Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,192)

Search Parameters:
Keywords = odorous compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 647 KiB  
Article
Effects of Burdock Addition and Different Starters on the Quality and Flavor Improvement of Duck Sausages
by Li Cui, Xuan Zhao, Xingye Song, Wenjing Zhou, Tao Wang, Wuyang Huang and Yuxing Guo
Biology 2025, 14(8), 996; https://doi.org/10.3390/biology14080996 (registering DOI) - 4 Aug 2025
Abstract
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, [...] Read more.
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, and flavor profiles of duck sausages. Three bacterial strains, Lacticaseibacillus casei, L. helveticus, and L. plantarum, were selected based on sensory analysis, and their effects on sausage properties were evaluated through combined fermentation trials. The results demonstrated that duck sausages fermented with L. plantarum and L. helveticus and supplemented with 3% burdock powder (PHB group) exhibited > 1.5-fold higher antioxidant activity (ABTS at 85.2 μmol trolox/g and DPPH at 92.7 μmol trolox/g, respectively; p < 0.05) and 15% increase in total phenolic content (8.24 mg gallic acid/g) compared to non-fermented counterparts. The PHB formulation also enhanced color stability (lightness, redness, yellowness), textural characteristics (hardness, springiness, cohesiveness), and sensory acceptability. Volatile compound analysis revealed a reduction in off-odor aldehydes (hexanal, (E)-2-octenal, (E)-2-decenal, and (E,E)-2,4-decadienal) and increased production of desirable aromatic compounds like tetramethyl-pyrazine. These findings highlight the potential of combining lactic acid bacteria fermentation with burdock powder to develop functional duck sausages with improved nutritional and sensory properties. Full article
(This article belongs to the Special Issue Nutraceutical and Bioactive Compounds in Foods)
Show Figures

Figure 1

16 pages, 2971 KiB  
Article
Dissecting Organ-Specific Aroma-Active Volatile Profiles in Two Endemic Phoebe Species by Integrated GC-MS Metabolomics
by Ming Xu, Yu Chen and Guoming Wang
Metabolites 2025, 15(8), 526; https://doi.org/10.3390/metabo15080526 - 3 Aug 2025
Viewed by 49
Abstract
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics [...] Read more.
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics approach combined with a relative odor activity value (rOAV) analysis to comprehensively profile and compare the volatile metabolite landscape in the seeds and leaves of both species. Results: In total, 1666 volatile compounds were putatively identified, of which 540 were inferred as key aroma-active contributors based on the rOAV analysis. A multivariate statistical analysis revealed clear tissue-related separation: the seeds were enriched in sweet, floral, and fruity volatiles, whereas the leaves contained higher levels of green leaf volatiles and terpenoids associated with ecological defense. KEGG pathway enrichment indicated that terpenoid backbone and phenylpropanoid biosynthesis pathways played major roles in shaping these divergent profiles. A Venn diagram analysis further uncovered core and unique volatiles underlying species and tissue specificity. Conclusions: These insights provide an integrated reference for understanding tissue-divergent volatile profiles in Phoebe species and offer a basis for fragrance-oriented selection, ecological trait evaluation, and the sustainable utilization of organ-related metabolic characteristics in breeding and conservation programs. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

