Scholar] [CrossRef]
- Huang, S.; Yao, Y.D.; Zhang, S.; Ji, J.H.; Ma, R.Y. A fractal model for oil transport in tight porous media. Transp. Porous Media 2018, 121, 725–739. [Google Scholar] [CrossRef]
Core Number | Core Diameter (cm) | Core Length (cm) | Core Permeability (mD) | Core Porosity (%) | K·A·μ−1 (cm4·MPa−1·s−1) |
---|---|---|---|---|---|
1—4 | 2.514 | 4.938 | 0.074 | 2.747 | 0.004 |
1—6 | 2.512 | 4.742 | 0.134 | 3.832 | 0.007 |
2—4 | 2.506 | 4.980 | 0.572 | 5.149 | 0.028 |
2—6 | 2.508 | 4.928 | 0.488 | 4.788 | 0.024 |
3—4 | 2.506 | 4.952 | 1.470 | 6.349 | 0.072 |
3—5 | 2.506 | 5.004 | 1.400 | 6.348 | 0.069 |
4—4 | 2.506 | 4.996 | 4.390 | 8.262 | 0.216 |
4—6 | 2.508 | 4.904 | 3.940 | 7.834 | 0.195 |
5—5 | 2.504 | 4.932 | 7.100 | 8.297 | 0.349 |
5—6 | 2.504 | 4.976 | 7.590 | 8.195 | 0.374 |
Core Number | 1—4 | 1—6 | 2—4 | 2—6 | 3—4 | 3—5 | 4—4 | 4—6 | 5—5 | 5—6 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Pressure Gradient | |||||||||||
0.02 MPa/cm | 1.0 × 10−5 | 2.0 × 10−5 | 1.7 × 10−4 | 1.3 × 10−4 | 0.001 | 0.001 | 0.010 | 0.002 | 0.005 | 0.005 | |
0.05 MPa/cm | 5.0 × 10−5 | 1.1 × 10−4 | 0.001 | 0.001 | 0.002 | 0.002 | 0.033 | 0.007 | 0.015 | 0.016 | |
0.1 MPa/cm | 1.5 × 10−4 | 3.2 × 10−4 | 0.002 | 0.002 | 0.005 | 0.006 | 0.074 | 0.016 | 0.032 | 0.034 | |
0.2 MPa/cm | 4.2 × 10−4 | 0.001 | 0.004 | 0.004 | 0.014 | 0.012 | 0.169 | 0.036 | 0.068 | 0.073 | |
0.3 MPa/cm | 0.001 | 0.002 | 0.007 | 0.006 | 0.021 | 0.020 | 0.241 | 0.055 | 0.110 | 0.100 | |
0.4 MPa/cm | 0.001 | 0.002 | 0.011 | 0.008 | 0.026 | 0.026 | 0.340 | 0.075 | 0.131 | 0.153 | |
0.5 MPa/cm | 0.001 | 0.003 | 0.012 | 0.012 | 0.034 | 0.032 | 0.410 | 0.092 | 0.180 | 0.181 | |
0.6 MPa/cm | 0.002 | 0.003 | 0.015 | 0.012 | 0.039 | 0.040 | 0.513 | 0.118 | 0.201 | 0.226 |
Core Number | 1—4 | 1—6 | 2—4 | 2—6 | 3—4 | 3—5 | 4—4 | 4—6 | 5—5 | 5—6 |
---|---|---|---|---|---|---|---|---|---|---|
Permeability (mD) | 0.074 | 0.134 | 0.572 | 0.488 | 1.470 | 1.400 | 4.390 | 3.940 | 7.100 | 7.590 |
Coefficient m | 0.143 | 0.106 | 0.041 | 0.048 | 0.026 | 0.032 | 0.014 | 0.018 | 0.009 | 0.008 |
Fitting degree R | 0.994 | 0.996 | 0.992 | 0.979 | 0.985 | 0.992 | 0.997 | 0.991 | 0.983 | 0.998 |
Displacement Pressure Gradient (MPa/cm) | Coefficient c3 | Coefficient c4 | Fitting Degree R |
---|---|---|---|
0.02 | 0.0012 | 1.3664 | 0.9927 |
0.1 | 0.0122 | 1.1910 | 0.9581 |
0.5 | 0.0836 | 1.0358 | 0.9931 |
1.0 | 0.1821 | 1.0334 | 0.9997 |
Reservoir Parameters | Parameter Value | Reservoir Parameters | Parameter Value |
---|---|---|---|
Reservoir depth (m) | 3000 | Initial oil saturation (%) | 60 |
Reservoir pressure (MPa) | 35 | Young’s modulus (MPa) | 3 × 104 |
Matrix permeability (mD) | 0.5~5 | Poisson’s ratio | 0.3 |
matrix porosity (%) | 15 | Oil compressibility (MPa−1) | 6 × 10−4 |
Natural fracture permeability (mD) | 10,000 | Water compressibility (MPa−1) | 4 × 10−4 |
Natural fracture porosity (%) | 60 | Rock compression coefficient (MPa−1) | 1 × 10−4 |
Crude oil viscosity (mPa·s) | 10 | Crude oil density (kg/m3) | 980 |
Water viscosity (mPa·s) | 1 | Water density (kg/m3) | 1000 |
Production pressure difference (MPa) | 10 | Water injection rate (m3/d) | 20 |
Model Type | Recovery Rate Error (%) | Calculation Time (s) |
---|---|---|
Linear model | 15.3 | 57.8 |
Forchheimer model | 9.8 | 95.7 |
Variable starting pressure gradient model | 8.5 | 87.9 |
This model | 6.3 | 84.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Lu, C.; Guo, J.; Zeng, B.; Xu, S. Research and Application of Low-Velocity Nonlinear Seepage Model for Unconventional Mixed Tight Reservoir. Energies 2025, 18, 3789. https://doi.org/10.3390/en18143789
Ma L, Lu C, Guo J, Zeng B, Xu S. Research and Application of Low-Velocity Nonlinear Seepage Model for Unconventional Mixed Tight Reservoir. Energies. 2025; 18(14):3789. https://doi.org/10.3390/en18143789
Chicago/Turabian StyleMa, Li, Cong Lu, Jianchun Guo, Bo Zeng, and Shiqian Xu. 2025. "Research and Application of Low-Velocity Nonlinear Seepage Model for Unconventional Mixed Tight Reservoir" Energies 18, no. 14: 3789. https://doi.org/10.3390/en18143789
APA StyleMa, L., Lu, C., Guo, J., Zeng, B., & Xu, S. (2025). Research and Application of Low-Velocity Nonlinear Seepage Model for Unconventional Mixed Tight Reservoir. Energies, 18(14), 3789. https://doi.org/10.3390/en18143789