Poly(pyridinium salt)s Containing 9,9-Bis(4-aminophenyl)fluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Materials
2.3. Monomers Synthesis
2.4. Synthesis of Polymer I
2.5. Synthesis of Polymers II–V
2.6. X-Ray Scattering Experiments
3. Results and Discussion
3.1. Chemical Structures of Polymers I–V
3.2. Polyelectrolyte Behavior of Polymers I and II
3.3. Molecular Weight of Polymer I by Gel Permeation Chromatography (GPC)
3.4. Lyotropic Properties of Polymers I–V by Polarized Optical Microscopy (POM)
3.5. Lyotropic Properties of Polymers I and II by Small Angle X-Ray Scattering (SAXS)
3.6. Optical Properties of Polymers I–V by UV-Vis and Fluorescence Spectrometers
3.7. Emission Properties of Polymers I, II, III, and V in Organic Solvents–Water Mixture
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bhowmik, P.K.; Burchett, R.A.; Han, H.; Cebe, J.J. Synthesis and characterization of poly(pyridinium salt)s with organic counterion exhibiting both lyotropic liquid-crystalline and light-emitting properties. Macromolecules 2001, 34, 7579–7581. [Google Scholar] [CrossRef]
- Bhowmik, P.K.; Han, H.; Cebe, J.J.; Nedeltchev, I.K.; Kang, S.-W.; Kumar, S. Synthesis and characterization of poly(pyridinium salt)s with organic counterions exhibiting both thermotropic liquid-crystalline and light-emitting properties. Macromolecules 2004, 37, 2688–2694. [Google Scholar] [CrossRef]
- Jose, R.; Truong, D.; Nguyen, V.; Han, H.; Bhowmik, P.K. Poly(pyridinium salt)s with organic counterions derived from 3,3′-dimethylnaphthidine. J. Polym. Res. 2015, 22, 14. [Google Scholar] [CrossRef]
- Jo, T.S.; Han, H.; Bhowmik, P.K.; Heinrich, B.; Donnio, B. Thermotropic liquid-crystalline and light-emitting properties of poly(pyridinium) salts containing various diamine connectors and hydrophilic macrocounterions. Polymers 2019, 11, 851. [Google Scholar] [CrossRef]
- Bhowmik, P.K.; Jo, T.S.; Koh, J.J.; Park, J.; Biswas, B.; Principe, R.C.G.; Han, H.; Wacha, A.F.; Knaapila, M. Poly(pyridinium salt)s containing 2,7-diamino-9,9-dioctylfluorene moieties with various organic counterions exhibiting both lyotropic liquid-crystalline and light-emitting properties. Molecules 2021, 26, 1560. [Google Scholar] [CrossRef] [PubMed]
- Knaapila, M.; Stepanyan, R.; Horsburgh, L.E.; Monkman, A.P.; Serimaa, R.; Ikkala, O.; Subbotin, A.; Torkkeli, M.; ten Brinke, G. Structure and phase equilibria of polyelectrolytic hairy-rod supramolecules in the melt state. J. Phys. Chem. B 2003, 107, 14199–14203. [Google Scholar] [CrossRef]
- Ballauff, M. Rigid rod polymers having flexible side chains, 1 Thermotropic poly(1,4-phenylene 2,5-dialkoxyterephthalate)s. Macromol. Chem. Rapid Commun. 1986, 7, 407–414. [Google Scholar] [CrossRef]
- Zhang, S.-J.; Pfefferle, L.D.; Osuji, C.O. Lyotropic hexagonal ordering in aqueous media by conjugated hairy-rod supramolecules. Macromolecules 2010, 43, 7549–7555. [Google Scholar] [CrossRef]
- Jo, T.S.; Han, H.; Bhowmik, P.K.; Ma, L. Dispersion of single-walled carbon nanotubes with poly(pyridinium salt)s containing various rigid aromatic moieties. Macromol. Chem. Phys. 2012, 213, 1378–1384. [Google Scholar] [CrossRef]
- Alam, M.M.; Biswas, B.; Nedeltchev, A.K.; Han, H.; Ranasinghe, A.D.; Bhowmik, P.K.; Goswami, K. Phosphine oxide containing poly(pyridinium salt)s as fire retardant materials. Polymers 2019, 11, 1141. [Google Scholar] [CrossRef]
