Dispersed and Co-Continuous Morphologies of Epoxy Asphalt Bond Coats and Their Effects on Mechanical Performance
Abstract
1. Introduction
2. Results and Discussion
2.1. Rotational Viscosity–Time Characteristics
2.2. Phase Morphology Evolution
2.3. Morphology of Cured EABCs
- (1)
- Dispersed epoxy-rich domains within a continuous bitumen matrix (41–42 vol.% ER).
- (2)
- Co-continuous phase structures (43–45 vol.% ER).
- (3)
- Dispersed bitumen domains in a continuous epoxy matrix (46 vol.% ER).
2.4. Tensile Properties
2.5. Pull-Off Adhesion Strength
2.6. Single-Lap Shear Strength
3. Materials and Methods
3.1. Materials
3.2. EABC Preparation
3.3. Methods
3.3.1. Phase-Separated Morphology Observations
- (1)
- Uncured EABC droplets were deposited onto glass slides preheated to 120 °C on a hot stage.
- (2)
- Cover slips were applied and lightly compressed to ensure uniform film formation.
- (3)
- Two slides (0 min curing) were immediately quenched in a cryogenic conditioner.
- (4)
- Remaining slides were cured in a 120 °C oven and quenched at intervals of 1, 3, 5, 10, 20, and 240 min.
3.3.2. Rotational Viscometry
3.3.3. Tensile Testing
3.3.4. Pull-Off Adhesion Testing
3.3.5. Single-Lap Shear Testing
4. Conclusions
- The rotational viscosity of EABCs demonstrates a progressive increase with increasing ER concentration at the later curing stage, resulting from the combined effects of bitumen’s static viscosity and the epoxy’s dynamic viscosity.
- The phase microstructure development follows three distinct stages: epoxy-dispersed morphology in a continuous bitumen matrix via a nucleation and growth mechanism (41–42 vol.% ER), co-continuous morphology (43–45 vol.% ER), and bitumen-dispersed morphology in continuous epoxy networks (46 vol.% ER). Notably, EABC42 represents a transitional structure between epoxy-dispersed and co-continuous configurations.
- Cured EABC46 exhibits substantially reduced bitumen domain dimension (compared to cured EABC41) due to the constraining effect of crosslinked epoxy networks.
- Dramatic property enhancement occurs during the epoxy-dispersed to co-continuous transition (e.g., tensile strength: 0.41–1.04 MPa; pull-off adhesion strength: 2.58–4.15 MPa; single-lap shear strength: 0.56–1.06 MPa), while only incremental improvements are observed within the co-continuous region and during subsequent transition to bitumen-dispersed morphology (e.g., tensile strength: 2.59–2.96 MPa; pull-off adhesion strength: 4.17–4.23 MPa; single-lap shear strength: 1.11–1.29 MPa).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balala, B. Studies leading to choice of epoxy asphalt for pavement on steel orthotropic bridge deck of San Mateo-Hayward Bridge. Highw. Res. Rec. 1969, 287, 12–18. [Google Scholar]
- Yang, S.; Li, R.; Zhu, H.; Qin, Y.; Huang, C. Review of the state-of-the-art techniques for enhancing the toughness of thermosetting epoxy asphalt. Constr. Build. Mater. 2024, 449, 137660. [Google Scholar] [CrossRef]
