Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (924)

Search Parameters:
Keywords = nucleation time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1889 KB  
Article
Dimension Tailoring of Quasi-2D Perovskite Films Based on Atmosphere Control Toward Enhanced Amplified Spontaneous Emission
by Zijia Wang, Xuexuan Huang, Zixuan Song, Chiyu Guo, Liang Tao, Shibo Wei, Ke Ren, Yuze Wu, Xuejiao Sun and Chenghao Bi
Materials 2025, 18(19), 4628; https://doi.org/10.3390/ma18194628 - 7 Oct 2025
Abstract
Quasi-two-dimensional (Q2D) perovskite films have garnered significant attention as novel gain media for lasers due to their tunable bandgap, narrow linewidth, and solution processability. Q2D perovskites endowed with intrinsic quantum well structures demonstrate remarkable potential as gain media for cost-effective miniaturized lasers, owing [...] Read more.
Quasi-two-dimensional (Q2D) perovskite films have garnered significant attention as novel gain media for lasers due to their tunable bandgap, narrow linewidth, and solution processability. Q2D perovskites endowed with intrinsic quantum well structures demonstrate remarkable potential as gain media for cost-effective miniaturized lasers, owing to their superior ambient stability and enhanced photon confinement capabilities. However, the mixed-phase distribution within Q2D films constitutes a critical determinant of their optical properties, exhibiting pronounced sensitivity to specific fabrication protocols and processing parameters, including annealing temperature, duration, antisolvent volume, injection timing, and dosing rate. These factors frequently lead to broad phase distribution in Q2D perovskite films, thereby inducing incomplete exciton energy transfer and multiple emission peaks, while simultaneously making the fabrication processes intricate and reducing reproducibility. Here, we report a novel annealing-free and antisolvent-free method for the preparation of Q2D perovskite films fabricated in ambient atmosphere. By constructing a tailored mixed-solvent vapor atmosphere and systematically investigating its regulatory effects on the nucleation and growth processes of film via in situ photoluminescence spectra, we successfully achieved the fabrication of Q2D perovskite films with large n narrow phase distribution characteristics. Due to the reduced content of small n domains, the incomplete energy transfer from small n to large n phases and the carriers’ accumulation in small n can be greatly suppressed, thereby suppressing the trap-assistant nonradiative recombination and Auger recombination. Ultimately, the Q2D perovskite film showed a single emission peak at 519 nm with the narrow full width at half maximum (FWHM) of 21.5 nm and high photoluminescence quantum yield (PLQY) of 83%. And based on the optimized Q2D film, we achieved an amplified spontaneous emission (ASE) with a low threshold of 29 μJ·cm−2, which was approximately 60% lower than the 69 μJ·cm−2 of the control film. Full article
Show Figures