18 pages, 1777 KiB  
Article
Machine Learning in Sensory Analysis of Mead—A Case Study: Ensembles of Classifiers
by Krzysztof Przybył, Daria Cicha-Wojciechowicz, Natalia Drabińska and Małgorzata Anna Majcher
Molecules 2025, 30(15), 3199; https://doi.org/10.3390/molecules30153199 - 30 Jul 2025
Viewed by 165
Abstract
The aim was to explore using machine learning (including cluster mapping and k-means methods) to classify types of mead based on sensory analysis and aromatic compounds. Machine learning is a modern tool that helps with detailed analysis, especially because verifying aromatic compounds is [...] Read more.
The aim was to explore using machine learning (including cluster mapping and k-means methods) to classify types of mead based on sensory analysis and aromatic compounds. Machine learning is a modern tool that helps with detailed analysis, especially because verifying aromatic compounds is challenging. In the first stage, a cluster map analysis was conducted, allowing for the exploratory identification of the most characteristic features of mead. Based on this, k-means clustering was performed to evaluate how well the identified sensory features align with logically consistent groups of observations. In the next stage, experiments were carried out to classify the type of mead using algorithms such as Random Forest (RF), adaptive boosting (AdaBoost), Bootstrap aggregation (Bagging), K-Nearest Neighbors (KNN), and Decision Tree (DT). The analysis revealed that the RF and KNN algorithms were the most effective in classifying mead based on sensory characteristics, achieving the highest accuracy. In contrast, the AdaBoost algorithm consistently produced the lowest accuracy results. However, the Decision Tree algorithm achieved the highest accuracy value (0.909), demonstrating its potential for precise classification based on aroma characteristics. The error matrix analysis also indicated that acacia mead was easier for the algorithms to identify than tilia or buckwheat mead. The results show the potential of combining an exploratory approach (cluster map with the k-means method) with machine learning. It is also important to focus on selecting and optimizing classification models used in practice because, as the results so far indicate, choosing the right algorithm greatly affects the success of mead identification. Full article
(This article belongs to the Special Issue Analytical Technologies and Intelligent Applications in Future Food)
Show Figures

Graphical abstract

29 pages, 9521 KiB  
Article
The Chemical Fingerprint of Smokeless Powders: Insights from Headspace Odor Volatiles
by Miller N. Rangel, Andrea Celeste Medrano, Haylie Browning, Shawna F. Gallegos, Sarah A. Kane, Nathaniel J. Hall and Paola A. Prada-Tiedemann
Powders 2025, 4(3), 21; https://doi.org/10.3390/powders4030021 - 29 Jul 2025
Viewed by 700
Abstract
Smokeless powders are a commonly used low explosive within the ammunition industry. Their ease of purchase has allowed criminals to use these products to build improvised explosive devices. Canines have become a vital tool in locating such improvised devices. With differing fabrication processes, [...] Read more.
Smokeless powders are a commonly used low explosive within the ammunition industry. Their ease of purchase has allowed criminals to use these products to build improvised explosive devices. Canines have become a vital tool in locating such improvised devices. With differing fabrication processes, one of the most difficult challenges for canine handlers is the optimal selection of training aids to choose as odor targets to allow for broad generalization. Several studies have been underway to understand the chemical odor characterization of smokeless powders, which can help provide canine teams with essential information to understand odor signatures from powder varieties. In this study, a SPME method optimization was conducted using unburned smokeless powders to provide a chemical odor profile assessment. Concurrently, statistical analysis using PCA and Spearman’s rank correlations was performed to explore whether odor volatile composition depicted associations between and within powder brands. The results showed that a longer extraction time (24 h) was optimal across all powders, as this yielded higher compound abundance and number of extracted odor volatiles. The optimal SPME fiber varied per powder, depicting the complexity of powder composition. There were 66 highly frequent compounds among the 18 powders, including 2-ethyl-1-hexanol, diphenylamine (DPA), and dibutyl phthalate. Principal component analysis (PCA) showed that while powders may be of the same type (single/double base), they can still portray clustering differences across and within brands. The Spearman’s rank correlation within powder type suggested that the double-base powders had a slightly higher similarity index when compared with the single-base powder types. Understanding the volatile odor profiles of various smokeless powders can enhance canine training by informing the selection of effective training aids and supporting odor generalization. Full article
Show Figures