- Zhou, D.; Liang, R.; Kang, Y. A review of chemo-rheological and thermo-rheological investigations on epoxy asphalt cementitious materials. Constr. Build. Mater. 2023, 395, 132309. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, D.; Xing, C.; Zhang, B.; Xiao, J.; Wang, T.; Wu, W. Experimental study of epoxy asphalt binder and porous epoxy asphalt concrete. J. Clean. Prod. 2023, 420, 138373. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Gong, J.; Han, X.; Xi, Z.; Zhang, J.; Wang, Q.; Xie, H. Thermal and bonding properties of epoxy asphalt bond coats. J. Therm. Anal. Calorim. 2022, 147, 2013–2025. [Google Scholar] [CrossRef]
- Jing, F.; Wang, R.; Zhao, R.; Li, C.; Cai, J.; Ding, G.; Wang, Q.; Xie, H. Enhancement of bonding and mechanical performance of epoxy asphalt bond coats with graphene nanoplatelets. Polymers 2023, 15, 412. [Google Scholar] [CrossRef]
- Luo, S.; Liu, Z.; Yang, X.; Lu, Q.; Yin, J. Construction technology of warm and hot mix epoxy asphalt paving for long-span steel bridge. J. Constr. Eng. Manag. 2019, 145, 04019074. [Google Scholar] [CrossRef]
- Si, J.; Li, Y.; Yu, X. Curing behavior and mechanical properties of an eco-friendly cold-mixed epoxy asphalt. Mater. Struct. 2019, 52, 81. [Google Scholar] [CrossRef]
- Li, K.; Xie, J.; Pan, Y.; Wang, Z.; Liu, Y. Influence of short-term heat treatment on the second-order curing epoxy tack coat in steel deck pavements. Constr. Build. Mater. 2022, 357, 129266. [Google Scholar] [CrossRef]
- Xie, H.; Zhao, R.; Wang, R.; Xi, Z.; Yuan, Z.; Zhang, J.; Wang, Q. Influence of thermal shock on the performance of B-staged epoxy bond coat for orthotropic steel bridge pavements. Constr. Build. Mater. 2021, 294, 123598. [Google Scholar] [CrossRef]
- Fan, C.; Chen, H.; Lin, F.; Li, W.; Xiong, X.; Chen, B.; Yu, H. Impact of curing time and temperature on bond performance of epoxy resin adhesives for steel bridge decks. Polymers 2025, 17, 1018. [Google Scholar] [CrossRef]
- Xie, H.; Li, C.; Wang, Q. A critical review on performance and phase separation of thermosetting epoxy asphalt binders and bond coats. Constr. Build. Mater. 2022, 326, 126792. [Google Scholar] [CrossRef]
- Haibara, Y.; Ge, H.; Sun, J. Materials optimization and service performance evaluation of a novel steel bridge deck pavement structure: A case study. Appl. Sci. 2023, 13, 5930. [Google Scholar] [CrossRef]
- Inoue, T. Reaction-induced phase decomposition in polymer blends. Prog. Polym. Sci. 1995, 20, 119–153. [Google Scholar] [CrossRef]
- Wu, C.; Yang, H.; Cui, X.; Cai, J.; Yuan, Z.; Zhang, J.; Xie, H. Thermo-mechanical properties and phase-separated morphology of warm-mix epoxy asphalt binders with different epoxy resin concentrations. Molecules 2024, 29, 3251. [Google Scholar] [CrossRef]
- Liu, M.; Hu, J.; Sun, J.; Li, Y.; Luo, S. Characterization of roadway epoxy asphalt binder with different epoxy contents. J. Mater. Civ. Eng. 2023, 35, 04023144. [Google Scholar] [CrossRef]
- Haibara, Y.; Ge, H. Effects of epoxy resin system and ingredient content on the properties of asphalt and its mixtures. J. Mater. Civ. Eng. 2025, 37, 04024440. [Google Scholar] [CrossRef]
- Jiang, X.; Huang, W.; Luo, S.; Kong, W.; Du, K. Investigation of the performance evolution mechanism of epoxy asphalt binder and mixture: Influence of curing agent and epoxy content. Constr. Build. Mater. 2025, 472, 140779. [Google Scholar] [CrossRef]
- Liu, Y.; Xi, Z.; Cai, J.; Xie, H. Laboratory investigation of the properties of epoxy asphalt rubber (EAR). Mater. Struct. 2017, 50, 219. [Google Scholar] [CrossRef]
