Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (455)

Search Parameters:
Keywords = non-polar solvents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 4006 KiB  
Review
Solvent-Driven Electroless Nickel Coatings on Polymers: Interface Engineering, Microstructure, and Applications
by Chenyao Wang, Heng Zhai, David Lewis, Hugh Gong, Xuqing Liu and Anura Fernando
Coatings 2025, 15(8), 898; https://doi.org/10.3390/coatings15080898 - 1 Aug 2025
Viewed by 339
Abstract
Electroless nickel deposition (ELD) is an autocatalytic technique extensively used to impart conductive, protective, and mechanical functionalities to inherently non-conductive synthetic substrates. This review systematically explores the fundamental mechanisms of electroless nickel deposition, emphasising recent advancements in surface activation methods, solvent systems, and [...] Read more.
Electroless nickel deposition (ELD) is an autocatalytic technique extensively used to impart conductive, protective, and mechanical functionalities to inherently non-conductive synthetic substrates. This review systematically explores the fundamental mechanisms of electroless nickel deposition, emphasising recent advancements in surface activation methods, solvent systems, and microstructural control. Critical analysis reveals that bio-inspired activation methods, such as polydopamine (PDA) and tannic acid (TA), significantly enhance coating adhesion and durability compared to traditional chemical etching and plasma treatments. Additionally, solvent engineering, particularly using polar aprotic solvents like dimethyl sulfoxide (DMSO) and ethanol-based systems, emerges as a key strategy for achieving uniform, dense, and flexible coatings, overcoming limitations associated with traditional aqueous baths. The review also highlights that microstructural tailoring, specifically the development of amorphous-nanocrystalline hybrid nickel coatings, effectively balances mechanical robustness (hardness exceeding 800 HV), flexibility, and corrosion resistance, making these coatings particularly suitable for wearable electronic textiles and smart materials. Furthermore, commercial examples demonstrate the real-world applicability and market readiness of nickel-coated synthetic fibres. Despite significant progress, persistent challenges remain, including reliable long-term adhesion, internal stress management, and environmental sustainability. Future research should prioritise environmentally benign plating baths, standardised surface activation protocols, and scalable deposition processes to fully realise the industrial potential of electroless nickel coatings. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

20 pages, 1716 KiB  
Article
Enhancing Antioxidants Performance of Ceria Nanoparticles in Biological Environment via Surface Engineering with o-Quinone Functionalities
by Pierluigi Lasala, Tiziana Latronico, Umberto Mattia, Rosa Maria Matteucci, Antonella Milella, Matteo Grattieri, Grazia Maria Liuzzi, Giuseppe Petrosillo, Annamaria Panniello, Nicoletta Depalo, Maria Lucia Curri and Elisabetta Fanizza
Antioxidants 2025, 14(8), 916; https://doi.org/10.3390/antiox14080916 - 25 Jul 2025
Viewed by 383
Abstract
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized [...] Read more.
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized in a non-polar solvent and phase-transfer to an aqueous environment through ligand-exchange reactions using citric acid (CeO2−x@Cit) and post-treatment with dopamine hydrochloride (CeO2−x@Dopa). The concept behind this work is to enhance via surface engineering the intrinsic antioxidant properties of CeO2−x NPs. For this purpose, thanks to electron transfer reactions between dopamine and CeO2−x, the CeO2−x@Dopa was obtained, characterized by increased surface Ce3+ sites and surface functionalized with polydopamine bearing o-quinone structures as demonstrated by complementary spectroscopic (UV–vis, FT-IR, and XPS) characterizations. To test the antioxidant properties of CeO2−x NPs, the scavenging activity before and after dopamine treatment against artificial radical 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and the ability to reduce the reactive oxygen species in Diencephalic Immortalized Type Neural Cell line 1 were evaluated. CeO2−x@Dopa demonstrated less efficiency in DPPH· scavenging (%radical scavenging activity 13% versus 42% for CeO2−x@Cit before dopamine treatment at 33 μM DPPH· and 0.13 mg/mL loading of NPs), while it markedly reduced intracellular ROS levels (ROS production 35% compared to 66% of CeO2−x@Cit before dopamine treatment with respect to control—p < 0.001 and p < 0.01, respectively). While steric hindrance from the dopamine-derived polymer layer limited direct electron transfer from CeO2−x NP surface to DPPH·, within cells the presence of o-quinone groups contributed with CeO2−x NPs to break the autoxidation chain of organic substrates, enhancing the antioxidant activity. The functionalization of NPs with o-quinone structures represents a valuable approach to increase the inherent antioxidant properties of CeO2−x NPs, enhancing their effectiveness in biological systems by promoting additional redox pathways. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