Figure 1

15 pages, 943 KB  
Article
Crystallization of Four Troglitazone Isomers: Selectivity and Structural Considerations
by Shinji Matsuura, Koichi Igarashi, Masayuki Azuma and Hiroshi Ooshima
Crystals 2025, 15(10), 866; https://doi.org/10.3390/cryst15100866 - 30 Sep 2025
Abstract
The control of crystal form in chiral active pharmaceutical ingredients (APIs) is a critical challenge in pharmaceutical development, as differences in solid-state structure can significantly influence physical properties and manufacturing performance. Troglitazone, a molecule with two chiral centers, exists as four stereoisomers (RR, [...] Read more.
The control of crystal form in chiral active pharmaceutical ingredients (APIs) is a critical challenge in pharmaceutical development, as differences in solid-state structure can significantly influence physical properties and manufacturing performance. Troglitazone, a molecule with two chiral centers, exists as four stereoisomers (RR, SS, RS, SR) that crystallize as two enantiomeric pairs: RR/SS and RS/SR. This study aims to elucidate the relationship between solution-state molecular interactions and crystallization behavior of these diastereomeric pairs. Antisolvent crystallization experiments were conducted for both mixed solutions containing all four isomers and solutions of individual pairs. Crystallization kinetics were monitored by HPLC, and the resulting solids were characterized by PXRD, DSC, TG, and microscopic observation. Nucleation induction times were determined over a range of supersaturation levels. To probe intermolecular interactions in solution, NOESY and targeted NOE NMR experiments were performed, and the results were compared with crystallographic data. The RS/SR crystals(H-form) consistently exhibited shorter induction times and faster crystallization rates than the RR/SS crystals (L-form), even under conditions where RR/SS solutions were more supersaturated. In mixed solutions, H-form crystallized preferentially, with L-form either remaining in solution or being incorporated into H-form crystals as a solid solution. NOESY and NOE analyses revealed intermolecular proximities between protons that are distant in the molecular structure, indicating the presence of ordered aggregates in solution. These aggregates were more structurally compatible with the H-form than with the L-form crystal lattice, as supported by crystallographic distance analysis. The results demonstrate that differences in nucleation kinetics between troglitazone diastereomers are closely linked to solution-state molecular arrangements. Understanding these relationships provides a molecular-level basis for the rational design of selective crystallization processes for chiral APIs. Full article
(This article belongs to the Section Crystal Engineering)
20 pages, 6258 KB  
Article
Hybrid Kinetic Modelling of Protein Crystallization: Hanging Drop and Langmuir–Blodgett Conditions
by Eugenia Pechkova, Fabio Massimo Speranza, Paola Ghisellini, Cristina Rando, Katia Barbaro and Roberto Eggenhöffner
Crystals 2025, 15(10), 857; https://doi.org/10.3390/cryst15100857 - 30 Sep 2025
Abstract
The understanding and control of protein crystallization are crucial in structural biology, drug development, and biomaterial design. This study introduces a unified framework for modeling and comparing crystallization kinetics using selected growth functions. Experimental datasets from the literature for four proteins, Lysozyme, Thaumatin, [...] Read more.
The understanding and control of protein crystallization are crucial in structural biology, drug development, and biomaterial design. This study introduces a unified framework for modeling and comparing crystallization kinetics using selected growth functions. Experimental datasets from the literature for four proteins, Lysozyme, Thaumatin, Ribonuclease A, and Proteinase K, under Hanging Drop and Langmuir–Blodgett conditions were analyzed. Five kinetic models, Avrami, Kashchiev, Hill, Logistic, and Generalized Sigmoid (GSM), were fitted to size–time data of the four benchmark proteins. From each fit, four descriptors were extracted: crystallization half-time, time of maximum growth, width at half-maximum, and peak growth rate. These metrics summarize crystallization dynamics and enable cross-comparison of proteins and methods. Langmuir–Blodgett templating accelerated onset and improved synchrony, though the effect varied by protein and model. Logistic, Hill, and GSM models provided consistent fits across most conditions, while Avrami and Kashchiev were more sensitive to early or late deviations. Notably, descriptor extraction remained reliable even with limited or uneven sampling, revealing kinetic regimes such as synchrony, asymmetry, or prolonged nucleation, not evident in raw data. This transferable analytical framework supports quantitative evaluation of crystallization behavior, aiding screening, process optimization, and time-resolved structural studies. Full article
(This article belongs to the Section Biomolecular Crystals)
23 pages, 9649 KB  
Article
Two-Phase Flow Simulation of Bubble Cross-Membrane Removal Dynamics in Boiling-Desorption Mode for Microchannel Membrane-Based Generators
by Jianrong Zhai, Hongtao Gao and Yuying Yan
Energies 2025, 18(19), 5156; https://doi.org/10.3390/en18195156 - 28 Sep 2025
Abstract
Compact and efficient absorption refrigeration systems can effectively utilize waste heat and renewable energy when operated in a boiling-desorption mode, which maximizes the desorption rate. Hydrophobic membranes play a critical role in microchannel membrane-based generators; however, limited research has addressed bubble cross-membrane removal [...] Read more.
Compact and efficient absorption refrigeration systems can effectively utilize waste heat and renewable energy when operated in a boiling-desorption mode, which maximizes the desorption rate. Hydrophobic membranes play a critical role in microchannel membrane-based generators; however, limited research has addressed bubble cross-membrane removal dynamics under boiling-desorption conditions, particularly the influence of membrane hydrophobicity. In this study, a two-phase flow bubble-removal model was developed to accurately represent boiling-desorption behavior. Numerical simulations were performed to investigate the effects of membrane hydrophobicity and heating power on bubble dynamics, wall temperature, venting rate, and channel pressure drop. Results show that bubble venting proceeds through four stages: nucleation and growth, liquid-film rupture with deformation, lateral spreading, and sustained vapor removal. Hydrophobicity effects become most significant from the third stage onwards. Increased hydrophobicity reduces wall temperature, with greater reductions at higher heat fluxes, and enhances venting performance by increasing total vapor removal and reducing removal time. Channel pressure fluctuations comprise high-frequency components from bubble growth and low-frequency components from venting-induced flow interruptions, with relative contributions dependent on hydrophobicity and heat flux. These findings provide new insights into bubble-removal mechanisms and offer guidance for the design and optimization of high-performance microchannel membrane-based generators. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

