Quercetin-Fortified Animal Forage from Onion Waste: A Zero-Waste Approach to Bioactive Feed Development
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Samples Preparation
2.1.2. Forage Manufacturing
2.2. Methods
2.2.1. Quercetin Content
2.2.2. Antioxidant Activity
2.2.3. Particle Size Homogeneity Analysis
2.2.4. Microscopic Analysis
2.2.5. Water Absorption Index
2.2.6. The Angle of the Slide
2.2.7. Sensory Analysis
2.2.8. Statistical Analysis
2.3. Limitation
3. Results and Discussion
3.1. Quercetin Content
3.2. Antioxidant Activity
3.3. Particle Size Analysis
3.4. Microscopic Analysis
3.5. Water Absorption Index (WAI)
3.6. The Angle of the Slide
3.7. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wood, J.D. Meat composition and nutritional value. In Lawrie’s Meat Science; Elsevier: Amsterdam, The Netherlands, 2023; pp. 665–685. [Google Scholar] [CrossRef]
- Drewnowski, A. Perspective: The Place of Pork Meat in Sustainable Healthy Diets. Adv. Nutr. 2024, 15, 100213. [Google Scholar] [CrossRef] [PubMed]
- Szymandera, K. The quantitative and qualitative changes of thiamine in sterilized pork in the presence of selected technological additives. Polish J. Food Nutr. Sci. 2003, 12, 59–62. [Google Scholar]
- O’Connor, L.E.; Herrick, K.A.; Parsons, R.; Reedy, J. Heterogeneity in Meat Food Groups Can Meaningfully Alter Population-Level Intake Estimates of Red Meat and Poultry. Front. Nutr. 2021, 8, 778369. [Google Scholar] [CrossRef]
- Stadnik, J. Nutritional Value of Meat and Meat Products and Their Role in Human Health. Nutrients 2024, 16, 1446. [Google Scholar] [CrossRef]
- Ren, H.; Xiao, W.; Qin, X.; Cai, G.; Chen, H.; Hua, Z.; Cheng, C.; Li, X.; Hua, W.; Xiao, H.; et al. Myostatin regulates fatty acid desaturation and fat deposition through MEF2C/miR222/SCD5 cascade in pigs. Commun. Biol. 2020, 3, 612. [Google Scholar] [CrossRef]
- Czech, A.; Klimiuk, K.; Sembratowicz, I. Effect of the inclusion of extruded flaxseed in the diet of fattening pigs on lipid metabolism and tissue redox status. Sci. Rep. 2023, 13, 13312. [Google Scholar] [CrossRef]
- Bernardi, D.M.; Bertol, T.M.; Coldebella, A.; Cunha Junior, A.; Silveira-Almeida, B.C.; Rodrigues, J.B.; Barrera-Arellano, D.; Godoy, H.T.; Meinhart, A.D.; De Paris, L.D.; et al. Effects of dietary flaxseed oil with or without products with antioxidant properties on pig performance, carcass characteristics, meat quality and oxidative stability. Anim. Prod. Sci. 2022, 62, 1789–1804. [Google Scholar] [CrossRef]
- Choi, C.B.; Kwon, H.; Kim, S.I.; Yang, U.M.; Lee, J.H.; Park, E.K. Effects of rice bran, flax seed, and sunflower seed on growth performance, carcass characteristics, fatty acid composition, free amino acid and peptide contents, and sensory evaluations of native Korean cattle (Hanwoo). Asian-Australasian J. Anim. Sci. 2016, 29, 195–203. [Google Scholar] [CrossRef]
- Lyberg, A.; Fasoli, E.; Adlercreutz, P. Monitoring the oxidation of docosahexaenoic acid in lipids. Lipids 2005, 40, 969. [Google Scholar] [CrossRef]
