Solvent-Driven Electroless Nickel Coatings on Polymers: Interface Engineering, Microstructure, and Applications
Abstract
1. Introduction
2. Mechanism of Electroless Nickel Deposition
Mechanism | Key Concept | Advantages | Limitations | Reaction Pathway |
---|---|---|---|---|
Atomic Hydrogen Mechanism [13] | Reduction via atomic hydrogen generated by the reducing agent. | Simple explanation of reaction initiation. | Does not fully explain all observed reaction phenomena. | H2PO2− + H2O → HPO32− + 2H+ + 2e− Ni2+ + 2e− → Ni0 |
Hydride Transfer Mechanism [37] | Direct transfer of hydride ions from reducing agents to metal ions. | Better explanation of phosphorus incorporation. | Lacks experimental confirmation for some systems. | (CH3)2NH·BH3 + 3OH− → (CH3)2NH + B(OH)3 + 3H2 + 3e− Ni2+ + 2e− → Ni0 |
Electrochemical Mechanism [13] | Formation of local galvanic cells driving nickel deposition. | Explains surface reactions in more detail. | Complexity in modelling local electrochemical interactions. | Ni2+ + 2e− → Ni0 H2PO2− → HPO32− + H+ + e− |
Nucleation
3. Electroless Nickel Deposition on Non-Conductive Surfaces
3.1. Challenges in Coating on Non-Conductive Surfaces
Component/ Parameter | Stage in ELD Process | Function | Examples |
---|---|---|---|
Surface Pretreatment Agents | Surface Preparation | Clean and roughen substrate to improve adhesion. | Acid etchants, plasma treatment, mechanical abrasion |
Catalysts | Catalyst Immobilisation | Provide active sites to initiate the deposition reaction. | Palladium (Pd), Silver (Ag), Copper (Cu) |
Metal Ions | Deposition Process | Source of nickel for coating formation. | Nickel sulphate (NiSO4), Nickel chloride (NiCl2) |
Reducing Agents | Deposition Process | Supply electrons to reduce metal ions to metallic nickel. | Sodium hypophosphite (NaH2PO2), DMAB, NaBH4 |
Complexing Agents | Bath Stabilisation | Prevent metal ions from precipitating and ensure controlled release. | Sodium citrate, EDTA, Lactic acid |
Accelerators | Deposition Process | Enhance reaction rate and improve coating efficiency. | Fluoride ions, organic acids |
Stabilisers | Bath Stabilisation | Prevent spontaneous decomposition of the plating bath. | Lead acetate, thiourea, organic surfactants |
Buffers | pH Control | Maintain pH stability throughout the deposition process. | Ammonium salts, borate buffers |
pH Regulators | pH Adjustment | Adjust and control bath pH to optimise deposition conditions. | Ammonia (NH3), Sodium hydroxide (NaOH) |
Temperature Control | Deposition Process | Provides the required activation energy for the reaction. | Heating systems, thermostats |
3.2. Electroless Nickel Deposition on Non-Conductive Polymer Yarns
3.3. Surface Activation Techniques
3.3.1. Wet Chemical Layer Deposition
3.3.2. Plasma Treatment
3.4. Roles of Surface Chemistry in Coating Adhesion
Surface Modification Method | Advantages | Limitations |
---|---|---|
Aminosilanes (e.g., APTES) [83] | Forms strong covalent bonds with the substrate, improves adhesion and stability, enhances metal ion coordination | Requires precise control of reaction conditions, and potential hydrolysis in humid environments. |
Thiol-based Modifications (e.g., Mercaptosilanes) [98] | High affinity for metal ions, strong sulphur-metal interaction, improves the uniformity of nickel deposition | Can degrade over time due to oxidation, sensitive to environmental conditions. |
PDA Coating [70] | Bio-inspired adhesion, improves surface hydrophilicity, provides functional groups for catalyst immobilisation | Requires alkaline conditions for polymerisation, may lead to excessive surface roughness. |