21 pages, 3469 KB  
Article
Conversion of Natural Clay into Na-A (LTA) Zeolite Adsorbent for Efficient Heavy Metals Adsorption from Aqueous Solution: Kinetic and Isotherm Studies
by Soumia Abdelkrim, Adel Mokhtar, Amina Sardi, Boubekeur Asli, Mohammed Hachemaoui, Bouhadjar Boukoussa, Mohammed Sassi, Gianluca Viscusi, Zouhaier Aloui and Mohamed Abboud
Processes 2025, 13(10), 3060; https://doi.org/10.3390/pr13103060 - 25 Sep 2025
Abstract
In this work, zeolite LTA (Linde Type A) was synthesised from natural clay as a novel adsorbent for copper and lead ions removal from water effluents. The applied process allowed the reuse of kaolin, as natural clay, for the production of zeolite LTA [...] Read more.
In this work, zeolite LTA (Linde Type A) was synthesised from natural clay as a novel adsorbent for copper and lead ions removal from water effluents. The applied process allowed the reuse of kaolin, as natural clay, for the production of zeolite LTA through a stepwise process, which involved the formation of metakaolin. The results of characterisation showed the formation of crystalline cubic crystals of zeolite with a mean dimension of 2–3 microns, indicating the successful nucleation and development of the LTA zeolite phase. Batch adsorption studies were carried out to study the removal ability of zeolite LTA by testing Cu2+ and Pb2+ ions. Effects of contact time, pH, and adsorbent dosage were investigated. At pH > 5, the removal efficiency for both metals exceeded 95%. As the zeolite dosage increases from 2 to 10 g/L, the removal effectiveness for both metals markedly enhances (>95% at 10 g/L for lead ions and >90% at 10 g/L for copper ions). The adsorbent showed a higher adsorption capacity in removing lead compared to copper (Qm = 81.5 mg/g for Pb2+ and 67.5 mg/g for Cu2+). The adsorption process was well described by the pseudo-second-order kinetic model, while the Langmuir isotherm adequately depicted the equilibrium behavior. Notably, the kinetics revealed distinct contributions from chemisorption and physisorption, with the AOAS model effectively quantifying their respective roles in metal ion removal. The findings revealed that prepared zeolite LTA acts as an efficient adsorbent to remove heavy metals. Full article
(This article belongs to the Special Issue Novel Applications of Zeolites in Adsorption Processes)
Show Figures

Figure 1

26 pages, 2437 KB  
Article
Interphase-Resolved Performance in PA6/TiO2 Nanocomposite Fibers: Four-Phase Geometry Linking Structure to Mechanical and UV Protection
by Hailong Yu, Ping Liu, Xiaohuan Ji, Xiaoze Jiang and Bin Sun
Polymers 2025, 17(18), 2551; https://doi.org/10.3390/polym17182551 - 21 Sep 2025
Viewed by 173
Abstract
Melt-spun PA6/TiO2 fibers with TiO2 modified by silane coupling agents KH550 and KH570 at 0, 1.6, and 4 wt% provide a practical testbed to address three fiber-centric gaps: transferable interphase quantification, interphase-resolved indications of compatibility, and a reproducible kinetics–structure–property link. This [...] Read more.
Melt-spun PA6/TiO2 fibers with TiO2 modified by silane coupling agents KH550 and KH570 at 0, 1.6, and 4 wt% provide a practical testbed to address three fiber-centric gaps: transferable interphase quantification, interphase-resolved indications of compatibility, and a reproducible kinetics–structure–property link. This work proposes, for the first time at fiber scale, a four-phase partition into crystal (c), crystal-adjacent rigid amorphous fraction (RAF-c), interfacial rigid amorphous fraction (RAF-i), and mobile amorphous fraction (MAF), and extracts an interfacial triad consisting of the specific interfacial area (Sv), polymer-only RAF-i fraction expressed per composite volume (Γi), and interphase thickness (ti) from SAXS invariants to establish a quantitative interphase-structure–property framework. A documented SAXS/DSC/WAXS workflow partitions the polymer into the above four components on a polymer-only basis. Upon filling, Γi increases while RAF-c decreases, leaving the total RAF approximately conserved. Under identical cooling, DSC shows the crystallization peak temperature is higher by 1.6–4.3 °C and has longer half-times, indicating enhanced heterogeneous nucleation together with growth are increasingly limited by interphase confinement. At 4 wt% loading, KH570-modified fibers versus KH550-modified fibers exhibit higher α-phase orientation (Hermans factor f(α): 0.697 vs. 0.414) but an ~89.4% lower α/γ ratio. At the macroscale, compared to pure (neat) PA6, 4 wt% KH550- and KH570-modified fibers show tenacity enhancements of ~9.5% and ~33.3%, with elongation decreased by ~31–68%. These trends reflect orientation-driven stiffening accompanied by a reduction in the mobile amorphous fraction and stronger interphase constraints on chain mobility. Knitted fabrics achieve a UV protection factor (UPF) of at least 50, whereas pure PA6 fabrics show only ~5.0, corresponding to ≥16-fold improvement. Taken together, the SAXS-derived descriptors (Sv, Γi, ti) provide transferable interphase quantification and, together with WAXS and DSC, yield a reproducible link from interfacial geometry to kinetics, structure, and properties, revealing two limiting regimes—orientation-dominated and phase-fraction-dominated. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