- Zhang, F.; Yao, P.; Guo, X.; Zhang, L.; Huang, K. Study on the performance of epoxy asphalt with different matrix asphalt contents. J. Mater. Civ. Eng. 2023, 35, 04023339. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, Y.; Sun, Y.; Xu, W.; Yu, D.; Xie, H.; Cheng, R. Performance of hot mix epoxy asphalt binder and its concrete. Mater. Struct. 2015, 48, 3825–3835. [Google Scholar] [CrossRef]
- Li, X.; Luo, C.; Wang, S.; Long, X.; Wang, Y.; Li, J.; He, M. Study of low-content epoxy asphalt mixture applied to the road. Buildings 2024, 14, 443. [Google Scholar] [CrossRef]
- Li, K.; Xie, J.; Liu, Y.; Pan, Y.; Tan, Y. Development and characterization of anti-cracking epoxy asphalt for steel deck pavement. Constr. Build. Mater. 2024, 438, 137047. [Google Scholar] [CrossRef]
- Luo, S.; Qian, Z.-D.; Xue, Y.-C. Performance evaluation of open-graded epoxy asphalt concrete with two nominal maximum aggregate sizes. J. Cent. South Univ. 2015, 22, 4483–4489. [Google Scholar] [CrossRef]
- Xie, H.; Li, C.; Wang, Q. Thermosetting polymer modified asphalts: Current status and challenges. Polym. Rev. 2024, 64, 690–759. [Google Scholar] [CrossRef]
- Zeng, G.; Xu, W.; Huang, H.; Zhang, X. Study on the microstructure and properties of hot-mix epoxy asphalt. Int. J. Pavement Res. Technol. 2019, 12, 147–153. [Google Scholar] [CrossRef]
- Tian, J.; Luo, S.; Lu, Q.; Liu, S. Effects of epoxy resin content on properties of hot mixing epoxy asphalt binders. J. Mater. Civ. Eng. 2022, 34, 04022145. [Google Scholar] [CrossRef]
- Emtiaz, M.; Imtiyaz, M.N.; Majumder, M.; Idris, I.I.; Mazumder, R.; Rahaman, M.M. A comprehensive literature review on polymer-modified asphalt binder. CivilEng 2023, 4, 901–932. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Jiang, Y.; Li, C.; Xi, Z.; Cai, J.; Xie, H. Investigation of secondary phase separation and mechanical properties of epoxy SBS-modified asphalts. Constr. Build. Mater. 2018, 165, 163–172. [Google Scholar] [CrossRef]
- Luo, S.; Sun, J.; Hu, J.; Liu, S. Performance evolution mechanism of hot-mix epoxy asphalt binder and mixture based on component characteristics. J. Mater. Civ. Eng. 2022, 34, 04022235. [Google Scholar] [CrossRef]
- Zhang, H.; Zepeng, M.; Jun, Z.; Zhen, Z.; Sakineh, C.; Abidi, N. Melt-processed bi-continuous phase polymer composite with selective filler localization: A mini review. Polym. Rev. 2024, 64, 1098–1135. [Google Scholar] [CrossRef]
- Jinnai, H.; Kajihara, T.; Watashiba, H.; Nishikawa, Y.; Spontak, R.J. Interfacial and topological measurements of bicontinuous polymer morphologies. Phys. Rev. E 2001, 64, 010803. [Google Scholar] [CrossRef]
- Ajitha, A.R.; Thomas, S. Introduction: Polymer blends, thermodynamics, miscibility, phase separation, and compatibilization. In Compatibilization of Polymer Blends; Ajitha, A.R., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–29. [Google Scholar]
- Pötschke, P.; Paul, D.R. Formation of co-continuous structures in melt-mixed immiscible polymer blends. J. Macromol. Sci. Part C Polym. Rev. 2003, 43, 87–141. [Google Scholar] [CrossRef]
- Lyngaae-Jørgensen, J.; Rasmussen, K.L.; Chtcherbakova, E.A.; Utracki, L.A. Flow induced deformation of dual-phase continuity in polymer blends and alloys. Part I. Polym. Eng. Sci. 1999, 39, 1060–1071. [Google Scholar] [CrossRef]
