Implementation of Solvometallurgical Processing in the Recovery of Valuable Metals from a Sulfide Ore
Abstract
:1. Introduction
2. Overview of Metals Extraction Methods
2.1. Hydrometallurgy
2.2. Solvometallurgy
2.2.1. Principle of Purification and Mechanism of Solvometallurgy
2.2.2. Organic Solvents
2.2.3. Solvometallurgy of Sulfide Ore
3. Thermodynamic and Kinetic
3.1. Thermodynamic
3.2. Kinetic
4. McCabe–Thiele Diagram
5. Advantages of Solvometallurgy over Hydrometallurgy
6. Solvometallurgical Processing Flowsheet
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SX | Solvent extraction |
NASX | Non-solvent extraction |
TBP | Tributyl phosphate |
DESs | Deep eutectic solvents |
ILs | Ionic liquids |
TOPO | Trioctylphosphine oxide |
References
- Vaughan, D.J.; Corkhill, C.L. Mineralogy of sulfides. Elements 2017, 13, 81–87. [Google Scholar] [CrossRef]
- Bidari, E.; Winardhi, C.W.; Godinho, J.R.d.A.; Frisch, G. Role of Oxidants in Metal Extraction from Sulfide Minerals in a Deep Eutectic Solvent. ACS Omega 2024, 9, 14592–14603. [Google Scholar] [CrossRef]
- Crundwell, F.K. Extractive Metallurgy of Nickel, Cobalt and Platinum-Group Metals; Elsevier: Amsterdam, The Netherlands, 2011; Volume 542. [Google Scholar]
- Gwimbi, P. Monitoring SO2emission trends and residents’ perceived health risks from PGM smelting at Selous Metallurgical Complex in Zimbabwe. Int. J. Equity Health 2017, 16, 200. [Google Scholar] [CrossRef] [PubMed]
- Sonule, B.B.; Kulkarni, A.N.; Kakde, N.K.; Madrewar, K.T. Comparative Analysis of Pyrometallurgy, Hydrometallurgy and Bio-Hydro-Metallurgy for Extraction of Metals from E-Waste. Int. J. Res. Publ. Rev. J. 2023, 4, 1970–1977. Available online: www.ijrpr.com (accessed on 20 May 2025).
- Tuncuk, A.; Stazi, V.; Akcil, A.; Yazici, E.Y.; Deveci, H. Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Miner. Eng. 2012, 25, 28–37. [Google Scholar] [CrossRef]
- Tunsu, C.; Retegan, T. Hydrometallurgical Processes for the Recovery of Metals from WEEE; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Solvometallurgy: An Emerging Branch of Extractive Metallurgy. J. Sustain. Metall. 2017, 3, 570–600. [Google Scholar] [CrossRef]
- Gjelsvik, N.O.; Jan, H.; Torgersen, S. Method of Acid Leaching of Slcates. U.S. Patent US4367215A, 4 January 1983. [Google Scholar]
- Jiménez-Paredes, A.E.; Alfaro-Saldaña, E.F.; Hernández-Sánchez, A.; García-Meza, J.V. An Autochthonous Acidithiobacillus ferrooxidans Metapopulation Exploited for Two-Step Pyrite Biooxidation Improves Au/Ag Particle Release from Mining Waste. Mining 2021, 1, 335–350. [Google Scholar] [CrossRef]
- Li, X.; Monnens, W.; Li, Z.; Fransaer, J.; Binnemans, K. Solvometallurgical process for extraction of copper from chalcopyrite and other sulfidic ore minerals. Green Chem. 2020, 22, 417–426. [Google Scholar] [CrossRef]
- Free, M.L. Hydrometallurgy: Fundamentals and Applications; The Minerals, Metals & Materials Society: Pittsburgh, PA, USA, 2014. [Google Scholar] [CrossRef]