TA Treatment [71] | Introduces phenolic hydroxyl groups for metal ion binding, enhances adhesion without aggressive etching | Selective adhesion properties, less effective on highly hydrophobic surfaces. |
PEI Functionalisation [86] | Provides dense network of amines, enhances catalyst immobilisation, flexible and adaptable to various substrates | Can lead to excessive surface charge, may require cross-linking for stability. |
Plasma Treatment [78] | Increases surface energy and wettability, creates functional groups for better coating adhesion | Requires specialised equipment, may cause fibre degradation with prolonged exposure. |
Acid Etching [99] | Improves mechanical interlocking, introduces reactive functional groups, cost-effective | Can degrade fibre integrity, produces hazardous waste requiring proper disposal. |
Silane Coupling Agents [100] | Strong bonding with both organic and inorganic surfaces, enhances long-term stability | Sensitivity to moisture, requires careful selection of silane type for optimal results. |
4. Exploring Solvent Systems in Electroless Nickel Deposition
4.1. Polar Protic Solvents
4.1.1. Water
4.1.2. Ethanol
4.2. Polar Aprotic Solvents
4.2.1. DMSO
4.2.2. Ethylene Glycol
4.3. Non-Polar Solvents
5. Microstructure of Electroless Nickel Coatings
5.1. Crystalline Nickel
5.1.1. Single-Crystalline
5.1.2. Polycrystalline
5.1.3. Nanocrystalline
5.2. Amorphous-Nanocrystalline Nickel
5.3. Amorphous Nickel
6. Advanced Applications of Electroless Nickel Coatings
6.1. Corrosion Protection and Wear Resistance
6.2. Electronics and Microelectronics
6.3. Nanotechnology and Energy Storage Applications
6.4. Wearable Electronic Textile Applications
7. Challenges and Perspectives
7.1. Challenges
7.2. Future Directions
- Coating adhesion and delamination: Improving the mechanical robustness of metal-polymer interfaces remains the most pressing challenge, especially under bending, washing, or thermal cycling.
- Surface activation standardisation: Developing low-cost, effective, and environmentally friendly activation methods that work across a variety of polymers and geometries is crucial.
- Bath stability and reproducibility: Achieving consistent deposition rates and coating quality across long plating durations or in large-scale processes requires better control over bath ageing and composition.
- Environmental sustainability: Reducing or replacing toxic stabilisers, improving waste treatment, and enabling bath recyclability are essential for greener implementation.
- Scalability and integration: Translating lab-scale processes to roll-to-roll or industrial-scale systems without compromising coating performance remains a significant hurdle.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mallory, G.O.; Hajdu, J.B. Electroless Plating: Fundamentals and Applications; William Andrew: Norwich, UK, 1990. [Google Scholar]
- Paunovic, M.; Schlesinger, M.; Snyder, D.D. Fundamental Considerations. Mod. Electroplat. 2010, 1–32. [Google Scholar]
- Schlesinger, M. Others Electroless Deposition of Nickel. Mod. Electroplat. 2000, 4, 667–684. [Google Scholar]
- Assessment of Corrosion Protection Behavior of Composite Coatings Developed Through Electro and Electroless Approach—A Review | SpringerLink. Available online: https://link.springer.com/chapter/10.1007/978-981-16-9302-1_36 (accessed on 11 July 2025).
- Brenner, A.; Riddell, G.E. Nickel Plating on Steel by Chemical Reduction. J. Res. Natl. Bur. Stand. 1946, 37, 31. [Google Scholar] [CrossRef]
- Lelevic, A. Ni-P coatings electroplating—A review, Part I: Pure Ni-P alloy. arXiv 2018, arXiv:1807.04693. [Google Scholar] [CrossRef]
