The Formation Process of Coal-Bearing Strata Normal Faults Based on Physical Simulation Experiments: A New Experimental Approach
Abstract
1. Introduction
2. Experiment Design and Research Methods
2.1. Experimental Equipment and Parameters
2.2. Normal Fault Formation Mechanism
2.3. Physical Model Materials and Proportions
2.4. Data Collection and Analysis
3. The Movement Laws of Rock Layers During the Development of Normal Faults
3.1. The Development Process of Normal Faults, the Movement Characteristics of Rock Layers, and Fracture Features
3.2. Characteristics of Rock Mass Displacement Caused by Faults
3.2.1. Evolution of Displacement Field at Fault Formation
3.2.2. The Absolute Value Variation Characteristics of Rock Layer Displacement After the Formation of a Normal Fault
3.3. The Deformation Evolution Law of the Fault Plane During the Formation Process of a Normal Fault
3.4. The Influence of Tectonic Stress During the Formation of Normal Faults
3.4.1. Vertical Stress Distribution of Rock Mass
3.4.2. Distribution of Horizontal Stress in Rock Mass
3.4.3. The Destruction and Change Patterns of the Roof of the Upper Coal Seam
3.4.4. The Stress Variation Pattern of the Overlying Coal Seam Roof
4. Discussion
4.1. The Mechanical Effects of the Fault Plane and the Mechanism of Fault Formation
4.2. Fault Activation and Energy Release
4.3. Friction and Fault Sliding Mechanism
4.4. Stability of Faults and the Equilibrium State of Sliding
5. Conclusions
- (1)
- The formation of normal faults in coal-bearing strata progresses through five stages: compaction, initiation, propagation, slip, and stabilization. Displacement and strain evolve from micro-cracks to macroscopic fault structures, with fault slip driven by localized stress concentration.
- (2)
- Tectonic stress significantly influences stress redistribution during fault evolution, especially in the slip stage, causing pronounced spatial heterogeneity and structural deformation, particularly in coal seam roofs.
- (3)
- Structural planes control fault geometry and slip behavior, guiding crack initiation and slip paths. The slip process conforms to the Mohr–Coulomb criterion, indicating a clear mechanical mechanism underlying fault activation.
- (4)
- The multi-stage evolution of stress fields observed in physical simulation provides quantitative insights into fault-induced damage. These findings contribute to stress prediction and disaster mitigation strategies in fault zones during deep coal mining.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, H.; Gao, M.; Zhang, R.; Peng, G.; Wang, W.; Li, A. Study on the Mechanical Properties and Mechanical Response of Coal Mining at 1000 m or Deeper. Rock Mech. Rock Eng. 2019, 52, 1475–1490. [Google Scholar] [CrossRef]
- Huang, Q.; Han, P.; Hattori, K.; Ren, H. Electromagnetic signals associated with earthquakes: A review of observations, data processing, and mechanisms in China. In Seismoelectric Exploration: Theory, Experiments, and Applications; American Geophysical Union: Washington, DC, USA, 2020; pp. 415–436. [Google Scholar] [CrossRef]
- Cox, S.J.D.; Scholz, C.H. On the formation and growth of faults: An experimental study. J. Struct. Geol. 1988, 10, 413–430. [Google Scholar] [CrossRef]
- Hui, G.; Chen, Z.; Schultz, R.; Chen, S.; Song, Z.; Zhang, Z.; Song, Y.; Wang, H.; Wang, M.; Gu, F. Intricate unconventional fracture networks provide fluid diffusion pathways to reactivate pre-existing faults in unconventional reservoirs. Energy 2023, 282, 128803. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Ren, T. A theoretical and experimental study of stress–strain, creep and failure mechanisms of intact coal. Rock Mech. Rock Eng. 2020, 53, 5641–5658. [Google Scholar] [CrossRef]