20 pages, 4049 KiB  
Article
ADMET-Guided Docking and GROMACS Molecular Dynamics of Ziziphus lotus Phytochemicals Uncover Mutation-Agnostic Allosteric Stabilisers of the KRAS Switch-I/II Groove
by Abdessadek Rahimi, Oussama Khibech, Abdessamad Benabbou, Mohammed Merzouki, Mohamed Bouhrim, Mohammed Al-Zharani, Fahd A. Nasr, Ashraf Ahmed Qurtam, Said Abadi, Allal Challioui, Mostafa Mimouni and Maarouf Elbekay
Pharmaceuticals 2025, 18(8), 1110; https://doi.org/10.3390/ph18081110 - 25 Jul 2025
Viewed by 451
Abstract
Background/Objectives: Oncogenic KRAS drives ~30% of solid tumours, yet the only approved G12C-specific drugs benefit ≈ 13% of KRAS-mutant patients, leaving a major clinical gap. We sought mutation-agnostic natural ligands from Ziziphus lotus, whose stereochemically rich phenolics may overcome this limitation by occupying [...] Read more.
Background/Objectives: Oncogenic KRAS drives ~30% of solid tumours, yet the only approved G12C-specific drugs benefit ≈ 13% of KRAS-mutant patients, leaving a major clinical gap. We sought mutation-agnostic natural ligands from Ziziphus lotus, whose stereochemically rich phenolics may overcome this limitation by occupying the SI/II (Switch I/Switch II) groove and locking KRAS in its inactive state. Methods: Phytochemical mining yielded five recurrent phenolics, such as (+)-catechin, hyperin, astragalin, eriodictyol, and the prenylated benzoate amorfrutin A, benchmarked against the covalent inhibitor sotorasib. An in silico cascade combined SI/II docking, multi-parameter ADME/T (Absorption, Distribution, Metabolism, Excretion, and Toxicity) filtering, and 100 ns explicit solvent molecular dynamics simulations. Pharmacokinetic modelling predicted oral absorption, Lipinski compliance, mutagenicity, and acute-toxicity class. Results: Hyperin and astragalin showed the strongest non-covalent affinities (−8.6 kcal mol−1) by forging quadridentate hydrogen-bond networks that bridge the P-loop (Asp30/Glu31) to the α3-loop cleft (Asp119/Ala146). Catechin (−8.5 kcal mol−1) balanced polar anchoring with entropic economy. ADME ranked amorfrutin A the highest for predicted oral absorption (93%) but highlighted lipophilic solubility limits; glycosylated flavonols breached Lipinski rules yet remained non-mutagenic with class-5 acute-toxicity liability. Molecular dynamics trajectories confirmed that hyperin clamps the SI/II groove, suppressing loop RMSF below 0.20 nm and maintaining backbone RMSD stability, whereas astragalin retains pocket residence with transient re-orientation. Conclusions: Hyperin emerges as a low-toxicity, mutation-agnostic scaffold that rigidifies inactive KRAS. Deglycosylation, nano-encapsulation, or soft fluorination could reconcile permeability with durable target engagement, advancing Z. lotus phenolics toward broad-spectrum KRAS therapeutics. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