19 pages, 10464 KB  
Article
Callovian-Oxfordian Ironstones at the Northwestern Margin of the Neo-Tethys Ocean, with Mineralogically Diverse Iron Ooids: Example from Kutch Basin, India
by Arpita Chakraborty, Santanu Banerjee, Suraj Arjun Bhosale and Sabyasachi Mandal
Minerals 2025, 15(9), 990; https://doi.org/10.3390/min15090990 - 18 Sep 2025
Viewed by 302
Abstract
Multiple ironstone beds formed during the Callovian-Oxfordian times as a consequence of intense continental weathering, upwelling, and hydrothermal activity. This study examines the compositional differences between core and rim, and the origin of iron ooids along the northwestern margin of the Neo-Tethys Ocean [...] Read more.
Multiple ironstone beds formed during the Callovian-Oxfordian times as a consequence of intense continental weathering, upwelling, and hydrothermal activity. This study examines the compositional differences between core and rim, and the origin of iron ooids along the northwestern margin of the Neo-Tethys Ocean to highlight sea-level fluctuations, redox conditions, and elemental influx. An integrated sedimentological study, including petrography, mineralogy, micro-texture, and mineral chemistry, was carried out to explain the origin and implications of ironstones. The ~14 m thick Callovian-Oxfordian, marginal marine deposits in the Kutch Basin, in western India, exhibit iron ooids, predominantly formed in oolitic shoals during transgression, associated with lagoonal siliciclastics. Callovian shoals interbedded with lagoonal facies record minor sea-level fluctuations, whereas the Oxfordian deposit records a major transgression and condensation, resulting in extensive ironstone deposits. The ooid cortices and nuclei exhibit distinctive mineralogy and micro-textures: glauconitic smectite exhibits poorly-developed rosettes, chamosite displays flower-like, and goethite shows rod-like features. Three types of ooids are formed: (i) monomineralic ooids are entirely of chamosite or goethite, (ii) quartz-nucleated ooids, and (iii) composite ooids with either chamosite core and goethite rim, or chamosite core and glauconitic smectite rim. The assemblages within iron ooids reflect variation in depositional redox conditions: glauconitic smectite develops under suboxic lagoonal flank, chamosite forms in anoxic central lagoon, and goethite precipitates on oxic shoals. Full article
(This article belongs to the Special Issue Tectonic Setting and Provenance of Sedimentary Rocks)
Show Figures