Figure 1

22 pages, 3853 KiB  
Review
Aroma Formation, Release, and Perception in Aquatic Products Processing: A Review
by Weiwei Fan, Xiaoying Che, Pei Ma, Ming Chen and Xuhui Huang
Foods 2025, 14(15), 2651; https://doi.org/10.3390/foods14152651 - 29 Jul 2025
Viewed by 268
Abstract
Flavor, as one of the primary factors that attracts consumers, has always been a crucial indicator for evaluating the quality of food. From processing to final consumption, the conditions that affect consumers’ perception of the aroma of aquatic products can be divided into [...] Read more.
Flavor, as one of the primary factors that attracts consumers, has always been a crucial indicator for evaluating the quality of food. From processing to final consumption, the conditions that affect consumers’ perception of the aroma of aquatic products can be divided into three stages: aroma formation, release, and signal transmission. Currently, there are few reviews on the formation, release, and perception of aroma in aquatic products, which has affected the product development of aquatic products. This review summarizes aroma formation pathways, the effects of processing methods, characteristic volatile compounds, various identification techniques, aroma-release influencing factors, and the aroma perception mechanisms of aquatic products. The Maillard reaction and lipid oxidation are the main pathways for the formation of aromas in aquatic products. The extraction, identification, and quantitative analysis of volatile compounds reveal the odor changes in aquatic products. The composition of aquatic products and oral processing mainly influence the release of odorants. The characteristic odorants perceived from the nasal cavity should be given more attention. Moreover, the relationship between various olfactory receptors (ORs) and the composition of multiple aromatic compounds remains to be understood. It is necessary to clarify the relationship between nasal cavity metabolism and odor perception, reveal the binding and activation mode of ORs and odor molecules, and establish an accurate aroma prediction model. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

15 pages, 2518 KiB  
Article
Ligand Differentiation Ability of Insect Odorant Receptors in Heterologously Expressed Cells as Potential Biosensor Elements
by Rui Zhou, Yuji Sukekawa, Sawako Niki, Eri Kuroda, Ryohei Kanzaki, Shigehiro Namiki and Hidefumi Mitsuno
Chemosensors 2025, 13(8), 273; https://doi.org/10.3390/chemosensors13080273 - 23 Jul 2025
Viewed by 378
Abstract
The extensive diversity of volatile organic compounds, along with their minor structural variations, presents significant challenges in the development of chemosensory-based biosensors. Previously, we generated sensor cells expressing insect odorant receptors (ORs) in Sf21 cells, demonstrating their potential as cell-based odorant sensor elements. [...] Read more.
The extensive diversity of volatile organic compounds, along with their minor structural variations, presents significant challenges in the development of chemosensory-based biosensors. Previously, we generated sensor cells expressing insect odorant receptors (ORs) in Sf21 cells, demonstrating their potential as cell-based odorant sensor elements. However, it remains unclear whether the selectivity of cells expressing ORs in vitro for diverse compounds aligns with the receptor’s in vivo performance, aside from the response to target compounds. To address this, we assessed the ligand responses of sensor cells expressing ORs from Drosophila melanogaster using a high-throughput calcium imaging system. Our results demonstrate that in vitro receptor responses exhibit ligand selectivity comparable to in vivo conditions across different chemical categories. Broadly tuned OR-expressing sensor cells (Or13a, Or47a, and Or98a) displayed differential affinities, whereas the narrowly tuned Or56a-expressing sensor cells selectively responded to geosmin. Moreover, cell responses varied with subtle differences in chemical structure, including carbon chain length and functional group positioning. These findings provide valuable insights into insect OR–ligand interactions in vitro, demonstrating that receptor selectivity in sensor cells closely mirrors in vivo conditions. In addition to this consistency, our results highlight the subtle ligand differentiation capabilities of sensor cells enabling fluorescence-based visualization of receptor–ligand interactions. Full article
Show Figures