- Salami, S.A.; Guinguina, A.; Agboola, J.O.; Omede, A.A.; Agbonlahor, E.M.; Tayyab, U. Review: In vivo and postmortem effects of feed antioxidants in livestock: A review of the implications on authorization of antioxidant feed additives. Animal 2016, 10, 1375–1390. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Kearns, M.; Kiani, A.; Santhiravel, S.; Vahmani, P.; Prache, S.; Monahan, F.J.; Mapiye, C. Enrichment of ruminant meats with health enhancing fatty acids and antioxidants: Feed-based effects on nutritional value and human health aspects—Invited review. Front. Anim. Sci. 2024, 5, 1329346. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Bains, A.; Sridhar, K.; Singh, B.N.; Kuhad, R.C.; Chawla, P.; Sharma, M. Valorization of onion peel waste: From trash to treasure. Chemosphere 2023, 343, 140178. [Google Scholar] [CrossRef]
- Németh, K.; Takàcsova, M.; Piskua, M.K. Effect of cooking on yellow onion quercetin. Polish J. Food Nutr. Sci. 2003, 12, 170–174. [Google Scholar]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Radha; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; et al. Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomed. Pharmacother. 2022, 146, 112498. [Google Scholar] [CrossRef]
- Osojnik Črnivec, I.G.; Skrt, M.; Šeremet, D.; Sterniša, M.; Farčnik, D.; Štrumbelj, E.; Poljanšek, A.; Cebin, N.; Pogačnik, L.; Smole Možina, S.; et al. Waste streams in onion production: Bioactive compounds, quercetin and use of antimicrobial and antioxidative properties. Waste Manag. 2021, 126, 476–486. [Google Scholar] [CrossRef]
- Santiago, B.; Arias Calvo, A.; Gullón, B.; Feijoo, G.; Moreira, M.T.; González-García, S. Production of flavonol quercetin and fructooligosaccharides from onion (Allium cepa L.) waste: An environmental life cycle approach. Chem. Eng. J. 2020, 392, 123772. [Google Scholar] [CrossRef]
- Dnyaneshwari, A.; Mursalin, S.; Rushikesh, C. A Review: Onion (Allium cepa). Int. J. Pharm. Res. Appl. 2023, 8, 2305–2317. [Google Scholar]
- Glencross, B.; Fracalossi, D.M.; Hua, K.; Izquierdo, M.; Mai, K.; Øverland, M.; Robb, D.; Roubach, R.; Schrama, J.; Small, B.; et al. Harvesting the benefits of nutritional research to address global challenges in the 21st century. J. World Aquac. Soc. 2023, 54, 343–363. [Google Scholar] [CrossRef]
- Glencross, B.; Hawkins, W.; Evans, D.; Rutherford, N.; McCafferty, P.; Dods, K.; Hauler, R. A comparison of the effect of diet extrusion or screw-press pelleting on the digestibility of grain protein products when fed to rainbow trout (Oncorhynchus mykiss). Aquaculture 2011, 312, 154–161. [Google Scholar] [CrossRef]
- Gumienna, M.; Lasik-Kurdyś, M.; Szymandera-Buszka, K.; Górna-Szweda, B.; Walkowiak-Tomczak, D.; Jędrusek-Golińska, A. Innovative Application of Fermented Red Bean Seeds in Constructing Foods with Increased Biological Activity. Foods 2025, 14, 88. [Google Scholar] [CrossRef]
- Fancher, B.; Rollins, D.; Trimbee, B. Feed Processing Using the Annular Gap Expander and Its Impact on Poultry Performance’. Appl. Poult. Sci. 1996, 5, 386–394. [Google Scholar]
- Abdollahi, M.R.; Ravindran, V.; Svihus, B. Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Anim. Feed Sci. Technol. 2013, 179, 1–23. [Google Scholar] [CrossRef]