Figure 1

15 pages, 4882 KB  
Article
Numerical Simulation of Pool Boiling on Novel Microstructured Heated Surface
by Chen Xu, Yizhou Wang, Xinrong Zhang, Wenyi Li and Jieru Li
Energies 2025, 18(18), 4830; https://doi.org/10.3390/en18184830 - 11 Sep 2025
Viewed by 313
Abstract
Improving the pool boiling heat transfer by changing the properties of the heating surface has been experimentally studied by many researchers. In this paper, two novel microstructured surfaces with open channels were simulated and investigated. The two microstructured surfaces had different cavity positions [...] Read more.
Improving the pool boiling heat transfer by changing the properties of the heating surface has been experimentally studied by many researchers. In this paper, two novel microstructured surfaces with open channels were simulated and investigated. The two microstructured surfaces had different cavity positions and different groove widths of open channels. At the same time, a pool boiling experiment on the plain-heated surface was carried out to verify the reliability and accuracy of the CFD model. The results showed the relationship between the heat flux and wall superheat. Moreover, the bubble dynamic behaviors of different surfaces were obtained. It was found that both microstructured surfaces could enhance the pool boiling heat transfer coefficient (HTC) and critical heat flux (CHF). Enlarging the length of the groove gap can not only increase the heat transfer area, but also increase the bubble nucleation rate. However, constantly increasing the groove width will cause the horizontal coalescence of bubbles on the heating surface at low heat flux. When the negative effect of bubble coalescence is higher than the enhancement effect, the boiling heat transfer capacity of the heating surface will decrease unless the heat flux is high enough to delay bubble coalescence. Full article
(This article belongs to the Special Issue Heat Transfer Performance and Influencing Factors of Waste Management)
Show Figures

Figure 1

33 pages, 4786 KB  
Article
The Influence of Lignin Derivatives on the Thermal Properties and Flammability of PLA+PET Blends
by Tomasz M. Majka, Rana Al Nakib, Yusuf Z. Menceloglu and Krzysztof Pielichowski
Materials 2025, 18(17), 4181; https://doi.org/10.3390/ma18174181 - 5 Sep 2025
Viewed by 731
Abstract
This paper presents a detailed analysis of the thermal and flammability properties of polylactide- (PLA) and poly(ethylene terephthalate)- (PET) based polymer blends with biofillers, such as calcium lignosulfonate (CLS), lignosulfonamide (SA) and lignosulfonate modified with tannic acid (BMT) and gallic acid (BMG). Calorimetric [...] Read more.
This paper presents a detailed analysis of the thermal and flammability properties of polylactide- (PLA) and poly(ethylene terephthalate)- (PET) based polymer blends with biofillers, such as calcium lignosulfonate (CLS), lignosulfonamide (SA) and lignosulfonate modified with tannic acid (BMT) and gallic acid (BMG). Calorimetric studies revealed the presence of two glass transitions, one cold crystallization temperature, and two melting points, confirming the partial immiscibility of the PLA and PET phases. The additives had different effects on the temperatures and ranges of phase transformations—BMT restricted PLA chain mobility, while CLS acted as a nucleating agent that promoted crystallization. Thermogravimetric analyses (TGA) analyses showed that the additives significantly affected the thermal stability under oxidizing conditions, some (e.g., BMG) lowered the onset degradation temperature, while the others (BMT, SA) increased the residual char content. The additives also altered combustion behavior; particularly BMG that most effectively reduced flammability, promoted char formation, and extended combustion time. CLS reduced PET flammability more effectively than PLA, especially at higher PET content (e.g., 65% reduction in PET for 2:1/CLS). SA inhibited only PLA combustion, with strong effects at higher PLA content (up to 76% reduction for 2:1/SA). BMT mainly reduced PET flammability (48% reduction in 1:1/BMT), while BMG inhibited PET more strongly at lower PET content (76% reduction for 2:1/BMG). The effect of each additive also depended on the PLA:PET ratio in the blend. FTIR analysis of the char residues revealed functional groups associated with decomposition products of carboxylic acids and aromatic esters. Ultimately, only blends containing BMT and BMG met the requirements for flammability class FV-1, while SA met FV-2 classification. BMG was the most effective additive, offering enhanced thermal stability, ignition delay, and durable char formation, making it a promising bio- based flame retardant for sustainable polyester materials. Full article
Show Figures