- Utracki, L.A.; Mukhopadhyay, P.; Gupta, R.K. Polymer Blends: Introduction. In Polymer Blends Handbook, 2nd ed.; Utracki, L.A., Wilkie, C.A., Eds.; Springer: Dordrecht, Germany, 2014; pp. 3–170. [Google Scholar]
- Willemse, R.C.; Posthuma de Boer, A.; van Dam, J.; Gotsis, A.D. Co-continuous morphologies in polymer blends: A new model. Polymer 1998, 39, 5879–5887. [Google Scholar] [CrossRef]
- Ilyina, S.O.; Gorbunova, I.Y.; Yadykova, A.Y.; Vlasova, A.V.; Kerber, M.L.; Ilyin, S.O. Naphthalene-containing epoxy resin: Phase structure, rheology, and thermophysical properties. Polymers 2024, 16, 3264. [Google Scholar] [CrossRef]
- Sun, D.; Lu, W. Phase morphology of polymer modified road asphalt. Pet. Sci. Technol. 2006, 24, 839–849. [Google Scholar] [CrossRef]
- Chen, J.-S.; Wang, T.J.; Lee, C.-T. Evaluation of a highly-modified asphalt binder for field performance. Constr. Build. Mater. 2018, 171, 539–545. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Liu, F.; He, H.; Zhang, H.; Yu, W.; Xu, J. Evolution of phase morphology and rheological behavior during heat treating for modified bitumen with SBS of different molecular architecture. Fuel 2025, 393, 134964. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Ren, S.; Jing, R.; Lin, P.; Apostolidis, P.; Erkens, S.; Wang, X.; Scarpas, T. Effect of bio-oil on rheology and chemistry of organosolv lignin–modified bitumen. J. Mater. Civ. Eng. 2022, 34, 04022009. [Google Scholar] [CrossRef]
- Chen, J.-S.; Liao, M.-C.; Shiah, M.-S. Asphalt modified by styrene-butadiene-styrene triblock copolymer: Morphology and model. J. Mater. Civ. Eng. 2002, 14, 224–229. [Google Scholar] [CrossRef]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef]
- Zhang, B.; Xi, M.; Zhang, D.; Zhang, H.; Zhang, B. The effect of styrene–butadiene–rubber/montmorillonite modification on the characteristics and properties of asphalt. Constr. Build. Mater. 2009, 23, 3112–3117. [Google Scholar] [CrossRef]
- Brûlé, B. Polymer-modified asphalt cements used in the road construction industry: Basic principles. Transp. Res. Rec. 1996, 1535, 48–53. [Google Scholar] [CrossRef]
- Zhang, S.; Kan, S.; Wen, F.; Sun, J.; Zhang, Z.; Tian, P.; Yang, Y. Micro-morphology of the epoxy asphalt cured with a bio-based curing agent and the performance of the asphalt mixture. Int. J. Adhes. Adhes. 2025, 139, 103980. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Min, Z.; Zhang, L. Investigation on the preparation and performances of epoxy-modified asphalt binder and its mixtures. Materials 2024, 17, 2539. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Li, J.; Yang, H.; Wang, Y.; Hu, H. Optimizing epoxy asphalt tack coat formulations for improved adhesion and working performance of ultrathin wearing course. J. Adhes. Sci. Technol. 2024, 1–26. [Google Scholar] [CrossRef]
- Zhao, R.; Jing, F.; Wang, R.; Cai, J.; Zhang, J.; Wang, Q.; Xie, H. Influence of oligomer content on viscosity and dynamic mechanical properties of epoxy asphalt binders. Constr. Build. Mater. 2022, 338, 127524. [Google Scholar] [CrossRef]
- GB/T 30598; General Specifications of Epoxy Asphalt Materials for Paving Roads and Bridges. The Standardization Administration of the People’s Republic of China: Beijing, China, 2014.