- Frolov, D.G.; Makhaeva, E.E.; Keshtov, M.L. Electrochromic behavior of films and <<smart windows>> prototypes based on π-conjugated and non-conjugated poly(pyridinium salt)s. Synth. Met. 2019, 248, 14–19. [Google Scholar]
- Tigelaar, D.M.; Klein, D.J.; Xu, T.-B.; Su, J.; Bryant, R.G. Synthesis and characterization of poly(pyridinium triflate)s with alkyl and aromatic spacer groups for potential use as nonlinear optic materials. High Perform. Polym. 2005, 17, 515–531. [Google Scholar] [CrossRef]
- Lu, Y.; Xiao, C.; Yu, Z.; Zeng, X.; Ren, Y.; Li, C. Poly(pyridinium) salts containing calix [4]arene segments in the main chain as potential biosensors. J. Mater. Chem. 2009, 19, 8796–8802. [Google Scholar] [CrossRef]
- Han, F.; Lu, Y.; Zhang, Q.; Sun, J.; Zeng, X.; Li, C. Homogeneous and sensitive DNA detection based on polyelectrolyte complexes of cationic conjugated poly(pyridinium salts) and DNA. J. Mater. Chem. 2012, 22, 4106–4112. [Google Scholar] [CrossRef]
- Sun, J.; Lu, Y.; Wang, L.; Cheng, D.; Sun, Y.; Zeng, X. Fluorescence turn-on detection of DNA based on the aggregation-induced emission of conjugated poly(pyridinium salt)s. Polym. Chem. 2013, 4, 4045–4051. [Google Scholar] [CrossRef]
- Chang, Y.; Jin, L.; Duan, J.; Zhang, Q.; Wang, J.; Lu, Y. New conjugated poly(pyridinium salt) derivative: AIE characteristics, the interaction with DNA and selective fluorescence enhancement induced by dsDNA. RSC Adv. 2015, 5, 103358–103364. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Jin, L.; Chang, Y.; Duan, J.; Lu, Y. Anew conjugated poly(pyridinium salt) derived from phenanthridine diamine: Its synthesis, optical properties and interaction with calf thymus DNA. Polym. J. 2015, 47, 753–959. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Sun, J.; Lu, Y.; Sun, Y.; Cheng, D.; Li, C. Conjugated poly(pyridinium salt)s as fluorescence light-up probes for heparin sensing. J. Appl. Polym. Sci. 2014, 131, 40933. [Google Scholar] [CrossRef]
- Hazra, A.; Bhattacharya, S. Main-Chain Cationic Polyelectrolytes: Design, Synthesis, and Applications. Langmuir 2024, 40, 2417–2438. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Fan, D.; Wang, D.; Han, T.; Tang, B.Z. Synthesis and applications of conjugated main-chain charged polyelectrolytes. Polym. Chem. 2025, 16, 923–935. [Google Scholar] [CrossRef]
- Jagadesan, P.; Huang, Y.; Schanze, K.S. Conjugated Polyelectrolytes Designed for Biological Applications. In Handbook of Conducting Polymers. Conjugated Polymers: Perspective, Theory and New Materials, 4th ed.; Reynolds, J.R., Thompson, B.C., Skotheim, T.A., Eds.; CRC Press: Boca Raton, FL, USA, 2019; Chapter 14. [Google Scholar]
- Tan, C.; Wang, S.; Barboza-Ramos, I.; Schanze, K.S. A perspective looking backward and forward on the 25th anniversary of conjugated polyelectrolytes. ACS Appl. Mater. Interfaces 2024, 16, 19887–19892. [Google Scholar] [CrossRef]
- Peterhans, L.; Nicolaidou, E.; Diamantis, P.; Alloa, E.; Leclerc, M.; Surin, M.; Clément, S.; Rothlisberger, U.; Banerji, N.; Hayes, S.C. Structural and photophysical templating of conjugated polyelectrolytes with single-stranded DNA. Chem. Mater. 2020, 32, 7347–7362. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Jiang, L.; Zhang, Z.; Xu, N.; Jiang, Y.; Tan, C. Conjugated polyelectrolyte/single strand DNA hybrid polyplexes for efficient nucleic acid delivery and targeted protein degradation. ACS Appl. Mater. Interfaces 2024, 16, 19987–19994. [Google Scholar] [CrossRef]