15 pages, 4358 KiB  
Article
Nickel-Rich Cathodes for Solid-State Lithium Batteries: Comparative Study Between PVA and PIB Binders
by José M. Pinheiro, Beatriz Moura Gomes, Manuela C. Baptista and M. Helena Braga
Molecules 2025, 30(14), 2974; https://doi.org/10.3390/molecules30142974 - 15 Jul 2025
Viewed by 403
Abstract
The growing demand for high-energy, safe, and sustainable lithium-ion batteries has increased interest in nickel-rich cathode materials and solid-state electrolytes. This study presents a scalable wet-processing method for fabricating composite cathodes for all-solid-state batteries. The cathodes studied herein are high-nickel LiNi0.90Mn [...] Read more.
The growing demand for high-energy, safe, and sustainable lithium-ion batteries has increased interest in nickel-rich cathode materials and solid-state electrolytes. This study presents a scalable wet-processing method for fabricating composite cathodes for all-solid-state batteries. The cathodes studied herein are high-nickel LiNi0.90Mn0.05Co0.05O2, NMC955, the sulfide-based electrolyte Li6PS5Cl, and alternative binders—polyvinyl alcohol (PVA) and polyisobutylene (PIB)—dispersed in toluene, a non-polar solvent compatible with the electrolyte. After fabrication, the cathodes were characterized using SEM/EDX, sheet resistance, and Hall effect measurements. Electrochemical tests were additionally performed in all-solid-state battery half-cells comprising the synthesized cathodes, lithium metal anodes, and Li6PS5Cl as the separator and electrolyte. The results show that both PIB and PVA formulations yielded conductive cathodes with stable microstructures and uniform particle distribution. Electrochemical characterization exposed that the PVA-based cathode outperformed the PIB-based counterpart, achieving the theoretical capacity of 192 mAh·g−1 even at 1C, whereas the PIB cathode reached a maximum capacity of 145 mAh.g−1 at C/40. Post-mortem analysis confirmed the structural integrity of the cathodes. These findings demonstrate the viability of NMC955 as a high-capacity cathode material compatible with solid-state systems. Full article
Show Figures

Figure 1

17 pages, 593 KiB  
Review
Patent-Based Technological Overview of Propolis–Cyclodextrin Inclusion Complexes with Pharmaceutical Potential
by Salvana Costa, Ighor Costa Barreto, Nataly Gama, Kathylen Santos, Cleomárcio Miguel de Oliveira, Isabela Silva Costa, Monique Vila Nova, Ruane Santos, Arthur Borges, José Marcos Teixeira de Alencar Filho and Ticiano Gomes do Nascimento
Pharmaceutics 2025, 17(7), 898; https://doi.org/10.3390/pharmaceutics17070898 - 11 Jul 2025
Viewed by 458
Abstract
Background/objectives: Propolis, known for its medicinal properties, faces challenges in pharmaceutical applications due to its low aqueous solubility, attributed to its resinous and hydrophobic nature. This limits oral administration, reducing its bioavailability and pharmacological activities. To overcome these barriers, cyclodextrins (CDs), cyclic oligosaccharides, [...] Read more.
Background/objectives: Propolis, known for its medicinal properties, faces challenges in pharmaceutical applications due to its low aqueous solubility, attributed to its resinous and hydrophobic nature. This limits oral administration, reducing its bioavailability and pharmacological activities. To overcome these barriers, cyclodextrins (CDs), cyclic oligosaccharides, are widely studied as carrier systems that enhance the solubility and bioavailability of propolis and other nonpolar compounds. This study aimed to review patents that developed innovative therapeutic approaches to improve the physicochemical and biological properties of propolis through complexation with CDs. Methods: Active and application patents registered over the last 17 years were searched across multiple databases, resulting in the selection of eight inventions for detailed analysis. Results: These patents highlight therapeutic applications of propolis–CD systems for conditions such as diabetes and skin and gastrointestinal cancers, as well as antimicrobial, immunostimulant, and antioxidant effects. Additionally, novel extraction processes free of organic solvents, including nanometric-scale powder extracts, are described. Conclusions: Findings from scientific articles support the patent data, demonstrating that CD complexation significantly enhances the solubility and therapeutic efficacy of propolis. Thus, these patents present an innovative and promising strategy for developing propolis-based pharmaceutical products. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