- Bashyal, S.; Poudel, P.B.; Magar, J.B.; Dhakal, L.; Chad, S.; Khadka, B.; Bohara, S.L. Effect of Nutrient Management on Two Varieties (Hybrid and Local) of Maize in Western Inner Terai of Nepal. Int. J. Appl. Sci. Biotechnol. 2020, 8, 191–198. [Google Scholar] [CrossRef]
- Almeida, L.M.; Bassi, L.S.; Santos, R.O.; Orlando, U.A.D.; Maiorka, A.; Oliveira, S.G. Effect of feed form and heat processing on the growth performance of growing and finishing pigs. Livest. Sci. 2021, 245, 104430. [Google Scholar] [CrossRef]
- Bastiaansen, T.M.M.; de Vries, S.; Martens, B.M.J.; Benders, R.T.; Vissers, E.; Dijksman, J.A.; Hendriks, W.H.; Thomas, M.; Bosch, G. Identifying feed characteristics that affect the pellet manufacturing of livestock diets containing different coproducts. Clean. Circ. Bioeconomy 2024, 7, 100073. [Google Scholar] [CrossRef]
- Roos, Y.H. Glass transition temperature and its relevance in food processing. Annu. Rev. Food Sci. Technol. 2010, 1, 469–496. [Google Scholar] [CrossRef]
- Wang, Y.; Rassler, S.; Stefanovski, D.; Bender, J.; Deutsch, J.; Chen, T.; Cui, Z.; Dou, Z. Evidence of animal productivity outcomes when fed diets including food waste: A systematic review of global primary data. Resour. Conserv. Recycl. 2024, 203, 107411. [Google Scholar] [CrossRef]
- Thomas, M.; van der Poel, A.F.B. Fundamental factors in feed manufacturing: Towards a unifying conditioning/pelleting framework. Anim. Feed Sci. Technol. 2020, 268, 114612. [Google Scholar] [CrossRef]
- Stuper-Szablewska, K.; Kurasiak-Popowska, D.; Nawracała, J.; Perkowski, J. Response of non-enzymatic antioxidative mechanisms to stress caused by infection with Fusarium fungi and chemical protection in different wheat genotypes. Chem. Ecol. 2017, 33, 949–962. [Google Scholar]
- Przybylska-Balcerek, A.; Szablewski, T.; Szwajkowska-Michałek, L.; Świerk, D.; Cegielska-Radziejewska, R.; Krejpcio, Z.; Suchowilska, E.; Tomczyk, Ł.; Stuper-Szablewska, K. Sambucus Nigra Extracts–Natural Antioxidants and Antimicrobial Compounds. Molecules 2021, 26, 2910. [Google Scholar] [CrossRef]
- Nuutila, A.M.; Puupponem-Pimia, R.; Aarni, M.; Oksman-Caldentey, K.M. Comparision of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem. 2003, 81, 485–493. [Google Scholar]
- Chu, Y.H.; Chang, C.L.; Hsu, H.F. Flavonoid content of several vegetables and their antioxidant activity. J. Sci. Food Agric. 2000, 80, 561–566. [Google Scholar]
- Re, R.; Pellegrini, N.; Protegente, A.; Pannala, A.; Yang, M.C.; Rice-Evans, C. Antioxidant activity an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar]
- ISO 3310-1:2016; Test Sieves—Technical Requirements and Testing—Part 1: Test Sieves of Metal Wire Cloth. ISO: Geneva, Switzerland, 2016.
- Pavani, M.; Singha, P.; Rajamanickam, D.T.; Singh, S.K. Impact of extrusion processing on bioactive compound enriched plant-based extrudates: A comprehensive study and optimization using RSM and ANN-GA. Futur. Foods 2024, 9, 100286. [Google Scholar] [CrossRef]
- Skonecki, S.; Potręć, M.; Laskowski, J. Physical and chemical properties of agricultural wastes. Acta Agrophys. 2011, 18, 443–455. [Google Scholar]
- Datta, A.K. Food Process Engineering: Heat and Mass Transfer. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar] [CrossRef]
- ISO 8589; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2009.