- Sun, H.; Barboza-Ramos, I.; Wang, X.; Schanze, K.S. Phosphonium-substituted conjugated polyelectrolytes display efficient visible-light-induced antibacterial activity. ACS Appl. Mater. Interfaces 2024, 16, 20023–20033. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Nasrun, R.F.B.; Jeong, W.H.; Shen, X.; Sausan, I.S.; Kim, D.; Seok, G.E.; Jung, E.D.; Kim, J.H.; Lee, B.R. Conjugated polyelectrolytes as a defect-passivating hole injection layer for efficient and stable perovskite light-emitting diodes. ACS Appl. Electron. Mater. 2024, 6, 8929–8937. [Google Scholar] [CrossRef]
- Korshak, V.V.; Vinogradova, S.V.; Vygodskii, Y.S. Cardo polymers. J. Macromol. Sci. Rev. Macromol. Chem. 1974, C11, 45–142. [Google Scholar] [CrossRef]
- Wacha, A.; Varga, Z.; Bota, A. Credo: A new general-purpose laboratory instrument for small-angle x-ray scattering. J. Appl. Cryst. 2014, 47, 1749–1754. [Google Scholar] [CrossRef]
- Wacha, A. An optimized pinhole geometry for small-angle scattering. J. Appl. Cryst. 2015, 48, 1843–1848. [Google Scholar] [CrossRef]
- Knaapila, M.; Bright, D.W.; Stepanyan, R.; Torkkeli, M.; Almásy, L.; Schweins, R.; Vainio, U.; Preis, E.; Galbrecht, F.; Scherf, U.; et al. Network structure of polyfluorene membranes as a function of side chain length. Phys. Rev. E 2011, 83, 051803. [Google Scholar] [CrossRef]
- Rahman, M.H.; Chen, C.-Y.; Liao, S.-C.; Chen, H.-L.; Tsao, C.-S.; Chen, J.-H.; Liao, J.-L.; Ivanov, V.A.; Chen, S.-A. Segmental alignment in the aggregate domains of poly(9,9-dioctylfluorene) in semidilute solution. Macromolecules 2007, 40, 6572–6578. [Google Scholar] [CrossRef]
- Debye, P.; Bueche, A.M. Scattering by an inhomogeneous solid. J. Appl. Phys. 1949, 20, 518–525. [Google Scholar] [CrossRef]
- De Gennes, P.G. Scaling Concepts in Polymer Physics, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1985. [Google Scholar]
- Shibayama, M.; Tanaka, T.; Han, C.C. Small angle neutron scattering study on poly(N-isopropyl acrylamide) gels near their volume-phase transition temperature. J. Chem. Phys. 1992, 97, 6829–6841. [Google Scholar] [CrossRef]
- Mallam, S.; Horkay, F.; Hect, A.-M.; Rennie, A.R.; Geissler, E. Microscopic and macroscopic thermodynamic observations in swollen poly(dimethylsiloxane) networks. Macromolecules 1991, 24, 543–548. [Google Scholar] [CrossRef]
- Hammouda, B. A new Guinier–Porod model. J. Appl. Cryst. 2010, 43, 716–719. [Google Scholar] [CrossRef]
- Teubner, M.; Strey, R. Origin of the scattering peak in microemulsions. J. Chem. Phys. 1987, 87, 3195–3200. [Google Scholar] [CrossRef]
- Fuoss, R.M.; Strauss, U.P. Polyelectrolytes. II. Poly-4-vinylpyridonium chloride and poly-4-vinyl-N-n-butylpyridonium bromide. J. Polym. Sci. 1948, 3, 246–263. [Google Scholar] [CrossRef]
- Scranton, A.B.; Rangarajan, B.; Klier, J. Biomedical applications of polyelectrolytes. Adv. Polym. Sci. 1995, 122, 1–54. [Google Scholar]
- Dobrynin, A.V.; Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 2005, 30, 1049–1118. [Google Scholar] [CrossRef]
- Moinard, D.; Borsali, R.; Taton, D.; Gnanou, Y. Scattering and Viscosimetric Behaviors of Four- and Six-Arm Star Polyelectrolyte Solutions. Macromolecules 2005, 38, 7105–7120. [Google Scholar] [CrossRef]
- Zheng, Y.-X.; Yu, T.-X.; Li, Y.-F. An equation of state for the isotropic-nematic phase transition of semiflexible polymers. Ind. Eng. Chem. Res. 2011, 50, 6460–6469. [Google Scholar] [CrossRef]