21 pages, 26512 KiB  
Article
Insights into Membrane Damage by α-Helical and β-Sheet Peptides
by Warin Rangubpit, Hannah E. Distaffen, Bradley L. Nilsson and Cristiano L. Dias
Biomolecules 2025, 15(7), 973; https://doi.org/10.3390/biom15070973 - 7 Jul 2025
Viewed by 520
Abstract
Peptide-induced disruption of lipid membranes is central to both amyloid diseases and the activity of antimicrobial peptides. Here, we combine all-atom molecular dynamics simulations with biophysical experiments to investigate how four amphipathic peptides interact with lipid bilayers. All peptides adsorb on the membrane [...] Read more.
Peptide-induced disruption of lipid membranes is central to both amyloid diseases and the activity of antimicrobial peptides. Here, we combine all-atom molecular dynamics simulations with biophysical experiments to investigate how four amphipathic peptides interact with lipid bilayers. All peptides adsorb on the membrane surface. Peptide M01 [Ac-(FKFE)2-NH2] self-assembles into β-sheet nanofibrils that span both leaflets of the membrane, creating water-permeable channels. The other three peptides adopt α-helical structures at the water–lipid interface. Peptide M02 [Ac-FFKKFFEE-NH2], a sequence isomer of M01, does not form β-sheet aggregates and is too short to span the bilayer, resulting in no observable water permeation across the membrane. Peptides M03 and M04 are α-helical isomers long enough to span the bilayer, with a polar face that allows the penetration of water deep inside the membrane. For the M03 peptide [Ac-(FFKKFFEE)2-NH2], insertion into the bilayer starts with the nonpolar N-terminal amino acids penetrating the hydrophobic core of the bilayer, while electrostatic interactions hold negative residues at the C-terminus on the membrane surface. The M04 peptide, [Ac-FFKKFFEEFKKFFEEF-NH2], is made by relocating a single nonpolar residue from the central region of M03 to the C-terminus. This nonpolar residue becomes unfavorably exposed to the solvent upon insertion of the N-terminal region of the peptide into the membrane. Consequently, higher concentrations of M04 peptides are required to induce water permeation compared to M03. Overall, our comparative analysis reveals how subtle rearrangements of polar and nonpolar residues modulate peptide-induced water permeation. This provides mechanistic insights relevant to amyloid pathology and antimicrobial peptide design. Full article
(This article belongs to the Special Issue New Insights into Protein Aggregation in Condensed and Amyloid States)
Show Figures

Figure 1

16 pages, 1991 KiB  
Article
Effect of Dielectric Constant on Interaction Between Charged Macroions in Asymmetric Electrolyte
by Khawla Qamhieh
Colloids Interfaces 2025, 9(4), 43; https://doi.org/10.3390/colloids9040043 - 1 Jul 2025
Viewed by 302
Abstract
The mean force between two highly like-charged macroions in the presence of monovalent counterions and added multivalent salt within solvents of varying dielectric constants was studied using Monte Carlo simulations. Without additional salt, the mean force is strongly repulsive at all macroion separations [...] Read more.
The mean force between two highly like-charged macroions in the presence of monovalent counterions and added multivalent salt within solvents of varying dielectric constants was studied using Monte Carlo simulations. Without additional salt, the mean force is strongly repulsive at all macroion separations in solvents with a dielectric constant ϵr  ≥ 30. However, in solvents with ϵr ≤ 30, macroions experience effective attraction, indicating that attractive interactions between highly charged macroions can occur even without multivalent salt in nonpolar solvents with low dielectric constants. The total multivalent counterion charge-to-total macroion charge ratio is defined as β which determines the amount of salt that is added to the system. At β = 0.075, the mean force becomes attractive at short separations in solvents with ϵr = 54 containing 1:3 salt, as well as in all solvents with 1:5 salt, while still exhibiting significant repulsion at longer separations. In contrast, for solvents with 1:3 salt and dielectric constants ϵr = 68 and ϵr = 78.4, the mean force turns attractive at a higher salt concentration, around β = 0.225. The shift in the mean force to an attractive state at short separations signifies charge inversion on the macroion surface when a sufficient amount of salt is present. At a stoichiometric ratio of multivalent counterions, long-range repulsion vanishes, and attraction becomes significant. However, with excess salt, the strength of the attractive mean force diminishes. Additionally, the attractive force at a given salt concentration increases as the dielectric constant decreases and is stronger in systems with 1:5 salt than in those with 1:3 salt. Full article
Show Figures