- Kwak, J.H.; Seo, J.M.; Kim, N.H.; Arasu, M.V.; Kim, S.; Yoon, M.K.; Kim, S.J. Variation of quercetin glycoside derivatives in three onion (Allium cepa L.) varieties. Saudi J. Biol. Sci. 2017, 24, 1387–1391. [Google Scholar] [CrossRef]
- Qiao, L.; Sun, Y.; Chen, R.; Fu, Y.; Zhang, W.; Li, X.; Chen, J.; Shen, Y.; Ye, X. Sonochemical effects on 14 flavonoids common in citrus: Relation to stability. PLoS ONE 2014, 9, e105647. [Google Scholar] [CrossRef]
- Savitha, S.; Chakraborty, S.; Thorat, B.N. Microbial Contamination and Decontamination of Onion and its Products. Appl. Food Res. 2022, 2, 100032. [Google Scholar] [CrossRef]
- Schulze, B.; Hubbermann, E.M.; Schwarz, K. Stability of quercetin derivatives in vacuum impregnated apple slices after drying (microwave vacuum drying, air drying, freeze drying) and storage. LWT-Food Sci. Technol. 2014, 57, 426–433. [Google Scholar] [CrossRef]
- Rohn, S.; Buchner, N.; Driemel, G.; Rauser, M.; Kroh, L.W. Thermal Degradation of Onion Quercetin Glucosides under Roasting Conditions. J. Agric. Food Chem. 2007, 55, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wei, H.K.; Xiang, Q.H.; Wang, J.; Zhou, Y.F.; Peng, J. Protective effect of quercetin on pig intestinal integrity after transport stress is associated with regulation oxidative status and inflammation. J. Vet. Med. Sci. 2016, 78, 1487–1494. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Sureshkumar, S.; Kim, I.H. Influences of dietary flavonoid (quercetin) supplementation on growth performance and immune response of growing pigs challenged with Escherichia coli lipopolysaccharide. J. Anim. Sci. Technol. 2020, 62, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wei, Z.; Sun, Y.; Luo, T.; Xue, C. Preparation of core–shell hordein/pectin nanoparticles as quercetin delivery matrices: Physicochemical properties and colon-specific release analyses. Food Res. Int. 2023, 170, 112971. [Google Scholar] [CrossRef]
- Cheng, J.; Dudu, O.E.; Zhang, J.; Wang, Y.; Meng, L.; Wei, W.; Li, X.; Yan, T. Impact of binding interaction modes between whey protein concentrate and quercetin on protein structural and functional characteristics. Food Hydrocoll. 2023, 142, 108787. [Google Scholar] [CrossRef]
- Massuquetto, A.; Panisson, J.C.; Marx, F.O.; Surek, D.; Krabbe, E.L.; Maiorka, A. Effect of pelleting and different feeding programs on growth performance, carcass yield, and nutrient digestibility in broiler chickens. Poult. Sci. 2019, 98, 5497–5503. [Google Scholar] [CrossRef]
- Norrapoke, T.; Pongjongmit, T. Effect of high-quality pellet feed level on voluntary feed intake, nutrient digestibility and rumen fermentation in beef cattle. Sci. Rep. 2025, 15, 15343. [Google Scholar] [CrossRef]
- Suwignyo, B.; Subagya, R.D.; Astuti, A. Physical and chemical quality of forage feed pellets with different types of materials and compositions. IOP Conf. Ser. Earth Environ. Sci. 2022, 951, 012035. [Google Scholar] [CrossRef]