Figure 1

28 pages, 5893 KB  
Article
A Study of the In-Vial Crystallization of Ice in Sucrose–Salt Solutions—An Application for Through-Vial Impedance Spectroscopy (TVIS)
by Geoff Smith and Yowwares Jeeraruangrattana
Appl. Sci. 2025, 15(17), 9728; https://doi.org/10.3390/app15179728 - 4 Sep 2025
Viewed by 522
Abstract
Ice nucleation temperatures and associated ice growth rates are critical parameters in defining the initial ice morphology template, which governs dry layer resistance during sublimation and therefore impacts primary drying kinetics and overall process time. In this study, we developed a through-vial impedance [...] Read more.
Ice nucleation temperatures and associated ice growth rates are critical parameters in defining the initial ice morphology template, which governs dry layer resistance during sublimation and therefore impacts primary drying kinetics and overall process time. In this study, we developed a through-vial impedance spectroscopy (TVIS) method to determine both ice nucleation temperature and average ice growth rate, from which future estimation of average ice crystal size may be possible. Whereas previous TVIS applications were limited to solutions containing simple, uncharged solutes such as sugars, our adapted approach enables the analysis of conductive solutions (5% sucrose with 0%, 0.26%, and 0.55% NaCl), covering osmolarities below and above isotonicity. We established that the real part capacitance at low and high frequencies—either side of the dielectric relaxation of ice—provides the following: (i) a temperature-sensitive parameter for detecting the onset of ice formation, and (ii) a temperature-insensitive parameter for determining the end of the ice growth phase (unaffected by temperature changes in the frozen solution). This expanded capability demonstrates the potential of TVIS as a process analytical technology (PAT) for non-invasive, in situ monitoring of freezing dynamics in pharmaceutical freeze-drying. Full article
Show Figures

Figure 1

18 pages, 4614 KB  
Article
The Formation Process of Coal-Bearing Strata Normal Faults Based on Physical Simulation Experiments: A New Experimental Approach
by Zhiguo Xia, Junbo Wang, Wenyu Dong, Chenglong Ma and Bing Chen
Processes 2025, 13(9), 2799; https://doi.org/10.3390/pr13092799 - 1 Sep 2025
Viewed by 507
Abstract
This study investigates the formation mechanism and stress response characteristics of normal faults in coal-bearing strata through large-scale physical simulation experiments. A multi-layer heterogeneous model with a geometric similarity ratio of 1:300 was constructed using similar materials that were tailored to match the [...] Read more.
This study investigates the formation mechanism and stress response characteristics of normal faults in coal-bearing strata through large-scale physical simulation experiments. A multi-layer heterogeneous model with a geometric similarity ratio of 1:300 was constructed using similar materials that were tailored to match the mechanical properties of real strata. Real-time monitoring techniques, including fiber Bragg grating strain sensors and a DH3816 static strain system, were employed to record the evolution of deformation, strain, and displacement fields during the fault development. The results show that the normal fault formation process includes five distinct stages: initial compaction, fault initiation, crack propagation, fault slip, and structural stabilization. Quantitatively, the vertical displacement of the hanging wall reached up to 5.6 cm, equivalent to a prototype value of 16.8 m, and peak horizontal stress increments near the fault exceeded 0.07 MPa. The experimental data reveal that stress concentration during the fault slip stage causes severe damage to the upper coal seam roof, with localized vertical stress fluctuations exceeding 35%. Structural planes were found to control crack nucleation and slip paths, conforming to the Mohr–Coulomb shear failure criterion. This research provides new insights into the dynamic coupling of tectonic stress and fault mechanics, offering novel experimental evidence for understanding fault-induced disasters. The findings contribute to the predictive modeling of stress redistribution in fault zones and support safer deep mining practices in structurally complex coalfields, which has potential implications for petroleum geomechanics and energy resource extraction in similar tectonic settings. Full article
Show Figures