Figure 1

12 pages, 3309 KiB  
Article
A Study on the Effects of Solvent and Temperature on 2-Amino-7-Nitro-Fluorene (ANF) Using Synchronous Fluorescence
by Suresh Sunuwar, Miguel Rodriguez-Escalante, Priscila Blanco-Cortés and Carlos E. Manzanares
ChemEngineering 2025, 9(4), 69; https://doi.org/10.3390/chemengineering9040069 - 27 Jun 2025
Viewed by 372
Abstract
Synchronous fluorescence spectra are presented to investigate solute–solvent interactions in liquids. To this end, the spectra of 2-amino-7-nitro-fluorene (ANF) in six different solvents—acetic anhydride, acetone, acetonitrile, benzene, chlorobenzene, and ethyl acetate—are presented. The study also examines ANF’s synchronous fluorescence signals at five temperatures [...] Read more.
Synchronous fluorescence spectra are presented to investigate solute–solvent interactions in liquids. To this end, the spectra of 2-amino-7-nitro-fluorene (ANF) in six different solvents—acetic anhydride, acetone, acetonitrile, benzene, chlorobenzene, and ethyl acetate—are presented. The study also examines ANF’s synchronous fluorescence signals at five temperatures from 25 °C to 5 °C, providing a comprehensive analysis of its fluorescence characteristics in different environments and temperatures. An ANF sample dissolved in benzene at 5 °C produced a synchronous band with the largest intensity and smallest frequency shift. The results show that higher-intensity peaks are obtained at lower temperatures with solvents with a small dipole moment and dielectric constant. This suggest that the best conditions to detect ANF and similar molecules at very low concentrations are with non-polar solvents at low temperatures. Full article
Show Figures

Graphical abstract

19 pages, 2636 KiB  
Article
Poly(pyridinium salt)s Containing 9,9-Bis(4-aminophenyl)fluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties
by Pradip K. Bhowmik, David King, Haesook Han, András F. Wacha and Matti Knaapila
Polymers 2025, 17(13), 1785; https://doi.org/10.3390/polym17131785 - 27 Jun 2025
Viewed by 351
Abstract
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium [...] Read more.
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium salt)s-fluorene containing 9,9-bis(4-aminophenyl)fluorene moieties with various organic counterions that were synthesized using ring-transmutation polymerization and metathesis reactions, which are non-conjugated polyelectrolytes. Their chemical structures were characterized by Fourier transform infrared (FTIR), proton (1H) and fluorine 19 (19F) nuclear magnetic resonance (NMR) spectrometers, and elemental analysis. They exhibited polyelectrolytic behavior in dimethyl sulfoxide. Their lyotropic liquid-crystalline phases were examined by polarizing optical microscopy (POM) and small angle X-ray scattering (SAXS) studies. Their emission spectra exhibited a positive solvatochromism on changing the polarity of solvents. They emitted greenish-yellow lights in polar organic solvents. They formed aggregates in polar aprotic and protic solvents with the addition of water (v/v, 0–90%), whose λem peaks were blue shifted. Full article
(This article belongs to the Special Issue Smart Polymers for Stimuli-Responsive Devices)
Show Figures

Graphical abstract

10 pages, 435 KiB  
Communication
Application of Sequential Extraction Using Pressurized Fluids to Obtain Compounds from Pereskia aculeata Leaves
by Fernanda Rengel dos Passos, Mônica Lady Fiorese, Edson Antonio da Silva, Oscar de Oliveira Santos Junior, Lúcio Cardozo-Filho and Camila da Silva
Plants 2025, 14(13), 1956; https://doi.org/10.3390/plants14131956 - 26 Jun 2025
Viewed by 406
Abstract
The aim of this study was to use high-pressure extraction methods to obtain compounds of different classes from the leaves of Pereskia aculeata Mill. For this purpose, Supercritical Fluid Extraction (SFE) and Pressurized Liquid Extraction (PLE) were used. SFE was performed with Pereskia [...] Read more.
The aim of this study was to use high-pressure extraction methods to obtain compounds of different classes from the leaves of Pereskia aculeata Mill. For this purpose, Supercritical Fluid Extraction (SFE) and Pressurized Liquid Extraction (PLE) were used. SFE was performed with Pereskia aculeata leaves to evaluate the application of propane and carbon dioxide as solvents, and the residual biomass from this stage was used in PLE with hydroethanolic solvent. The extracts were characterized in relation to the content of phenolic compounds, antioxidant potential and content of nonpolar compounds. In the first stage, despite the low yield (1.09–1.94%) compared to PLE (16.56–19.26%), the extracts presented a high content of lipophilic compounds (squalene, octacosanol, α-tocopherol and β-sitosterol) compared to the PLE technique. The sequential extraction process benefited the greater recovery of phenolic compounds and extracts with greater antioxidant potential. Caffeic and nicotinic acids were the major compounds identified in the phenolic profile. The processes applied did not influence the protein content of the final extraction residue, which was similar to that of the in natura leaf. The results and approach demonstrate that sequential extraction is an excellent alternative for the use of Pereskia aculeata, which allows for the production of extracts with varied composition and/or extracts with greater recovery of compounds available in the plant. Full article
Show Figures