- Li, W.; Ren, T.; Busch, A.; den Hartog, S.A.M.; Cheng, Y.; Qiao, W.; Bin, L. Architecture stress state and permeability of a fault zone in Jiulishan coal mine, China: Implication for coal and gas outbursts. Int. J. Coal Geol. 2018, 198, 1–13. [Google Scholar] [CrossRef]
- Li, X.; Gu, H.; Tao, M.; Peng, K.; Cao, W.; Li, Q. Failure characteristics and meso-deterioration mechanism of pre-stressed coal subjected to different dynamic loads. Theor. Appl. Fract. Mech. 2021, 115, 103061. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, X.; Zhang, Z.; Zhang, H.; Gu, Z.; Zhang, S.; Yan, G. Compound disaster characteristics of rock burst and coal spontaneous combustion in island mining face: A case study. Case Stud. Therm. Eng. 2024, 63, 105240. [Google Scholar] [CrossRef]
- Niu, H.-Y.; Zhu, H.-L.; Wang, G.-D.; Pan, H.-Y.; Sun, S.-W.; Yu, X.-D.; Yang, X.; He, J.-X. A Review of the Mechanisms and Control Technologies of Coal and Gas Outbursts: Recent Advances and Future Perspectives. Energy Fuels 2024, 38, 23230–23245. [Google Scholar] [CrossRef]
- Dou, L.; Yang, K.; Liu, W.; Chi, X.; Wen, Z. Mining-Induced Stress-Fissure Field Evolution and the Disaster-Causing Mechanism in the High Gas Working Face of the Deep Hard Strata. Geofluids 2020, 2020, 8849666. [Google Scholar] [CrossRef]
- Elliott, J.R.; Walters, R.J.; Wright, T.J. The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat. Commun. 2016, 7, 13844. [Google Scholar] [CrossRef]
- Ponomarev, A.V.; Zavyalov, A.D.; Smirnov, V.B.; Lockner, D.A. Physical modeling of the formation and evolution of seismically active fault zones. Tectonophysics 1997, 277, 57–81. [Google Scholar] [CrossRef]
- Baroň, I.; Koktavý, P.; Trčka, T.; Rowberry, M.; Stemberk, J.; Balek, J.; Plan, L.; Melichar, R.; Diendorfer, G.; Macků, R.; et al. Differentiating between artificial and natural sources of electromagnetic radiation at a seismogenic fault. Eng. Geol. 2022, 311, 106912. [Google Scholar] [CrossRef]
- Zeigarnik, V.A.; Bogomolov, L.M.; Novikov, V.A. Electromagnetic Earthquake Triggering: Field Observations, Laboratory Experiments, and Physical Mechanisms—A Review. Izv. Phys. Solid Earth 2022, 58, 30–58. [Google Scholar] [CrossRef]
- De Santis, F.; Renaud, V.; Gunzburger, Y.; Kinscher, J.; Bernard, P.; Contrucci, I. In situ monitoring and 3D geomechanical numerical modelling to evaluate seismic and aseismic rock deformation in response to deep mining. Int. J. Rock Mech. Min. Sci. 2020, 129, 104273. [Google Scholar] [CrossRef]
- Lee, F.-Y.; Tan, E.; Chang, E.T. Stress evolution of fault-and-thrust belts in 2D numerical mechanical models. Front. Earth Sci. 2024, 12, 1415139. [Google Scholar] [CrossRef]
- Wang, G.; Liu, W.; Jiang, F.; He, P.; Huang, N.; Xiao, Z.; Zheng, C. Shear damage mechanisms of jointed rock mass: A macroscopic and mesoscopic study. Sci. Rep. 2024, 14, 8619. [Google Scholar] [CrossRef] [PubMed]
- Sibson, R.H. Earthquakes and rock deformation in crustal fault zones. Annu. Rev. Earth Planet. Sci. 1986, 14, 149. [Google Scholar] [CrossRef]
- Park, S.K.; Johnston, M.J.S.; Madden, T.R.; Morgan, F.D.; Morrison, H.F. Electromagnetic precursors to earthquakes in the ULF band: A review of observations and mechanisms. Rev. Geophys. 1993, 31, 117–132. [Google Scholar] [CrossRef]
- Conti, L.; Picozza, P.; Sotgiu, A. A critical review of ground based observations of earthquake precursors. Front. Earth Sci. 2021, 9, 676766. [Google Scholar] [CrossRef]
- Aben, F.M.; Doan, M.-L.; Mitchell, T.M.; Toussaint, R.; Reuschlé, T.; Fondriest, M.; Gratier, J.-P.; Renard, F. Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones. J. Geophys. Res. Solid Earth 2016, 121, 2338–2360. [Google Scholar] [CrossRef]