- Faris, N.; Pownceby, M.I.; Bruckard, W.J.; Chen, M. The Direct Leaching of Nickel Sulfide Flotation Concentrates–A Historic and State-of-the-Art Review Part III: Laboratory Investigations into Atmospheric Leach Processes. Miner. Process. Extr. Metall. Rev. 2023, 44, 533–553. [Google Scholar] [CrossRef]
- Spooren, J.; Binnemans, K.; Björkmalm, J.; Breemersch, K.; Dams, Y.; Folens, K.; González-Moya, M.; Horckmans, L.; Komnitsas, K.; Kurylak, W.; et al. Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in Europe: Technology development trends. Resour. Conserv. Recycl. 2020, 160, 104919. [Google Scholar] [CrossRef]
- Xu, H.; Wei, C.; Li, C.; Fan, G.; Deng, Z.; Zhou, X.; Qiu, S. Leaching of a complex sulfidic, silicate-containing zinc ore in sulfuric acid solution under oxygen pressure. Sep. Purif. Technol. 2012, 85, 206–212. [Google Scholar] [CrossRef]
- Rao, K.S.; Devi, N.B.; Reddy, B.R. Solvent extraction of copper from sulphate medium using MOC 45 as extractant. Hydrometallurgy 2000, 57, 269–275. [Google Scholar] [CrossRef]
- Li, Z.; Dewulf, B.; Binnemans, K. Nonaqueous Solvent Extraction for Enhanced Metal Separations: Concept, Systems, and Mechanisms. Ind. Eng. Chem. Res. 2021, 60, 17285–17302. [Google Scholar] [CrossRef]
- Ore, M.; Audoor, H.; Li, Z.; Binnemans, K. Solvometallurgical route for the recovery of Sm, Co, Cu and Fe from SmCo permanent magnets. Sep. Purif. Technol. 2019, 219, 281–289. [Google Scholar] [CrossRef]
- Sun, P.P.; Kim, T.Y.; Seo, H.; Cho, S.Y. Separation and Recovery of Cu from Industrial Dust via a Solvometallurgical Process. Metals 2022, 12, 1723. [Google Scholar] [CrossRef]
- Kurniawan, K.; Kim, S.; Bae, M.; Chagnes, A.; Lee, J. chun Investigation on solvometallurgical processes for extraction of metals from sulfides. Miner. Eng. 2024, 218, 109005. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, Á.; Lapidus, G.T. Study of chalcopyrite leaching from a copper concentrate with hydrogen peroxide in aqueous ethylene glycol media. Hydrometallurgy 2017, 169, 192–200. [Google Scholar] [CrossRef]
- Ali, Z.; Wilkes, N.; Raza, N.; Omar, M. Modified Hydrometallurgical Approach for the Beneficiation of Copper from Its Low-Grade Ore. ACS Omega 2025, 10, 14826–14834. [Google Scholar] [CrossRef]
- Orefice, M.; Binnemans, K. Solvometallurgical process for the recovery of rare-earth elements from Nd–Fe–B magnets. Sep. Purif. Technol. 2021, 258, 117800. [Google Scholar] [CrossRef]
- Jiang, L.Y. Chapter 1—Metallurgy: Importance, Processes, and Development Status. In Membrane-Based Separations in Metallurgy; Jiang, L.Y., Li, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–18. [Google Scholar] [CrossRef]
- Habashi, F. A short history of hydrometallurgy. Hydrometallurgy 2005, 79, 15–22. [Google Scholar] [CrossRef]
- Tran, L.H.; Tanong, K.; Jabir, A.D.; Mercier, G.; Blais, J.F. Hydrometallurgical process and economic evaluation for recovery of zinc and manganese from spent alkaline batteries. Metals 2020, 10, 1175. [Google Scholar] [CrossRef]
- de Waal, A. Evaluating the Efficiency of a Metal Recycling Process by Means of Life Cycle Assessment and Exergy Analyses. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2019. Available online: https://scholar.sun.ac.za (accessed on 20 May 2025).