Figure 1

20 pages, 6862 KB  
Article
Kinetics and Morphological Characteristics of CO2 Hydrate Formation Within Sandstone Fractures
by Chuanhe Ma, Hongxiang Si, Jiyao Wang, Tingting Luo, Tao Han, Ziyang Dong and Chaozheng Ma
Appl. Sci. 2025, 15(17), 9440; https://doi.org/10.3390/app15179440 - 28 Aug 2025
Viewed by 392
Abstract
Hydrate-based CO2 sequestration is considered one of the most promising methods in the field of carbon capture, utilization, and storage. The abundant fractured environments in marine sediments provide an ideal setting for the sequestration of CO2 hydrate. Investigating the kinetics and [...] Read more.
Hydrate-based CO2 sequestration is considered one of the most promising methods in the field of carbon capture, utilization, and storage. The abundant fractured environments in marine sediments provide an ideal setting for the sequestration of CO2 hydrate. Investigating the kinetics and morphological characteristics of CO2 hydrate formation within fractures is a critical prerequisite for achieving efficient and safe CO2 sequestration using hydrate technology in subsea environments. Based on the aforementioned considerations, the kinetic experiments on the formation, dissociation, and reformation of CO2 hydrates were conducted using a high-pressure visualization experimental system in this study. The kinetic behaviors and morphological characteristics of CO2 hydrates within sandstone fractures were comprehensively investigated. Particular emphasis was placed on analyzing the effects of fracture width, type, and surface roughness on the processes of hydrate formation, dissociation, and reformation. The experimental results indicate the following: (1) At a formation pressure of 2.9 MPa, the 10 mm width fracture exhibited the shortest induction time, the longest formation duration, and the highest hydrate yield (approximately 0.52 mol) compared to the other two fracture widths. The formed CO2 hydrates exhibited a smooth, thin-walled morphology. (2) In X-type fractures, the formation of CO2 hydrates was characterized by concurrent induction and dissolution processes. Compared to I-type fractures, the hydrate formation process in X-type fractures exhibited shorter formation durations and generally lower hydrate yields. (3) An increase in fracture roughness enhances the number of nucleation sites for the formation of hydrates. In both fracture types (I-type and X-type), the induction time for CO2 hydrate formation was nearly negligible. However, a significant difference in the trend of formation duration was observed under varying roughness conditions. (4) Hydrate dissociation follows a diffusion-controlled mechanism, progressing from the fracture walls towards the interior. The maximum gas production was achieved in the 10 mm-width fracture, reaching 0.24 mol, indicating optimal heat and mass transfer conditions under this configuration. (5) During the reformation process, the induction time was significantly shortened due to the “memory effect.” However, the hydrate yield after the reformation process remained consistently lower than that of the first formation, which is primarily attributed to the high solubility of CO2 in the aqueous phase. Full article
Show Figures

Figure 1

21 pages, 12134 KB  
Article
Dispersed and Co-Continuous Morphologies of Epoxy Asphalt Bond Coats and Their Effects on Mechanical Performance
by Suzhou Cao, Haocheng Yang, Xinpeng Cui, Zhonghua Xi, Jun Cai, Junsheng Zhang and Hongfeng Xie
Molecules 2025, 30(17), 3513; https://doi.org/10.3390/molecules30173513 - 27 Aug 2025
Viewed by 521
Abstract
The co-continuous microstructure represents an ideal configuration for polymer-modified asphalts. Consequently, determining the optimum polymer content hinges on establishing this critical network between polymer and bitumen. In this study, epoxy asphalt bond coats (EABCs) exhibiting three distinct morphologies (epoxy-dispersed, co-continuous, and bitumen-dispersed) were [...] Read more.
The co-continuous microstructure represents an ideal configuration for polymer-modified asphalts. Consequently, determining the optimum polymer content hinges on establishing this critical network between polymer and bitumen. In this study, epoxy asphalt bond coats (EABCs) exhibiting three distinct morphologies (epoxy-dispersed, co-continuous, and bitumen-dispersed) were prepared. Phase structure evolution and the final cured morphology were analyzed using a laser scanning confocal microscope (LSCM). Rotational viscosity–time characteristics, tensile properties, single-lap shear strength, and pull-off adhesion strength were characterized using various techniques. Results indicated that the viscosity of EABCs at the late stage of the curing reaction increased with increasing epoxy resin (ER) concentration, whereas the time required for EABCs to reach a viscosity of 5 Pa·s decreased. LSCM analysis revealed that EABCs exhibited three distinct morphologies dependent on ER concentration: (1) a bitumen-continuous morphology with dispersed epoxy domains (41–42 vol.% ER) formed via a nucleation and growth mechanism; (2) a co-continuous structure (43–45 vol.% ER); and (3) an epoxy-continuous structure with dispersed bitumen domains (46 vol.% ER). Furthermore, the EABC with 42 vol.% exhibited a transitional morphology between bitumen-continuous and co-continuous structures. A significant improvement in mechanical properties occurred during the transition from the bitumen-continuous (41 vol.% ER) to the co-continuous morphology (43 vol.% ER): tensile strength, elongation at break, and toughness increased by 524%, 1298%, and 2732%, respectively. Simultaneously, pull-off adhesion strength and single-lap shear strength rose by 61% and 99%, respectively. In contrast, mechanical properties increased only gradually during the co-continuous phase and the subsequent transition to an epoxy-continuous morphology (45–46 vol.% ER). Considering cost, rotational viscosity–time dependence, and mechanical performance, an ER concentration of 43 vol.% (within the co-continuous region) is optimal for EABC production. Full article
Show Figures