Figure 1

17 pages, 3246 KiB  
Article
Rosemary Extract Reduces Odor in Cats Through Nitrogen and Sulfur Metabolism by Gut Microbiota–Host Co-Modulation
by Ziming Huang, Miao Li, Zhiqin He, Xiliang Yan, Yinbao Wu, Peiqiang Mu, Jun Jiang, Xu Wang and Yan Wang
Animals 2025, 15(14), 2101; https://doi.org/10.3390/ani15142101 - 16 Jul 2025
Viewed by 680
Abstract
Odors from pet cats can negatively affect the quality of life of cat owners. The diverse bioactive compounds in plant extracts make them a promising candidate for effective odor reduction. This study evaluated twelve plant extracts for deodorizing efficacy via in vitro fermentation [...] Read more.
Odors from pet cats can negatively affect the quality of life of cat owners. The diverse bioactive compounds in plant extracts make them a promising candidate for effective odor reduction. This study evaluated twelve plant extracts for deodorizing efficacy via in vitro fermentation tests. Rosemary extract and licorice extract exhibited better deodorizing effects, with fractions of rosemary extract below 100 Da demonstrating the most effective deodorizing performance. Based on these findings, subsequent feeding trials were conducted using rosemary extract and its fractions below 100 Da. In the feeding trial, adult British Shorthair cats were divided into three groups (Control Check, RE, and RE100) and housed in a controlled-environment respiration chamber for 30 days. Measurements included odor emissions, fecal and blood physicochemical parameters, immune parameters, microbiota composition based on 16S rRNA sequencing, and metabolome analysis. The results of the feeding trial indicated that rosemary extract significantly reduced ammonia and hydrogen sulfide emissions (46.84%, 41.64%), while fractions below 100 Da of rosemary extract achieved even greater reductions (55.62%, 53.87%). Rosemary extract regulated the intestinal microbial community, significantly increasing the relative abundance of the intestinal probiotic Bifidobacterium (p < 0.05) and reducing the population of sulfate-reducing bacteria (p < 0.05). It also significantly reduced urease and uricase activities (p < 0.05) to reduce ammonia production and inhibited the degradation of sulfur-containing proteins and sulfate reduction to reduce hydrogen sulfide emissions. Furthermore, rosemary extract significantly enhanced the immune function of British Shorthair cats (p < 0.05). This study suggests that rosemary extract, particularly its fractions below 100 Da, is a highly promising pet deodorizer. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

17 pages, 2788 KiB  
Article
Characterization of Key Aroma Compounds in Aged Chinese Nongxiangxing Baijiu Based on Sensory and Quantitative Analysis: Emphasis on the Contribution of Trace Compounds
by Peiqi Li, Yuting Ling, Xiaomei Shen, Chengcheng Liang, Youhong Tang, Shan Chen, Lisa Zhou Wang, Shuang Chen, Anjun Li and Yan Xu
Molecules 2025, 30(14), 2963; https://doi.org/10.3390/molecules30142963 - 14 Jul 2025
Viewed by 292
Abstract
The characteristics and complexity of Baijiu are inseparable from the promotion of aging. While the impact of compounds such as alcohols, esters, and acids on the aroma of aged Baijiu has been extensively studied, the role of other trace compounds in the aging [...] Read more.
The characteristics and complexity of Baijiu are inseparable from the promotion of aging. While the impact of compounds such as alcohols, esters, and acids on the aroma of aged Baijiu has been extensively studied, the role of other trace compounds in the aging process should not be overlooked. To further investigate the relationship between volatile compounds and the aging of Nongxiangxing Baijiu, sensomics research methods were employed to analyze profiles of young and aged Nongxiangxing Baijiu. In this study, a total of 94 aroma compounds were analyzed in both young and aged Nongxiangxing Baijiu by GC-O/MS. Among these, 12 aroma compounds significantly associated with the aging process were identified by quantification and odor activity values (OAVs). Furthermore, the omission tests result showed that 4-methyl-2-methoxyphenol (2066.79 μg/L), benzaldehyde (3860.30 μg/L), β-phenylethanol (5638.85 μg/L), 3-(methylsulfanyl)propan-1-ol (8.82 μg/L), 3-(methylsulfanyl)propanal (15.91 μg/L), and linalool (17.36 μg/L) were key aroma compounds of aged Nongxiangxing Baijiu. This study reveals that trace compounds contribute to the distinct aroma complexity of aged Nongxiangxing Baijiu, providing a foundation to support aging process analysis. Full article
Show Figures