- Celano, R.; Docimo, T.; Piccinelli, A.L.; Gazzerro, P.; Tucci, M.; Di Sanzo, R.; Carabetta, S.; Campone, L.; Russo, M.; Rastrelli, L. Onion peel: Turning a food waste into a resource. Antioxidants 2021, 10, 304. [Google Scholar] [CrossRef]
- Nicoli, M.C.; Anese, M.; Parpinel, M. Infuence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci. Technol. 1999, 10, 94–100. [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [PubMed]
- Suhag, R.; Kellil, A.; Razem, M. Factors Influencing Food Powder Flowability. Powders 2024, 3, 65–76. [Google Scholar] [CrossRef]
- Yousf, N.; Nazir, F.; Salim, R.; Ahsan, H.; Sirwal, A. Water solubility index and water absorption index of extruded product from rice and carrot blend. J. Pharmacogn. Phytochem. 2017, 6, 2165–2168. [Google Scholar]
- Braglia, L.; Morello, L.; Gavazzi, F.; Gianì, S.; Mastromauro, F.; Breviario, D.; Cardoso, H.G.; Valadas, V.; Campos, M.D. Interlaboratory comparison of methods determining the botanical composition of animal feed. J. AOAC Int. 2018, 101, 227–234. [Google Scholar] [CrossRef]
- Lin, P.; Fearn, T.; Mazzoleni, S.; Ottoboni, M.; Luciano, A.; Moradei, A.; Tretola, M.; Pinotti, L. Size and shape attributes of packaging remnants commonly detected in former food products. Ital. J. Anim. Sci. 2024, 23, 1–10. [Google Scholar] [CrossRef]
- Bianchi, M.G.; Casati, L.; Sauro, G.; Taurino, G.; Griffini, E.; Milani, C.; Ventura, M.; Bussolati, O.; Chiu, M. Biological Effects of Micro- / Nano-Plastics in Macrophages. Nanomaterials 2025, 15, 394. [Google Scholar] [CrossRef]
- Zheng, D.; AlAteah, A.H.; Alsubeai, A.; Mostafa, S.A. Integrating micro- and nanowaste glass with waste foundry sand in ultra-high-performance concrete to enhance material performance and sustainability. Rev. Adv. Mater. Sci. 2024, 63, 20240012. [Google Scholar] [CrossRef]
- Ourgaud, M.; Phuong, N.N.; Papillon, L.; Panagiotopoulos, C.; Galgani, F.; Schmidt, N.; Fauvelle, V.; Brach-Papa, C.; Sempéré, R. Identification and Quantification of Microplastics in the Marine Environment Using the Laser Direct Infrared (LDIR) Technique. Environ. Sci. Technol. 2022, 56, 9999–10009. [Google Scholar] [CrossRef]
- Jarzȩbski, M.; Wieruszewski, M.; Kościński, M.; Rogoziński, T.; Kobus-Cisowska, J.; Szablewski, T.; Perła-Kaján, J.; Waszkowiak, K.; Jakubowicz, J. Heme iron as potential iron fortifier for food application-characterization by material techniques. Rev. Adv. Mater. Sci. 2023, 62, 20230128. [Google Scholar] [CrossRef]
- Neder-Suárez, D.; Amaya-Guerra, C.A.; Quintero-Ramos, A.; Pérez-Carrillo, E.; Alanís-Guzmán, M.G.D.J.; Báez-González, J.G.; García-Díaz, C.L.; Núñez-González, M.A.; Lardizábal-Gutiérrez, D.; Jiménez-Castro, J.A. Physicochemical changes and resistant-starch content of extruded cornstarch with and without storage at refrigerator temperatures. Molecules 2016, 21, 1064. [Google Scholar] [CrossRef]