- Liu, Y. Polymerization-induced phase separation and resulting thermomechanical properties of thermosetting/reactive nonlinear polymer blends: A review. J. Appl. Polym. Sci. 2013, 127, 3279–3292. [Google Scholar] [CrossRef]
- Tercjak, A. Phase separation and morphology development in thermoplastic-modified thermosets. In Thermosets, 2nd ed.; Guo, Q., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 147–171. [Google Scholar]
- Garti, N.; Benichou, A. Double emulsions for controlled-release applications: Progress and trends. In Encyclopedic Handbook of Emulsion Technology; Sjöblom, J., Ed.; CRC Press: New York, NY, USA, 2001; pp. 377–407. [Google Scholar]
- Macosko, C.W. Morphology development and control in immiscible polymer blends. Macromol. Symp. 2000, 149, 171–184. [Google Scholar] [CrossRef]
- He, H.-L.; Liang, F.-X. Interfacial engineering of polymer blend with Janus particle as compatibilizer. Chin. J. Polym. Sci. 2023, 41, 500–515. [Google Scholar] [CrossRef]
- Yang, H.; Cao, S.; Cui, X.; Xi, Z.; Cai, J.; Yuan, Z.; Zhang, J.; Xie, H. Viscosity, morphology, and thermomechanical performance of attapulgite-reinforced bio-based polyurethane asphalt composites. Polymers 2025, 17, 2045. [Google Scholar] [CrossRef]
- Yang, H.; Cao, S.; Wu, C.; Xi, Z.; Cai, J.; Yuan, Z.; Zhang, J.; Xie, H. Bio-based polyurethane asphalt binder with continuous polymer-phase structure: Critical role of isocyanate index in governing thermomechanical performance and phase morphology. Molecules 2025, 30, 2466. [Google Scholar] [CrossRef] [PubMed]
- Aravind, I.; Ahn, K.H.; Ranganathaiah, C.; Thomas, S. Rheology, morphology, mechanical properties and free volume of poly(trimethylene terephthalate)/polycarbonate blends. Ind. Eng. Chem. Res. 2009, 48, 9942–9951. [Google Scholar] [CrossRef]
- Chandran, N.; Chandran, S.; Maria, H.J.; Thomas, S. Compatibilizing action and localization of clay in a polypropylene/natural rubber (PP/NR) blend. RSC Adv. 2015, 5, 86265–86273. [Google Scholar] [CrossRef]
- Tsuji, Y. Molecular understanding of the distinction between adhesive failure and cohesive failure in adhesive bonds with epoxy resin adhesives. Langmuir 2024, 40, 7479–7491. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, Z. Nanostructured epoxy adhesives: A review. Prog. Org. Coat. 2019, 135, 449–453. [Google Scholar] [CrossRef]
- Kagalkar, N.; Srinivas, S.; Dhananjaya, B.R. Determination of shear strength and failure type of the sealant using lap shear test. Mater. Today Proc. 2018, 5, 2752–2758. [Google Scholar] [CrossRef]
- ASTM D5-20; Standard Test Method for Penetration of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D113; Standard Test Method for Ductility of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D36; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM D4402; Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM D1808; Standard Test Method for Determination of Density and Relative Density of Asphalt, Semi-Solid Bituminous Materials, and Soft-Tar Pitch by Use of a Digital Density Meter (U-Tube). ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D4124; Standard Test Method for Separation of Asphalt into Four Fractions. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D638; Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D4541; Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D1002; Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal). ASTM International: West Conshohocken, PA, USA, 2019.