- Zhang, B.; Liao, S.; Xie, H.; Zhang, H. Progress of Electroless Amorphous and Nanoalloy Deposition: A Review–Part 1. Trans. IMF 2013, 91, 310–318. [Google Scholar] [CrossRef]
- Muench, F. Electroless Plating of Metal Nanomaterials. ChemElectroChem 2021, 8, 2993–3012. [Google Scholar] [CrossRef]
- Barati, Q.; Hadavi, S.M.M. Electroless Ni-B and Composite Coatings: A Critical Review on Formation Mechanism, Properties, Applications and Future Trends. Surf. Interfaces 2020, 21, 100702. [Google Scholar] [CrossRef]
- Gutzeit, G. Catalytic Nickel Deposition from Aqueous Solution. I–IV. Plat. Surf. Finish. 1959, 46, 1158–1164. [Google Scholar]
- Zhang, B.; Liao, S.; Xie, H.; Zhang, H. Progress of Electroless Amorphous and Nano Alloy Deposition: A Review—Part 2. Trans. IMF 2014, 92, 74–80. [Google Scholar] [CrossRef]
- Djokić, S.S. Electroless Deposition of Metals and Alloys. In Modern Aspects of Electrochemistry; Springer: Berlin/Heidelberg, Germany, 2002; pp. 51–133. [Google Scholar]
- Okinaka, Y.; Osaka, T. Electroless Deposition Processes: Fundamentals and Applications. Adv. Electrochem. Sci. Eng. 2008, 3, 55–116. [Google Scholar]
- Matsubara, H.; Yonekawa, T.; Ishino, Y.; Nishiyama, H.; Saito, N.; Inoue, Y. Observation of Initial Deposition Process of Electroless Nickel Plating by Quartz Crystal Microbalance Method and Microscopy. Electrochim. Acta 2002, 47, 4011–4018. [Google Scholar] [CrossRef]
- Yuen, C.W.M.; Jiang, S.Q.; Kan, C.W.; Tung, W.S. Influence of Surface Treatment on the Electroless Nickel Plating of Textile Fabric. Appl. Surf. Sci. 2007, 253, 5250–5257. [Google Scholar] [CrossRef]
- Jalal Uddin, A. 5—Coatings for Technical Textile Yarns. In Technical Textile Yarns; Alagirusamy, R., Das, A., Eds.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, UK, 2010; pp. 140–184. ISBN 978-1-84569-549-1. [Google Scholar]
- Shang, W.; Zhan, X.; Wen, Y.; Li, Y.; Zhang, Z.; Wu, F.; Wang, C. Deposition Mechanism of Electroless Nickel Plating of Composite Coatings on Magnesium Alloy. Chem. Eng. Sci. 2019, 207, 1299–1308. [Google Scholar] [CrossRef]
- Kim, N.K.; Kang, S.M.; Kim, T.; Kim, S.; Kim, G.H. Electroless Plating on Polymer Surfaces: Comprehensive Review of Mechanism, Process, Analysis, and Future Applications. Adv. Mater. Interfaces 2025, 12, 2400931. [Google Scholar] [CrossRef]
- Gao, S.; Wu, C.; Yang, X.; Cheng, J.; Kang, R. Study on Adhesion Properties and Process Parameters of Electroless Deposited Ni-P Alloy for PEEK and Its Modified Materials. Coatings 2023, 13, 388. [Google Scholar] [CrossRef]
- Wu, L.; Meng, L.; Wang, Y.; Zhang, S.; Bai, W.; Ouyang, T.; Lv, M.; Zeng, X. Effects of Laser Surface Modification on the Adhesion Strength and Fracture Mechanism of Electroless-Plated Coatings. Surf. Coat. Technol. 2022, 429, 127927. [Google Scholar] [CrossRef]
- Vitry, V.; Hastir, J.; Mégret, A.; Yazdani, S.; Yunacti, M.; Bonin, L. Recent Advances in Electroless Nickel-Boron Coatings. Surf. Coat. Technol. 2022, 429, 127937. [Google Scholar] [CrossRef]
- Koiwa, I.; Osaka, T.; Sawai, H. Heat Change Properties of Chemically Deposited Amorphous Ni–W–P Films. J. Met. Finish Soc. Jpn. 1983, 34, 600–603. [Google Scholar] [CrossRef]
- Lee, S.-L.; Liang, H.-H. Structures and Corrosion Characteristics of Electroless Ni-Mo-P Alloy Deposits. Plat. Surf. Finish. 1991, 78, 82–86. [Google Scholar]
- Osaka, T.; Takano, N.; Kurokawa, T.; Kaneko, T.; Ueno, K. Electroless Nickel Ternary Alloy Deposition on SiO2 for Application to Diffusion Barrier Layer in Copper Interconnect Technology. J. Electrochem. Soc. 2002, 149, C573. [Google Scholar] [CrossRef]