- Ochromowicz, K.; Chmielewski, T. Solvent extraction of copper (II) from concentrated leach liquors. Physicochem. Probl. Miner. Process. 2016, 49, 357–367. [Google Scholar] [CrossRef]
- Batchu, N.K.; Li, Z.; Verbelen, B.; Binnemans, K. Structural effects of neutral organophosphorus extractants on solvent extraction of rare-earth elements from aqueous and non-aqueous nitrate solutions. Sep. Purif. Technol. 2021, 255, 117711. [Google Scholar] [CrossRef]
- Wang, X.; Du, M.; Liu, H. Synergistic extraction study of samarium (III) from chloride medium by mixtures of bis (2, 4, 4-trimethylpentyl) phosphinic acid and 8-hydroxyquinoline. Sep. Purif. Technol. 2012, 93, 48–51. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Xu, S.; Yin, Z.; Zhang, Q. Solvent extraction of rare earth ions from nitrate media with new extractant di-(2, 3-dimethylbutyl)-phosphinic acid. J. Rare Earths 2016, 34, 724–730. [Google Scholar] [CrossRef]
- Satpathy, S.; Mishra, S. Extractive separation studies of La (III) and Ni (II) in the presence of lactic acid using DEHPA in petrofin. Sep. Purif. Technol. 2017, 179, 513–522. [Google Scholar] [CrossRef]
- Badihi, F.; Haghighi Asl, A.; Asadollahzadeh, M.; Torkaman, R. Applied novel functionality in separation procedure from leaching solution of zinc plant residue by using non-aqueous solvent extraction. Sci. Rep. 2023, 13, 1146. [Google Scholar] [CrossRef]
- Batchu, N.K.; Dewulf, B.; Riaño, S.; Binnemans, K. Development of a solvometallurgical process for the separation of yttrium and europium by Cyanex 923 from ethylene glycol solutions. Sep. Purif. Technol. 2020, 235, 116193. [Google Scholar] [CrossRef]
- Richter, J.; Ruck, M. Ionometallurgy: An academic exercise or promising approach? RSC Sustain. 2024, 2, 1202–1214. [Google Scholar] [CrossRef]
- Sowbhagyam, D.V. Ionic Liquids as Green Solvents: A Comprehensive Review. Int. Res. J. Adv. Eng. Hub 2024, 2, 220–224. [Google Scholar] [CrossRef]
- Alian, A.; Sanad, W.; Shabana, R. Extraction of protactinium from mineral acid-alcohol media. Talanta 1968, 15, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Batchu, N.K.; Vander Hoogerstraete, T.; Banerjee, D.; Binnemans, K. Separation of rare-earth ions from ethylene glycol (+LiCl) solutions by non-aqueous solvent extraction with Cyanex 923. RSC Adv. 2017, 7, 45351–45362. [Google Scholar] [CrossRef]
- Rudnik, E. Innovative Approaches to Tin Recovery from Low-Grade Secondary Resources: A Focus on (Bio) hydrometallurgical and Solvometallurgical Methods. Materials 2025, 18, 819. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C. Hansen Solubility Parameters: A User’s Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Saranjam, L.; Fuguet, E.; Nedyalkova, M.; Simeonov, V.; Mas, F.; Madurga, S. Prediction of Partition Coefficients in SDS Micelles by DFT Calculations. Symmetry 2021, 13, 1750. [Google Scholar] [CrossRef]
- Anggara, S.; Bevan, F.; Harris, R.C.; Hartley, J.M.; Frisch, G.; Jenkin, G.R.T.; Abbott, A.P. Direct extraction of copper from copper sulfide minerals using deep eutectic solvents. Green Chem. 2019, 21, 6502–6512. [Google Scholar] [CrossRef]
- Carlesi, C.; Harris, R.C.; Abbott, A.P.; Jenkin, G.R.T. Chemical Dissolution of Chalcopyrite Concentrate in Choline Chloride Ethylene Glycol Deep Eutectic Solvent. Minerals 2022, 12, 65. [Google Scholar] [CrossRef]
- Raghavan, S.; Furerstenau, D.W.; Monhemius, A.J.; Peters, E.; Warren, G.W. A Lyometallurgical Process for Leaching Copper from Chrysocolla; Society for Mining, Metallurgy & Exploration: Dove Valley, CO, USA, 1993. [Google Scholar]
- Matsui, M.; Aoki, T.; Inoue, O.; Shigematsu, T. Nonaqueous Liquid-Liquid Extraction. Extraction of Zinc and Cadmium from Ethylene Glycol Solution of Bromide by Trioctylphosphine Oxide. Bull. Inst. Chem. Res. Kyoto Univ. 1975, 52, 652–657. [Google Scholar]