- Hosseini, A.; Mostofinejad, D.; Hajialilue-Bonab, M. Displacement and strain field measurement in steel and RC beams using particle image velocimetry. J. Eng. Mech. 2014, 140, 04014086. [Google Scholar] [CrossRef]
- Wang, H.; Shi, R.; Lu, C.; Jiang, Y.; Deng, D.; Zhang, D. Investigation of sudden faults instability induced by coal mining. Saf. Sci. 2019, 115, 256–264. [Google Scholar] [CrossRef]
- Kong, P.; Jiang, L.; Shu, J.; Wang, L. Mining stress distribution and fault-slip behavior: A case study of fault-influenced longwall coal mining. Energies 2019, 12, 2494. [Google Scholar] [CrossRef]
- Wang, K. Coupling of tectonic loading and earthquake fault slips at subduction zones. Pure Appl. Geophys. 1995, 145, 537–559. [Google Scholar] [CrossRef]
- Wallace, L.M.; Ellis, S. Upper plate tectonic stress state may influence interseismic coupling on subduction megathrusts. Geology 2012, 40, 895–898. [Google Scholar] [CrossRef]
- Deyong, G.; Jianguo, Z.; Guochuan, Z. Controlling effect of tectonic stress field on coal and gas outburst. J. China Coal Soc. 2023, 48, 3076–3090. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, P.; Wang, P.; Liao, Z.; Li, H.; Zhou, Z. On the Mechanism of Stress Superposition Inducing Outburst Under the Influence of Blind Fault Instability. Geotech. Geol. Eng. 2022, 40, 3973–3984. [Google Scholar] [CrossRef]
- Lin, J.; Zuo, Y.; Zhang, K.; Sun, W.; Jin, B.; Li, T.; Chen, Q.-G. Coal and gas outburst affected by law of small fault instability during working face advance. Geofluids 2020, 2020, 8880091. [Google Scholar] [CrossRef]
- Wu, W. A review of unloading-induced fault instability. Undergr. Space 2021, 6, 528–538. [Google Scholar] [CrossRef]
- Simpson, R.W. Quantifying Anderson’s fault types. J. Geophys. Res. Solid Earth 1997, 102, 17909–17919. [Google Scholar] [CrossRef]
- Yin, Z.M.; Ranalli, G. Critical stress difference, fault orientation and slip direction in anisotropic rocks under non-Andersonian stress systems. J. Struct. Geol. 1992, 14, 237–244. [Google Scholar] [CrossRef]
- An, Y. Origin of regional, rooted low-angle normal faults: A mechanical model and its tectonic implications. Tectonics 1989, 8, 469–482. [Google Scholar] [CrossRef]
- Neng, Y.; Li, Y.; Qi, J.; Ma, X.; Zuo, L.; Chen, P. Deformation styles and multi-stage evolution history of a large intraplate strike-slip fault system in a Paleozoic superimposed basin: A case study from the Tarim Basin, NW China. Front. Earth Sci. 2022, 10, 837354. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, L.; Cang, T.; Zhou, X.; Wang, B. Simulation of a Multi-Stage Stress Field and Regional Prediction of Structural Fractures in the Tucheng Syncline, Western Guizhou, China. Geosciences 2025, 15, 132. [Google Scholar] [CrossRef]
- Hopp, C.; Guglielmi, Y.; Rinaldi, A.P.; Soom, F.; Wenning, Q.; Cook, P.; Robertson, M.; Kakurina, M.; Zappone, A. The effect of fault architecture on slip behavior in shale revealed by distributed fiber optic strain sensing. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022432. [Google Scholar] [CrossRef]
- Gutscher, M.-A.; Royer, J.-Y.; Graindorge, D.; Murphy, S.; Klingelhoefer, F.; Aiken, C.; Cattaneo, A.; Barreca, G.; Quetel, L.; Riccobene, G. Fiber optic monitoring of active faults at the seafloor: I the FOCUS project. Photoniques 2019, 32–37. [Google Scholar] [CrossRef]
- Moore, J.R.; Gischig, V.; Button, E.; Loew, S. Rockslide deformation monitoring with fiber optic strain sensors. Nat. Hazards Earth Syst. Sci. 2010, 10, 191–201. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, L.; Wang, S. A physical model study of surrounding rock failure near a fault under the influence of footwall coal mining. Int. J. Coal Sci. Technol. 2021, 8, 626–640. [Google Scholar] [CrossRef]