Figure 1

46 pages, 9005 KiB  
Review
Chemosensory Receptors in Vertebrates: Structure and Computational Modeling Insights
by Aurore Lamy, Rajesh Durairaj and Patrick Pageat
Int. J. Mol. Sci. 2025, 26(14), 6605; https://doi.org/10.3390/ijms26146605 - 10 Jul 2025
Viewed by 773
Abstract
Chemical communication is based on the release of chemical cues, including odorants, tastants and semiochemicals, which can be perceived by animals and trigger physiological and behavioral responses. These compounds exhibit a wide size and properties range, spanning from small volatile molecules to soluble [...] Read more.
Chemical communication is based on the release of chemical cues, including odorants, tastants and semiochemicals, which can be perceived by animals and trigger physiological and behavioral responses. These compounds exhibit a wide size and properties range, spanning from small volatile molecules to soluble proteins, and are perceived by various chemosensory receptors (CRs). The structure of these receptors is very well conserved across all organisms and within the family to which they belong, the G-protein-coupled receptor (GPCR) family. It is characterized by highly conserved seven-transmembrane (7TM) α-helices. However, the characteristics of these proteins and the methods used to study their structures are limiting factors for resolving their structures. Due to the importance of CRs—especially olfactory and taste receptors, responsible for two of our five basic senses—alternative methods are utilized to overcome these structural challenges. Indeed, in silico structural biology is an expanding field that is very useful for CR structural studies. Since the 1960s, many algorithms have been developed and improved in an attempt to resolve protein structure. We review the current knowledge regarding different vertebrate CRs in this study, with an emphasis on the in silico structural methods employed to improve our understanding of CR structures. Full article
(This article belongs to the Special Issue Membrane Proteins: Structure, Function, and Drug Discovery)
Show Figures

Figure 1

19 pages, 4046 KiB  
Article
Quercetin-Fortified Animal Forage from Onion Waste: A Zero-Waste Approach to Bioactive Feed Development
by Janusz Wojtczak, Krystyna Szymandera-Buszka, Joanna Kobus-Cisowska, Kinga Stuper-Szablewska, Jarosław Jakubowicz, Grzegorz Fiutak, Joanna Zeyland and Maciej Jarzębski
Appl. Sci. 2025, 15(14), 7694; https://doi.org/10.3390/app15147694 - 9 Jul 2025
Viewed by 353
Abstract
There is a high demand for the development of new carriers for pharmaceutical forms for human, veterinary, and animal-feeding use. One of the solutions might be bioactive compound-loading pellets for animal forage. The aim of the work was to assess the physical and [...] Read more.
There is a high demand for the development of new carriers for pharmaceutical forms for human, veterinary, and animal-feeding use. One of the solutions might be bioactive compound-loading pellets for animal forage. The aim of the work was to assess the physical and sensory properties of forage with the addition of onion peel and off-spec onions as a source of quercetin. The feed was prepared using an expanding process (thermal–mechanical expanding process). Quercetin content was evaluated in raw onion and in final-product feed mixture samples (before and after expanding, and pelleting). The obtained feed was subjected to sensory analysis, testing for expanded pellet uniformity, water absorption index (WAI), the angle of a slide, and antioxidant activity. The results confirmed a high recovery of the quercetin after the expanding process (approximately 80%), and a significantly reduced intensity of onion odor, which was confirmed compared to the non-expanded onion, which is beneficial. Furthermore, digital and optical microscopy were applied for structure analysis. Microscopic imaging results confirmed that the onion structures were visible in the whole length of feed material and analyzed cross-sections. The results can be an introduction to further research on developing products that use the expanding and pelleting process to exploit the peel and off-spec onions, as well as other waste raw materials. Full article
Show Figures

Figure 1

47 pages, 1839 KiB  
Review
Behavioral, Endocrine, and Neuronal Responses to Odors in Lampreys
by Philippe-Antoine Beauséjour, Barbara S. Zielinski and Réjean Dubuc
Animals 2025, 15(14), 2012; https://doi.org/10.3390/ani15142012 - 8 Jul 2025
Viewed by 452
Abstract
Lampreys are primitive fish that rely significantly on olfactory cues throughout their complex life cycle. The olfactory system of the sea lamprey (Petromyzon marinus) is among the best characterized in vertebrates. In recent decades, tremendous advances have been made by isolating [...] Read more.
Lampreys are primitive fish that rely significantly on olfactory cues throughout their complex life cycle. The olfactory system of the sea lamprey (Petromyzon marinus) is among the best characterized in vertebrates. In recent decades, tremendous advances have been made by isolating individual compounds from sea lampreys that can replicate natural behavior when artificially applied in the wild. In no other aquatic vertebrate has the olfactory ecology been described in such extensive detail. In the first section, we provide a comprehensive review of olfactory behaviors induced by specific, individual odorants during every major developmental stage of the sea lamprey in behavioral contexts such as feeding, predator avoidance, and reproduction. Moreover, pheromonal inputs have been shown to induce neuroendocrine responses through the hypothalamic-pituitary-gonadal axis, triggering remarkable developmental and physiological effects, such as gametogenesis and increased pheromone release. In the second section of this review, we describe a hypothetical endocrine signaling pathway through which reproductive fitness is increased following pheromone detection. In the final section of this review, we focus on the neuronal circuits that transform olfactory inputs into motor output. We describe specific brain signaling pathways that underlie odor-evoked locomotion. Furthermore, we consider possible modulatory inputs to these pathways that may induce plasticity in olfactory behavior following changes in the external or internal environment. As a whole, this review synthesizes previous and recent progress in understanding the behavioral, endocrine, and neuronal responses of lampreys to chemosensory signals. Full article
Show Figures