- Aoki, T. Nonaqueous Liquid-Liquid Extraction of Manganese from Ethylene Glycol Solution with Trioctylphosphine Oxide. Bull. Inst. Chem. Res. Kyoto Univ. 1981, 59, 274–282. [Google Scholar]
- Kamariah, N.; Xanthopoulos, P.; Binnemans, K.; Spooren, J. Solvometallurgical Process for the Recovery of Copper from Chrysocolla in Monoethanolamine. Ind. Eng. Chem. Res. 2023, 62, 12880–12890. [Google Scholar] [CrossRef]
- Latimer, G.W., Jr. Distribution of Ion Pairs between Immiscible Nonaqueous Solvents. Anal. Chem. 1983, 35, 4026. [Google Scholar] [CrossRef]
- Choppin, G.R.; Morgenstern, A. Thermodynamics of solvent extraction. Solvent Extr. Ion Exch. 2000, 18, 1029–1049. [Google Scholar] [CrossRef]
- Rey, J.; Dourdain, S.; Dufrêche, J.-F.; Berthon, L.; Muller, J.M.; Pellet-Rostaing, S.; Zemb, T. Thermodynamic description of synergy in solvent extraction: I. Enthalpy of mixing at the origin of synergistic aggregation. Langmuir 2016, 32, 13095–13105. [Google Scholar] [CrossRef] [PubMed]
- Rydberg, J.; Cox, M.; Musikas, C.; Choppin, G.R. Solvent Extraction Principles and Practrice, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Hosseinzadeh, M.; Azizi, A.; Hassanzadeh, A. Solvent extraction and kinetic studies of copper from a heap leach liquor using CuPRO MEX-3302. Sep. Sci. Technol. 2022, 57, 571–588. [Google Scholar] [CrossRef]
- Agarwal, S.; Ferreira, A.; Santos, S.C.R.; Reis, M.T.A.; Ismael, M.R.C.; Correia, M.J.N.; Carvalho, J.M.R. Separation and recovery of copper from zinc leach liquor by solvent extraction using Acorga M5640. Int. J. Miner. Process. 2010, 97, 85–91. [Google Scholar] [CrossRef]
- Nozari, I.; Azizi, A. Experimental and Kinetic Modeling Investigation of Copper Dissolution Process from an Iranian Mixed Oxide/Sulfide Copper Ore. J. Sustain. Metall. 2020, 6, 437–450. [Google Scholar] [CrossRef]
- El-hefny, N.E. Chemical Kinetics and Reaction Mechanisms in Solvent Extraction: New Trends and Applications. J. Phys. Sci. 2017, 28, 129–156. [Google Scholar] [CrossRef]
- Biswas, R.K.; Habib, M.A.; Mondal, M.G.K. Kinetics of stripping of VO-D2EHPA complex from toluene phase by aqueous sulphate-acetate solution. Comparison of Lewis and Hahn cells. Hydrometallurgy 2004, 73, 257–267. [Google Scholar] [CrossRef]
- Gonzaga, L.; Vasconcelos, S.; Jaílson, J.; Alves, N. McCabe—Thiele Method Revisited—Solving Binary Distillation Problems with Nonconventional Specifications. J. Chem. Eng. Jpn. 2008, 41, 933–938. [Google Scholar] [CrossRef]
- Deep, A.; Kumar, P.; Carvalho, J.M.R. Recovery of copper from zinc leaching liquor using ACORGA M5640. Sep. Purif. Technol. 2010, 76, 21–25. [Google Scholar] [CrossRef]
- Peeters, N.; Binnemans, K.; Torres, N.S.M.R. Solvometallurgy for Recovering Metals from Secondary Resources. 2022. Available online: https://lirias.kuleuven.be/handle/20.500.12942/705442 (accessed on 7 March 2025).
- Gutmann, V. Coordination Chemistry in Non-Aqueous Solutions; Springer: Wien, Austria; New York, NY, USA, 1968. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kishiko, L.L.V.; Nheta, W.; Ntumba, E.M. Implementation of Solvometallurgical Processing in the Recovery of Valuable Metals from a Sulfide Ore. Minerals 2025, 15, 576. https://doi.org/10.3390/min15060576
Kishiko LLV, Nheta W, Ntumba EM. Implementation of Solvometallurgical Processing in the Recovery of Valuable Metals from a Sulfide Ore. Minerals. 2025; 15(6):576. https://doi.org/10.3390/min15060576
Chicago/Turabian StyleKishiko, Lusa Lwa Vidie, Willie Nheta, and Edouard Malenga Ntumba. 2025. "Implementation of Solvometallurgical Processing in the Recovery of Valuable Metals from a Sulfide Ore" Minerals 15, no. 6: 576. https://doi.org/10.3390/min15060576
APA StyleKishiko, L. L. V., Nheta, W., & Ntumba, E. M. (2025). Implementation of Solvometallurgical Processing in the Recovery of Valuable Metals from a Sulfide Ore. Minerals, 15(6), 576. https://doi.org/10.3390/min15060576