- Knaapila, M.; Torkkeli, M.; Jokela, K.; Kisko, K.; Horsburgh, L.E.; Pålsson, L.-O.; Seeck, O.H.; Dolbnya, I.P.; Bras, W.; ten Brinke, G.; et al. Diffraction analysis of highly ordered smectic supramolecules of conjugated rodlike polymers. J. Appl. Cryst. 2003, 36, 702–707. [Google Scholar] [CrossRef]
- Makowski, M.P.; Mattice, W.L. Fluorecence and conformation of a rigid rod poly(pyridinium salt). Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 1992, 33, 833–834. [Google Scholar]
- Makowski, M.P.; Mattice, W.L. Characterization of Rigid Rod Poly(Pyridinium Salt)s by Conformational Analysis, Molecular Dynamics, and Steady-State and Time-Resolved Fluorescence. Polymer 1993, 34, 1606–1612. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, C.; Qin, J. An aggregation-induced blue shift of emission and the self-assembly of nanoparticles from a novel amphiphilic oligofluorene. Chem. Commun. 2008, 47, 6303–6305. [Google Scholar] [CrossRef]
Polymer | |||||
---|---|---|---|---|---|
Solvent | I | II | III | IV | V |
DMSO | 1–10 wt% I a | - | 1–54 wt% I | 1–54 wt% I | 1–54 wt% I |
21 wt% B a | b | 62 wt% B | 62 wt% B | 62 wt% B | |
30 wt% L a | - | 72 wt% L | 72 wt% L | 72 wt% L | |
CH3CN | - | - | 1–40 wt% I | - | 40 wt% I |
- | 50 wt% L | 67 wt% L | - | 54 wt% B | |
- | - | - | - | 67 wt% L | |
CH3OH | 10 wt% B | - | - | - | 49 wt% I |
30 wt% L | - | - | - | 63 wt% L |
PI/MeOH | PII/DMSO | PII/Acetonitrile | ||||
---|---|---|---|---|---|---|
20:80 | 50:50 | 20:80 | 50:50 | 20:80 | 50:50 | |
21.4 ± 0.1 | 18.4 ± 0.1 | n/a | 8.9 ± 0.1 | n/a | n/a | |
10.9 ± 0.5 | 17.3 ± 0.4 | 5.6 ± 0.1 | 2.3 ± 0.3 | 2.78 ± 0.17 | n/a | |
1.29 ± 0.03 | 0.76 ± 0.02 | 1.43 ± 0.02 | 1.11 ± 0.02 | 0.55 ± 0.01 | n/a | |
n/a | n/a | n/a | n/a | 3.36 ± 0.04 | 3.09 ± 0.18 | |
n/a | n/a | n/a | n/a | 0.73 ± 0.01 | 0.77 ± 0.02 | |
n/a | n/a | n/a | n/a | 2.04 ± 0.04 | 1.39 ± 0.03 |
Polymer | I | II a | III | IV | V |
---|---|---|---|---|---|
λabs wavelength (nm) | 340 | 338 | 340 | - | 340 |
Molar absorptivity (M−1 cm−1) | 60,244 ± 2782 | 62,437 ± 4120 | 60,113 ± 2857 | - | 60,232 ± 2881 |
λem wavelength (nm) | 535 | 534 | 541 | - | 541 |
AQY (ΦF) | 0.023 | 0.027 | 0.025 | - | 0.022 |
AQYsolid (ΦF) | 0.020 | <0.01 | 0.020 | - | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhowmik, P.K.; King, D.; Han, H.; Wacha, A.F.; Knaapila, M. Poly(pyridinium salt)s Containing 9,9-Bis(4-aminophenyl)fluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties. Polymers 2025, 17, 1785. https://doi.org/10.3390/polym17131785
Bhowmik PK, King D, Han H, Wacha AF, Knaapila M. Poly(pyridinium salt)s Containing 9,9-Bis(4-aminophenyl)fluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties. Polymers. 2025; 17(13):1785. https://doi.org/10.3390/polym17131785
Chicago/Turabian StyleBhowmik, Pradip K., David King, Haesook Han, András F. Wacha, and Matti Knaapila. 2025. "Poly(pyridinium salt)s Containing 9,9-Bis(4-aminophenyl)fluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties" Polymers 17, no. 13: 1785. https://doi.org/10.3390/polym17131785
APA StyleBhowmik, P. K., King, D., Han, H., Wacha, A. F., & Knaapila, M. (2025). Poly(pyridinium salt)s Containing 9,9-Bis(4-aminophenyl)fluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties. Polymers, 17(13), 1785. https://doi.org/10.3390/polym17131785