Graphical abstract

22 pages, 2551 KiB  
Article
Unraveling the Toxicity of a Non-Microcystin-Producing Strain (CCIBt3106) of Microcystis aeruginosa: Ecotoxicological Effects on Aquatic Invertebrates
by Éryka Costa Almeida, Fernanda Rios Jacinavicius, Rhuana Valdetário Médice, Rafaella Bizo Menezes, Larissa Souza Passos, Dominique Anderson, Jaewon Yoon, Elaine Dias Faria, Camila Manoel Crnkovic, Ana Lúcia Fonseca, Theodore Henry and Ernani Pinto
Toxins 2025, 17(7), 321; https://doi.org/10.3390/toxins17070321 - 24 Jun 2025
Viewed by 592
Abstract
Cyanobacterial blooms are becoming increasingly frequent and intense worldwide, often dominated by Microcystis aeruginosa, a species capable of producing a wide array of bioactive metabolites beyond microcystins. This study evaluates the ecotoxicological potential of a non-microcystin-producing strain, M. aeruginosa CCIBt3106, using acute [...] Read more.
Cyanobacterial blooms are becoming increasingly frequent and intense worldwide, often dominated by Microcystis aeruginosa, a species capable of producing a wide array of bioactive metabolites beyond microcystins. This study evaluates the ecotoxicological potential of a non-microcystin-producing strain, M. aeruginosa CCIBt3106, using acute immobilization assays with three microcrustacean species: Daphnia similis, Artemia salina, and Parhyale hawaiensis. Biomass was extracted using solvents of varying polarity, and selected extracts (aqueous and 50% methanol) were further fractionated and analyzed via high-resolution liquid chromatography–tandem mass spectrometry (HR-LC-MS/MS). Significant toxicity was observed in D. similis and P. hawaiensis, with EC50 values ranging from 660 to 940 µg mL−1. Metabolomic profiling revealed the presence of chemically diverse metabolite classes, including peptides, polyketides, and fatty acyls, with putative annotations linked to known bioactivities. These findings demonstrate that cyanobacterial strains lacking microcystins can still produce complex metabolite mixtures capable of inducing species-specific toxic effects under environmentally relevant exposure levels. Overall, the results highlight the need to expand ecotoxicological assessments and monitoring frameworks to include non-microcystin cyanobacterial metabolites and strains in water quality management. Full article
Show Figures