- Tian, S.; Qiao, Y.; Zhang, Y.; Hu, D.; Zhou, H.; Iqbal, S.M. Analysis of Fault Influence on Geostress Perturbation Based on Fault Model Test. Processes 2024, 12, 1240. [Google Scholar] [CrossRef]
- Xu, X.; Jing, H.; Zhao, Z.; Yin, Q.; Li, J.; Li, H. Physical model experiment research on evolution process of water inrush hazard in a deep-buried tunnel containing the filling fault. Environ. Earth Sci. 2022, 81, 488. [Google Scholar] [CrossRef]
- Wang, H.; Shi, R.; Song, J.; Tian, Z.; Deng, D.; Jiang, Y. Mechanical model for the calculation of stress distribution on fault surface during the underground coal seam mining. Int. J. Rock Mech. Min. Sci. 2021, 144, 104765. [Google Scholar] [CrossRef]
- Feng, W.; Niu, S.; Qiao, C.; Zou, D. Nonlinear constitutive models of rock structural plane and their applications. J. Rock Mech. Geotech. Eng. 2024, 16, 790–806. [Google Scholar] [CrossRef]
- Li, Q.; Jia, H.; Yang, G.; Yang, L.; Yang, C.; Liu, X. Compressive failure response and thermal melting softening effect of ice-filled fractured rock mass. Chin. J. Rock Mech. Eng. 2024, 43, 103–119. [Google Scholar] [CrossRef]
Name of Rock Stratum | Simulation Thickness (cm) | Density (g/cm3) | Model Strength (KPa) | Simulated Material Quantity (kg) | Proportion Number | |||
---|---|---|---|---|---|---|---|---|
Sand | Calcium Carbonate | Gypsum | Water | |||||
mudstone | 3.3 | 1.5 | 115.0 | 21.38 | 1.19 | 1.19 | 2.376 | 955 |
siltite | 3 | 1.6 | 167.0 | 20.97 | 1.31 | 1.31 | 2.358 | 855 |
gritstone | 1.9 | 1.6 | 244.5 | 7.35 | 0.84 | 0.21 | 0.838 | 782 |
sandy mudstone | 4.1 | 1.6 | 56.7 | 12.77 | 0.92 | 0.62 | 1.32 | 964 |
siltite | 2.9 | 1.6 | 167.0 | 20.27 | 1.265 | 1.265 | 2.28 | 855 |
mud rock | 3.7 | 1.5 | 115.0 | 24 | 1.33 | 1.33 | 2.66 | 955 |
fine sandstone | 2.5 | 1.6 | 202.0 | 16.8 | 1.69 | 0.72 | 1.92 | 773 |
mud rock | 4.5 | 1.5 | 115.0 | 29.16 | 1.62 | 1.62 | 3.24 | 955 |
siltite | 3.2 | 1.6 | 167.0 | 22.37 | 1.4 | 1.4 | 2.515 | 855 |
sandy mudstone | 2.4 | 1.6 | 56.7 | 7.48 | 0.54 | 0.36 | 0.768 | 964 |
mud rock | 1.1 | 1.5 | 115.0 | 7.13 | 0.4 | 0.4 | 0.792 | 955 |
gritstone | 3 | 1.6 | 244.5 | 11.34 | 1.32 | 0.33 | 1.323 | 782 |
sandy mudstone | 1.7 | 1.6 | 56.7 | 5.3 | 0.38 | 0.255 | 0.544 | 964 |
fine sandstone | 2.5 | 1.6 | 202.0 | 16.8 | 1.69 | 0.72 | 1.922 | 773 |
mud rock | 1.8 | 1.5 | 115.0 | 11.66 | 0.65 | 0.65 | 1.296 | 955 |
siltite | 1.2 | 1.6 | 167.0 | 8.39 | 0.523 | 0.523 | 0.943 | 855 |
coal | 3.8 | 1.5 | 24.5 | 35.28 | 2.64 | 1.77 | 3.97 | 864 |
fine sandstone | 2 | 1.6 | 202.0 | 13.44 | 1.35 | 0.575 | 1.54 | 773 |
sandy mudstone | 3.5 | 1.6 | 56.7 | 10.9 | 0.788 | 0.525 | 1.12 | 964 |
mud rock | 2.7 | 1.5 | 115.0 | 17.5 | 0.97 | 0.97 | 1.944 | 955 |
sandy mudstone | 5.2 | 1.6 | 56.7 | 16.12 | 1.17 | 0.78 | 1.664 | 964 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Z.; Wang, J.; Dong, W.; Ma, C.; Chen, B. The Formation Process of Coal-Bearing Strata Normal Faults Based on Physical Simulation Experiments: A New Experimental Approach. Processes 2025, 13, 2799. https://doi.org/10.3390/pr13092799
Xia Z, Wang J, Dong W, Ma C, Chen B. The Formation Process of Coal-Bearing Strata Normal Faults Based on Physical Simulation Experiments: A New Experimental Approach. Processes. 2025; 13(9):2799. https://doi.org/10.3390/pr13092799
Chicago/Turabian StyleXia, Zhiguo, Junbo Wang, Wenyu Dong, Chenglong Ma, and Bing Chen. 2025. "The Formation Process of Coal-Bearing Strata Normal Faults Based on Physical Simulation Experiments: A New Experimental Approach" Processes 13, no. 9: 2799. https://doi.org/10.3390/pr13092799
APA StyleXia, Z., Wang, J., Dong, W., Ma, C., & Chen, B. (2025). The Formation Process of Coal-Bearing Strata Normal Faults Based on Physical Simulation Experiments: A New Experimental Approach. Processes, 13(9), 2799. https://doi.org/10.3390/pr13092799