- Elejalde, C.C.; Kokini, J.L. The Psychophysics of Pouring, Spreading and in-Mouth Viscosity. J. Texture Stud. 1992, 23, 315–336. [Google Scholar] [CrossRef]
- Pérez-Viveros, K.J.; Gutiérrez-Dorado, R.; Téllez-Jurado, A.; Gómez- Aldapa, C.A.; Reyes-Moreno, C.; Navarro-Cortez, R.O.; Bautista-Monroy, S.S.; Cadena Ramírez, A. Effect of extrusion in the elaboration of an animal feed based on Moringa oleifera Lam and Zea mays as a partial substitute of fishmeal in the diet of the adult stage of Oreochromis niloticus. Acta Univ. 2019, 29, 1–17. [Google Scholar] [CrossRef]
- Rodríguez-Miranda, J.; Ruiz-López, I.I.; Herman-Lara, E.; Martínez-Sánchez, C.E.; Delgado-Licon, E.; Vivar-Vera, M.A. Development of extruded snacks using taro (Colocasia esculenta) and nixtamalized maize (Zea mays) flour blends. LWT-Food Sci. Technol. 2011, 44, 673–680. [Google Scholar] [CrossRef]
- Bahnasawy, A.H.; Mostafa, H.M. Some Engineering Properties of Different Feed Pellets. Misr J. Agric. Eng. 2011, 28, 947–960. [Google Scholar] [CrossRef]
- Beakawi Al-Hashemi, H.M.; Baghabra Al-Amoudi, O.S. A review on the angle of repose of granular materials. Powder Technol. 2018, 330, 397–417. [Google Scholar] [CrossRef]
- Madrid, M.A.; Fuentes, J.M.; Ayuga, F.; Gallego, E. Determination of the Angle of Repose and Coefficient of Rolling Friction for Wood Pellets. Agronomy 2022, 12, 424. [Google Scholar] [CrossRef]
- Holm, K.; Wendin, K.; Hermansson, A.M. Sweetness and texture perception in mixed pectin gels with 30% sugar and a designed rheology. LWT-Food Sci. Technol. 2009, 42, 788–795. [Google Scholar] [CrossRef]
- Jafari, S.M.; Malekjani, N. Transporting Operations of Food Materials Within Food Factories; Elsevier: Amsterdam, The Netherlands, 2019; Volume 11, ISBN 9788578110796. [Google Scholar]
- Loar, R.E.; Corzo, A. Effects of feed formulation on feed manufacturing and pellet quality characteristics of poultry diets. Worlds Poult. Sci. J. 2011, 67, 19–28. [Google Scholar] [CrossRef]
- Białowiec, A.; Micuda, M.; Szumny, A.; Łyczko, J.; Koziel, J.A. The proof-of-the-concept of application of pelletization for mitigation of volatile organic compounds emissions from carbonized refuse-derived fuel. Materials 2019, 12, 1692. [Google Scholar] [CrossRef]
DPPH | ABTS | |
---|---|---|
Before expanding | 79.98 a,* | 99.87 a |
After expanding | 75.34 b | 98.52 b,a |
After pelleting | 74.69 b | 97.98 b |
The Slide Angle (°) | WAI (g/g) | |||
---|---|---|---|---|
Drying | Expanding and Pelleting | Drying | Expanding and Pelleting | |
Series I | 26.85 ± 0.98 a,* | 22.3 ± 0.87 b | 2.01 ± 0.25 a,* | 2.89 ± 0.21 a |
Series II Series I | 26.38 ± 0.99 a | 22.3 ± 0.78 b | 1.99 ± 0.18 b | 3.08 ± 0.23 a |
Series III | 25.98 ± 0.87 a | 25.1 ± 0.82 a | 2.35 ± 0.19 b | 2.99 ± 0.24 a |
Series IV | 26.99 ± 0,89 a | 24.9 ± 0.79 b | 1.88 ± 0.21 b | 3.09 ± 0.19 a |