Figure 1

20 pages, 1007 KiB  
Article
Fatty Acids Are Responsible for the Discrepancy of Key Aroma Compounds in Naturally Dried Red Goji Berries and Hot-Air-Dried Red Goji Berries
by Yan Zheng, Claudia Oellig, Walter Vetter, Vanessa Bauer, Yuan Liu, Yanping Chen and Yanyan Zhang
Foods 2025, 14(13), 2388; https://doi.org/10.3390/foods14132388 - 6 Jul 2025
Viewed by 397
Abstract
Red goji berries, reputed worldwide as “superfruit”, are commonly marketed after natural drying or hot-air drying. A sensomics approach was applied to the aroma analysis of red goji berries under two drying methods. Fifty-two aroma-active compounds were screened and identified by aroma extract [...] Read more.
Red goji berries, reputed worldwide as “superfruit”, are commonly marketed after natural drying or hot-air drying. A sensomics approach was applied to the aroma analysis of red goji berries under two drying methods. Fifty-two aroma-active compounds were screened and identified by aroma extract dilution analysis (AEDA) coupled with gas chromatography with olfactometry (GC/O). The contents and the odor activity values (OAVs) of 49 aroma-active compounds were determined. Acetic acid was the predominant aroma compounds in both berries. Meanwhile, the key aroma compounds in both berries were (E)-2-nonenal, (Z)-4-heptenal, 3-methyl-2,4-nonanedione, hexanal, etc., which were lipid derivatives. Natural drying promoted the formation of some aldehydes that exhibited green and fatty notes. Hot-air drying facilitated the production of ketones with hay-like and cooked apple-like odor attributes due to the thermal reaction. The fatty acid patterns between naturally dried and hot-air-dried red goji berries differed not significantly and were dominated by linoleic acid, oleic acid, palmitic acid, etc. The knowledge of the impacts of different drying processes on the aroma quality in red goji berries is beneficial for the quality control and optimization of dried red goji berries. Full article
Show Figures

Figure 1

24 pages, 2231 KiB  
Article
Characterization of Aroma-Active Compounds in Five Dry-Cured Hams Based on Electronic Nose and GC-MS-Olfactometry Combined with Odor Description, Intensity, and Hedonic Assessment
by Dongbing Yu and Yu Gu
Foods 2025, 14(13), 2305; https://doi.org/10.3390/foods14132305 - 29 Jun 2025
Viewed by 417
Abstract
The evaluation of aroma-active profiles in dry-cured hams is crucial for determining quality, flavor, consumer acceptance, and economic value. This study characterized the volatile compounds in five varieties of dry-cured hams using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and an electronic nose (E-Nose). In total, [...] Read more.
The evaluation of aroma-active profiles in dry-cured hams is crucial for determining quality, flavor, consumer acceptance, and economic value. This study characterized the volatile compounds in five varieties of dry-cured hams using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and an electronic nose (E-Nose). In total, 78 volatile compounds were identified across five varieties of dry-cured hams. A total of 29 compounds were recognized as aroma-active compounds. Odor description, intensity, and hedonic assessment were employed to evaluate these compounds. Black Hoof Cured Ham and Special-grade Xuan-Zi Ham contained higher levels of favorable compounds such as nonanal, 5-butyldihydro-2(3H)-furanone, and 2,6-dimethylpyrazine, contributing to sweet and popcorn-like notes. In contrast, Fei-Zhong-Wang Ham and Liang-Tou-Wu Ham exhibited higher proportions of off-odor compounds with lower hedonic scores. A principal component analysis clearly separated the five hams based on their aroma-active profiles, and a correlation analysis between E-Nose sensor responses and GC-MS-O data demonstrated a strong discriminatory ability for specific samples. These findings offer valuable insights into the chemical and sensory differentiation of dry-cured hams and provide a scientific basis for quality control, product development, and future improvements in E-Nose sensor design and intelligent aroma assessment. Full article
(This article belongs to the Special Issue How Does Consumers’ Perception Influence Their Food Choices?)
Show Figures