Figure 1

15 pages, 5772 KB  
Article
Study on the Optimization of the Morphology and Nucleation Mechanism of Electroplated Sn-Pb Coatings by the Synergistic Effect of Composite Additives
by Xiangqing Liu, Chenyu Li, Jie Yu, Ruiqi Liu, Min Shang, Xiaolin Su, Jinye Yao and Haitao Ma
Metals 2025, 15(9), 936; https://doi.org/10.3390/met15090936 - 24 Aug 2025
Viewed by 586
Abstract
This study investigates the synergistic effects of single- and binary-additive systems on the morphology and nucleation mechanism of Sn-Pb alloy electrodeposited coatings. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and chronoamperometry were applied in order [...] Read more.
This study investigates the synergistic effects of single- and binary-additive systems on the morphology and nucleation mechanism of Sn-Pb alloy electrodeposited coatings. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and chronoamperometry were applied in order to obtain more information on the action mechanisms of single-additive systems (cinnamaldehyde, PEG-2000, gelatin, vanillin) and binary ones (0.1 g/L cinnamaldehyde + 0.2 g/L PEG-2000) in Sn-Pb electroplating. Results showed that the use of binary-additive systems based on cinnamaldehyde and PEG-2000 significantly improved coating quality, leading to a smooth and uniform surface, dense grains, and a near-eutectic composition (Sn 63.10 wt.%, Pb 36.90 wt.%). This was because the composite additive, through synergistic effects, exhibited the highest cathodic polarization and the largest charge transfer resistance (189.20 Ω cm2), thus inhibiting the electrodeposition process of Sn2+ and Pb2+. Chronoamperometry revealed that, unlike single additives (PEG-2000 or cinnamaldehyde), the binary-additive system promoted a transition of nucleation mode to instantaneous nucleation, accompanied by a decrease in the peak current and an extension of the corresponding time. This study provides a theoretical basis and experimental support for understanding the nucleation mode of Sn-Pb electroplating, as well as optimizing the synergistic mechanism of additives. Full article
Show Figures

Graphical abstract

23 pages, 5691 KB  
Article
Mechanistic Investigation of the Corrosion Behavior of Organic Zn14Al1.4 Composite Coating Under Simulated Tropical Marine Atmospheric Conditions
by Hao Zhang, Hao Yu, Chang Liu, Yesheng Huang, Haoyu Wu, Pan Yi, Kui Xiao and Jin Gao
Coatings 2025, 15(9), 981; https://doi.org/10.3390/coatings15090981 - 22 Aug 2025
Viewed by 684
Abstract
The coupled factors of high temperature, high humidity, and high salinity in tropical marine atmospheres severely threaten the long-term service performance of power transmission and transformation infrastructure. This paper establishes an accelerated cyclic testing protocol (salt spray → drying → damp heat → [...] Read more.
The coupled factors of high temperature, high humidity, and high salinity in tropical marine atmospheres severely threaten the long-term service performance of power transmission and transformation infrastructure. This paper establishes an accelerated cyclic testing protocol (salt spray → drying → damp heat → drying) to evaluate performance and elucidate the dynamic corrosion failure mechanisms of the organic Zn14Al1.4 composite coating. By integrating multiphysical characterization techniques (SEM, EDS, XPS) with electrochemical analysis, this study for the first time elucidates the dynamic transformation of corrosion products: initially dominated by Zn(OH)2, progressing to complex passive phases such as Zn5(OH)8Cl2·H2O, Zn5(OH)6(CO3)2, and Zn6Al2(OH)16CO3 in the mid-term, and ultimately dominated by Fe-based products (FeO, Fe2O3, Fe3O4, FeOOH) that drive interfacial failure. And a four-stage corrosion evolution model was defined: incubation period, accelerated degradation phase, substrate nucleation stage, and catastrophic failure phase. The investigation reveals a shift in the coating/substrate interface failure mechanism from purely physical barrier effects to electrochemical synergy, providing a theoretical framework for the optimized design and service-life prediction of anticorrosive coatings for transmission and transformation equipment in tropical environments. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

Back to TopTop