ER (vol.%) | 41 | 42 | 43 | 44 | 45 | 46 | 100 |
---|---|---|---|---|---|---|---|
Time to reach 5Pa·s (min) | 19.1 | 18.9 | 18.8 | 18.0 | 17.1 | 17.1 | 16.1 |
Time (min) | Dn (μm) | Dw (μm) | PDI | a (μm−1) | IPD (μm) |
---|---|---|---|---|---|
3 | 65.7 (±7.6) | 77.7 (±6.2) | 1.18 | 0.038 | 70.2 |
5 | 89.6 (±5.6) | 102.2 (±5.8) | 1.14 | 0.028 | 96.1 |
10 | 151.5 (±16.3) | 178.3 (±15.7) | 1.18 | 0.016 | 163.2 |
20 | 204.1 (±5.8) | 240.6 (±18.1) | 1.18 | 0.012 | 220.2 |
Time (min) | Dn (μm) | Dw (μm) | PDI | a (μm−1) | IPD (μm) |
---|---|---|---|---|---|
3 | 31.4 (±0.4) | 52.6 (±1.0) | 1.18 | 0.088 | 31.8 |
5 | 52.7 (±2.4) | 77.4 (±1.8) | 1.14 | 0.053 | 54.0 |
10 | 52.9 (±3.7) | 71.1 (±7.6) | 1.18 | 0.052 | 54.2 |
20 | 101.7 (±8.4) | 132.2 (±2.2) | 1.30 | 0.027 | 105.1 |
Sample | Dn (μm) | Dw (μm) | PDI | A (μm−1) | IPD (μm) |
---|---|---|---|---|---|
EABC41 | 231.4 (±29.1) | 250.2 (±20.6) | 1.08 | 0.011 | 250.0 |
EABC46 | 101.1 (±3.1) | 128.5 (±13.4) | 1.27 | 0.027 | 104.5 |
Properties | Standard | Value |
---|---|---|
Physical properties | ||
Penetration (25 °C, 0.1 mm) | ASTM D5 [64] | 73.0 |
Ductility (10 °C, cm) | ASTM D113 [65] | 15.8 |
Softening point (°C) | ASTM D36 [66] | 48.2 |
Viscosity (60 °C, Pa·s) | ASTM D4402 [67] | 173.0 |
Density (25 °C, g/cm3) | ASTM D8188 [68] | 1.01 |
Chemical components | ||
Saturates (%) | ASTM D4124 [69] | 20.0 |
Aromatics (%) | 31.5 | |
Resins (%) | 37.1 | |
Asphaltenes (%) | 6.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Yang, H.; Cui, X.; Xi, Z.; Cai, J.; Zhang, J.; Xie, H. Dispersed and Co-Continuous Morphologies of Epoxy Asphalt Bond Coats and Their Effects on Mechanical Performance. Molecules 2025, 30, 3513. https://doi.org/10.3390/molecules30173513
Cao S, Yang H, Cui X, Xi Z, Cai J, Zhang J, Xie H. Dispersed and Co-Continuous Morphologies of Epoxy Asphalt Bond Coats and Their Effects on Mechanical Performance. Molecules. 2025; 30(17):3513. https://doi.org/10.3390/molecules30173513
Chicago/Turabian StyleCao, Suzhou, Haocheng Yang, Xinpeng Cui, Zhonghua Xi, Jun Cai, Junsheng Zhang, and Hongfeng Xie. 2025. "Dispersed and Co-Continuous Morphologies of Epoxy Asphalt Bond Coats and Their Effects on Mechanical Performance" Molecules 30, no. 17: 3513. https://doi.org/10.3390/molecules30173513
APA StyleCao, S., Yang, H., Cui, X., Xi, Z., Cai, J., Zhang, J., & Xie, H. (2025). Dispersed and Co-Continuous Morphologies of Epoxy Asphalt Bond Coats and Their Effects on Mechanical Performance. Molecules, 30(17), 3513. https://doi.org/10.3390/molecules30173513