Figure 1

13 pages, 1237 KiB  
Article
Characterization of the Major Odor-Active Compounds in Fresh Rhizomes and Leaves of Houttuynia cordata by Comparative Aroma Extract Dilution Analysis
by Zhenli Xu, Jing Liu, Johanna Kreissl, Claudia Oellig, Walter Vetter, Martin Steinhaus and Stephanie Frank
Foods 2025, 14(13), 2303; https://doi.org/10.3390/foods14132303 - 28 Jun 2025
Viewed by 419
Abstract
Houttuynia cordata is a culinary herb from Asia. Its edible rhizomes and leaves have a fishy aroma, the molecular background of which was unknown. A comparative aroma extract dilution analysis applied to fresh rhizomes and leaves resulted in 44 and 41 odorants, respectively, [...] Read more.
Houttuynia cordata is a culinary herb from Asia. Its edible rhizomes and leaves have a fishy aroma, the molecular background of which was unknown. A comparative aroma extract dilution analysis applied to fresh rhizomes and leaves resulted in 44 and 41 odorants, respectively, 38 of which were present with FD factors ≥1 in both samples. The odorant with the highest FD factors, whether in the rhizomes or leaves, was identified as metallic, soapy, fishy smelling 3-oxododecanal. Toward clarifying its tautomeric composition, quantum calculations suggested a predominance of the enol forms in the plant. However, the form perceived at the sniffing port during GC–O remained unclear. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Graphical abstract

13 pages, 606 KiB  
Article
Inhibition of Urea Hydrolysis in Human Urine for Resource and Energy Recovery: Pharmaceuticals and Their Metabolites as Co-Existing Anticatalyzers
by Haoran Chi, Minshu Chen, Wei Yang, Ya Li, Shuhui Sun, Hualin Wang, Xuejing Yang, Michael R. Hoffmann and Lei Guo
Catalysts 2025, 15(7), 630; https://doi.org/10.3390/catal15070630 - 27 Jun 2025
Viewed by 583
Abstract
Urine, which has a high concentration of urea, can be used as a sustainable resource for nutrient recovery and sustainable energy. However, urea undergoes hydrolysis, catalyzed by urease, generating ammonia and carbon dioxide. As ammonia is released during hydrolysis in stored urine, the [...] Read more.
Urine, which has a high concentration of urea, can be used as a sustainable resource for nutrient recovery and sustainable energy. However, urea undergoes hydrolysis, catalyzed by urease, generating ammonia and carbon dioxide. As ammonia is released during hydrolysis in stored urine, the pH rises progressively until the pKa of ammonium is reached (i.e., 9.3). At elevated pH levels, struvite and other related precipitates are formed. These reactions lower the efficiency of ammonia and urea nitrogen recovery and often cause scaling, pipe blockage, and odors. Herein, we explore an approach to stabilize urea, using pharmaceuticals and their metabolites that are commonly present in human urine. Based on a survey of the urease inhibitory effects of twenty-three pharmaceuticals and metabolites, we determined that the polyphenolic and disulfide-containing compounds had the highest urease inhibition efficiency. Specifically, outstanding inhibitors include catechol (CAT), hydroquinone (HYD), and disulfiram (DSF). Furthermore, when added to urine, these compounds resulted in the retardation of urease-catalyzed hydrolysis, leading to longer-term urine stabilization upon storage. Reaction mechanisms for urease inhibition by polyphenolics and disulfiram are proposed. Evidence is provided that pharmaceutical metabolites can stabilize urea and thus could lead to a sustainable method for nitrogen nutrient recovery from stored urine. Full article
Show Figures

Figure 1

Back to TopTop