Series V | 26.98 ± 1.02 a | 24.0 ± 0.87 b | 2.19 ± 0.22 b | 2.98 ± 0.25 a |
No Hydrated | Hydrated | |||
---|---|---|---|---|
Before Expanding | After Expanding | Before Expanding | After Expanding | |
Onion aroma | 6.50 ± 0.4 a,* | 1.20 ± 0.5 c | 6.90 ± 0.4 a | 3.20 ± 0.3 b |
Essential oil aroma | 4.00 ± 0.6 a | 1.90 ± 0.3 c | 4.30 ± 0.3 a | 2.30 ± 0.2 b |
Herbal aroma | 3.90 ± 0.4 a | 1.20 ± 0.4 c | 3.20 ± 0.5 b,a | 2.50 ± 0.3 b |
Caramel aroma | 0.90 ± 0.5 a | 0.80 ± 0.4 a | 1.10 ± 0.3 a | 1.00 ± 0.5 a |
Fruity aroma | 1.60 ± 0.4 a | 0.90 ± 0.2 b | 1.60 ± 0.2 a | 1.40 ± 0.4 b,a |
Vinegary aroma | 3.40 ± 0.4 a | 0.20 ± 0.2 c | 4.20 ± 0.4 a | 1.10 ± 0.4 b |
Strange aroma | 3.90 ± 0.5 a | 0.00 ± 0.0 c | 4.50 ± 0.3 a | 0.50 ± 0.2 b |
Predictors | SS | df | MSE | F-Value | p-Value |
---|---|---|---|---|---|
Impact of expanding | |||||
Onion aroma | 20.25 | 1 | 20.25 | 20.29 | 0.04 |
Essential oil aroma | 4.20 | 1 | 4.20 | 67.24 | 0.01 |
Herbal aroma | 2.89 | 1 | 2.89 | 5.30 | 0.15 |
Caramel aroma | 0.01 | 1 | 0.01 | 0.50 | 0.55 |
Fruity aroma | 0.20 | 1 | 0.20 | 3.24 | 0.21 |
Vinegary aroma | 9.92 | 1 | 9.92 | 27.37 | 0.03 |
Strange aroma | 15.60 | 1 | 15.60 | 102.31 | 0.01 |
Impact of hydration on sensory analysis | |||||
Onion aroma | 1.44 | 1 | 1.44 | 0.14 | 0.75 |
Essential oil aroma | 0.12 | 1 | 0.12 | 0.06 | 0.83 |
Herbal aroma | 0.09 | 1 | 0.09 | 0.05 | 0.85 |
Caramel aroma | 0.04 | 1 | 0.04 | 8.00 | 0.11 |
Fruity aroma | 0.06 | 1 | 0.06 | 0.47 | 0.56 |
Vinegary aroma | 0.72 | 1 | 0.72 | 0.15 | 0.74 |
Strange aroma | 0.30 | 1 | 0.30 | 0.04 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtczak, J.; Szymandera-Buszka, K.; Kobus-Cisowska, J.; Stuper-Szablewska, K.; Jakubowicz, J.; Fiutak, G.; Zeyland, J.; Jarzębski, M. Quercetin-Fortified Animal Forage from Onion Waste: A Zero-Waste Approach to Bioactive Feed Development. Appl. Sci. 2025, 15, 7694. https://doi.org/10.3390/app15147694
Wojtczak J, Szymandera-Buszka K, Kobus-Cisowska J, Stuper-Szablewska K, Jakubowicz J, Fiutak G, Zeyland J, Jarzębski M. Quercetin-Fortified Animal Forage from Onion Waste: A Zero-Waste Approach to Bioactive Feed Development. Applied Sciences. 2025; 15(14):7694. https://doi.org/10.3390/app15147694
Chicago/Turabian StyleWojtczak, Janusz, Krystyna Szymandera-Buszka, Joanna Kobus-Cisowska, Kinga Stuper-Szablewska, Jarosław Jakubowicz, Grzegorz Fiutak, Joanna Zeyland, and Maciej Jarzębski. 2025. "Quercetin-Fortified Animal Forage from Onion Waste: A Zero-Waste Approach to Bioactive Feed Development" Applied Sciences 15, no. 14: 7694. https://doi.org/10.3390/app15147694
APA StyleWojtczak, J., Szymandera-Buszka, K., Kobus-Cisowska, J., Stuper-Szablewska, K., Jakubowicz, J., Fiutak, G., Zeyland, J., & Jarzębski, M. (2025). Quercetin-Fortified Animal Forage from Onion Waste: A Zero-Waste Approach to Bioactive Feed Development. Applied Sciences, 15(14), 7694. https://doi.org/10.3390/app15147694