Figure 1

16 pages, 3103 KiB  
Article
Photoluminescence Dependance of 2-Bromo-3-aminobenzo[de]anthracene-7-one on Solvent Polarity for Potential Applications in Color-Tunable Optoelectronics
by Emmanuel Karungani, Elena Kirilova, Liga Avotina, Aleksandrs Puckins, Sergejs Osipovs, Titus Ochodo, Mildred Airo and Francis Otieno
Molecules 2025, 30(13), 2677; https://doi.org/10.3390/molecules30132677 - 20 Jun 2025
Viewed by 412
Abstract
The novel benzanthrone derivative, 2-bromo-3-aminobenzo[de]anthracene-7-one (2-Br-3-NH2BA), was synthesized and extensively characterized to investigate its photophysical behavior in various solvents. It was prepared through selective bromination of 3-aminobenzanthrone using N-bromosuccinimide in dimethylformamide at −20 °C. Featuring a donor–π–acceptor (D–π–A) structure, [...] Read more.
The novel benzanthrone derivative, 2-bromo-3-aminobenzo[de]anthracene-7-one (2-Br-3-NH2BA), was synthesized and extensively characterized to investigate its photophysical behavior in various solvents. It was prepared through selective bromination of 3-aminobenzanthrone using N-bromosuccinimide in dimethylformamide at −20 °C. Featuring a donor–π–acceptor (D–π–A) structure, 2-Br-3-NH2BA exhibits pronounced solvatochromism due to the intramolecular charge transfer (ICT) between the amino donor and the carbonyl acceptor groups. Optical measurements conducted in eight solvents of varying polarity revealed a significant bathochromic shift in both absorption and fluorescence emission, with emission maxima red-shifting by over 110 nm from non-polar to polar environments. Corresponding reductions in the optical band gap energies, as calculated from Tauc plots, further support solvent-induced electronic state modulation. Additionally, quantum yield analysis showed higher fluorescence efficiency in non-polar solvents, while polar solvents induced twisted intramolecular charge transfer (TICT), leading to emission quenching. These findings demonstrate the sensitivity of 2-Br-3-NH2BA to environmental polarity, making it a promising candidate for color-tunable luminescent applications in optoelectronics and sensing. However, further studies in the solid state are required to validate its applicability in device architectures such as OLEDs. Full article
(This article belongs to the Special Issue Study on Synthesis and Photochemistry of Dyes)
Show Figures

Figure 1

18 pages, 3908 KiB  
Article
Impact of Additives on Poly(acrylonitrile-butadiene-styrene) Membrane Formation Process Using Non-Solvent-Induced Phase Separation
by Sulaiman Dhameri, Jason Stallings, Endras Fadhilah, Emily Ingram, Mara Leach, Anastasiia Aronova and Malgorzata Chwatko
Membranes 2025, 15(6), 181; https://doi.org/10.3390/membranes15060181 - 16 Jun 2025
Viewed by 768
Abstract
Poly(acrylonitrile-butadiene-styrene) (ABS) is a common polymer used in toys, automobile parts, and membranes. Membranes fabricated with this copolymer commonly employ toxic solvents and have a dense architecture, which may not work in all applications. This work investigates the synthesis of ABS membranes, using [...] Read more.
Poly(acrylonitrile-butadiene-styrene) (ABS) is a common polymer used in toys, automobile parts, and membranes. Membranes fabricated with this copolymer commonly employ toxic solvents and have a dense architecture, which may not work in all applications. This work investigates the synthesis of ABS membranes, using green solvents and the influence of additives on the phase inversion process during the non-solvent-induced phase separation. The addition of water-soluble additives, ethanol, and acetone is hypothesized to provide additional control over viscosity and volatility, and, consequently, impact the phase inversion process. Membranes were fabricated with PolarClean and with various additive concentrations and evaporation times. The resulting membranes were characterized using scanning electron microscopy (SEM) and a pycnometer to visualize the pore structure and obtain porosity information. Membrane performance, including water flux and bovine serum albumin rejection, was evaluated using dead-end cell filtration. Membranes fabricated using only PolarClean had fingerlike pore morphology and relatively low protein rejection. The addition of additives resulted in a change in pore architecture and rejection, which is hypothesized to be a result of additives’ volatility, humidity, and destabilization of liquid–liquid separation. This study provides a more detailed understanding of the impact of additives on the resulting ABS membrane structure and performance, with a focus on safer solvents. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

18 pages, 4005 KiB  
Article
Measurement and Modelling of Carbon Dioxide in Triflate-Based Ionic Liquids: Imidazolium, Pyridinium, and Pyrrolidinium
by Raheem Akinosho, Amr Henni and Farhan Shaikh
Liquids 2025, 5(2), 15; https://doi.org/10.3390/liquids5020015 - 30 May 2025
Viewed by 410
Abstract
Carbon dioxide, the primary greenhouse gas responsible for global warming, represents today a critical environmental challenge for humans. Mitigating CO2 emissions and other greenhouse gases is a pressing global concern. The primary goal of this study is to investigate the potential of [...] Read more.
Carbon dioxide, the primary greenhouse gas responsible for global warming, represents today a critical environmental challenge for humans. Mitigating CO2 emissions and other greenhouse gases is a pressing global concern. The primary goal of this study is to investigate the potential of particular ionic liquids (ILs) in capturing CO2 for the sweetening of natural and other gases. The solubility of CO2 was measured in three distinct ILs, which shared a common anion (triflate, TfO) but differed in their cations. The selected ionic liquids were {1-butyl-3-methylimidazolium triflate [BMIM][TfO], 1-butyl-1-methylpyrrolidinium triflate [BMP][TfO], and 1-butyl-4-methylpyridium triflate [MBPY][TfO]}. The solvents were screened based on results from a molecular computational study that predicted low CO2 Henry’s Law constants. Solubility measurements were conducted at 303.15 K, 323.15 K, and 343.15 K and pressures up to 1.5 MPa using a gravimetric microbalance (IGA-003). The CO2 experimental results were modeled using the Peng–Robinson Equation of state with three mixing rules: van der Waals one (vdWI), van der Waals two (vdWII), and the non-random two-liquid (NRTL) Wong–Sandler (WS) mixing rule. For the three ILs, the NRTL-WS mixing rule regressed the data with the lowest average deviation percentage of 1.24%. The three solvents had similar alkyl chains but slightly different polarities. [MBPY][TfO], with the largest size, exhibited the highest CO2 solubility at all three temperatures. Calculation of its relative polarity descriptor (N) shows it was the least polar of the three ILs. Conversely, [BMP][TfO] showed the highest Henry’s Law constant (lowest solubility) across the studied temperature range. Comparing the results to published data, the study concludes that triflate-based ionic liquids with three fluorine atoms had lower capacity for CO2 compared to bis(trifluoromethylsulfonyl) imide (Tf2N)-based ionic liquids with six fluorine atoms. Additionally, the study provided data on the enthalpy and entropy of absorption. A final comparison shows that the ILs had a lower CO2 capacity than Selexol, a solvent widely used in commercial carbon capture operations. Compared to other ILs, the results confirm that the type of anion had a more significant impact on solubility than the cation. Full article
Show Figures

Figure 1

17 pages, 817 KiB  
Review
Implementation of Solvometallurgical Processing in the Recovery of Valuable Metals from a Sulfide Ore
by Lusa Lwa Vidie Kishiko, Willie Nheta and Edouard Malenga Ntumba
Minerals 2025, 15(6), 576; https://doi.org/10.3390/min15060576 - 29 May 2025
Viewed by 556
Abstract
It has been demonstrated that the traditional hydrometallurgical method is still economically viable in several industrial applications such as Bayer, Boix, Platsol, Sherrit-Gordon, and so on. The conventional extraction technique of valuable metals from their ores using an aqua medium has several challenges. [...] Read more.
It has been demonstrated that the traditional hydrometallurgical method is still economically viable in several industrial applications such as Bayer, Boix, Platsol, Sherrit-Gordon, and so on. The conventional extraction technique of valuable metals from their ores using an aqua medium has several challenges. The following can be listed for the illustration of this: (1) Inorganic acids used during the leaching process have been proven to be non-environmentally friendly and ready to lead to non-selective processes in general, except in rare cases used in alkaline environments. (2) Special linings are required in the reactors used due to the corrosive impact of acids such as HCl and H2SO4, especially when leaching at high temperatures, rendering all processes costly. (3) Practically, using inorganic acids while leaching samples containing amorphous silicate phases leads to gel formation. Solvometallurgy overcomes these challenges by substituting the aqueous phase for other polar solvents, such as polar molecular organic or ionic solvents. The advantage of this substitution lies in the ability to manipulate metal ion distribution using solvents with varying solvation properties. This review examines the potential of solvometallurgical processes (solvoleaching) over conventional hydrometallurgy as viable alternatives for metal extraction from sulfide ores. It highlights the key distinctions between hydrometallurgy and solvometallurgy while emphasizing the potential economic and environmental advantages solvometallurgy offers. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

Back to TopTop