- Osaka, T.; Aramaki, H.; Yoshino, M.; Ueno, K.; Matsuda, I.; Shacham-Diamand, Y. Fabrication of Electroless CoWP/NiB Diffusion Barrier Layer on SiO2 for ULSI Devices. J. Electrochem. Soc. 2009, 156, H707. [Google Scholar] [CrossRef]
- Zhang, B. Physical Fundamentals of Nanomaterials; William Andrew: Norwich, UK, 2018. [Google Scholar]
- Balaraju, J.; Rajam, K. Electroless Deposition of Ni–Cu–P, Ni–W–P and Ni–W–Cu–P Alloys. Surf. Coat. Technol. 2005, 195, 154–161. [Google Scholar] [CrossRef]
- Strukova, G.; Strukov, G.; Batov, I.; Sakharov, M.; Kudrenko, E.; Mazilkin, A. Studies of Nanocrystalline Pd Alloy Films Coated by Electroless Deposition. Mater. Chem. Phys. 2010, 119, 377–383. [Google Scholar] [CrossRef]
- Pawar, K.; Dixit, P. A Critical Review of Copper Electroless Deposition on Glass Substrates for Microsystems Packaging Applications. Surf. Eng. 2022, 38, 576–617. [Google Scholar] [CrossRef]
- Fritz, N.; Koo, H.-C.; Wilson, Z.; Uzunlar, E.; Wen, Z.; Yeow, X.; Allen, S.A.B.; Kohl, P.A. Electroless Deposition of Copper on Organic and Inorganic Substrates Using a Sn/Ag Catalyst. J. Electrochem. Soc. 2012, 159, D386. [Google Scholar] [CrossRef]
- Hong, Y.; You, X.; Zeng, Y.; Chen, Y.; Huang, Y.; He, W.; Wang, S.; Wang, C.; Zhou, G.; Su, X.; et al. Air-Plasma Surface Modification of Epoxy Resin Substrate to Improve Electroless Copper Plating of Printed Circuit Board. Vacuum 2019, 170, 108967. [Google Scholar] [CrossRef]
- Chih, Y.; Hwang, J.; Kou, C.; Chuang, C.; Hu, J.; Lee, J.; Chang, S.; Row, L.; Cheng, S.; Chen, J. Surface Modification of Hollow Carbon Fibres Using Plasma Treatment. Surf. Eng. 2011, 27, 623–626. [Google Scholar] [CrossRef]
- Vashistha, I.; Sharma, M.; Sharma, S. Post Annealing Treatment of Zinc Sulphide Thin Film as a Buffer Layer for Solar Cell Application. Surf. Eng. 2017, 33, 299–304. [Google Scholar] [CrossRef]
- Zhang, Z.; Hsieh, M.-C.; Liu, R.; Yeom, J.; Suetake, A.; Yoshida, H.; Chen, C.; Kang, J.; Honma, H.; Kitahara, Y.; et al. Effect of Electroless Cu Depositions for Micro-via Structure and Thermal Cycling Reliability. Microelectron. Reliab. 2022, 138, 114707. [Google Scholar] [CrossRef]
- Okinaka, Y.; Nakahara, S. Hydrogen Embrittlement of Electroless Copper Deposits. J. Electrochem. Soc. 1976, 123, 475. [Google Scholar] [CrossRef]
- Delaunois, F.; Petitjean, J.; Lienard, P.; Jacob-Duliere, M. Autocatalytic Electroless Nickel-Boron Plating on Light Alloys. Surf. Coat. Technol. 2000, 124, 201–209. [Google Scholar] [CrossRef]
- Stankiewicz, A.; Szczygieł, I.; Szczygieł, B. Summary of Existing Models of the Ni-P Coating Electroless Deposition Process. Int. J. Chem. Kinet. 2013, 45, 755–762. [Google Scholar] [CrossRef]
- Bonin, L.; Vitry, V.; Delaunois, F. Inorganic Salts Stabilizers Effect in Electroless Nickel-Boron Plating: Stabilization Mechanism and Microstructure Modification. Surf. Coat. Technol. 2020, 401, 126276. [Google Scholar] [CrossRef]
- Riedel, W. Electroless Nickel Plating. Met. Finish. 1997, 101. [Google Scholar]
- Gill, T.M.; Zhao, J.; Berenschot, E.J.; Tas, N.; Zheng, X. Conformal Electroless Nickel Plating on Silicon Wafers, Convex and Concave Pyramids, and Ultralong Nanowires. ACS Appl. Mater. Interfaces 2018, 10, 22834–22840. [Google Scholar] [CrossRef]
- Vitry, V.; Bonin, L. Increase of Boron Content in Electroless Nickel-Boron Coating by Modification of Plating Conditions. Surf. Coat. Technol. 2017, 311, 164–171. [Google Scholar] [CrossRef]
- Bonin, L.; Bains, N.; Vitry, V.; Cobley, A. Electroless Deposition of Nickel-Boron Coatings Using Low Frequency Ultrasonic Agitation: Effect of Ultrasonic Frequency on the Coatings. Ultrasonics 2017, 77, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Chen, Y.; Renner, P.; Parkinson, D.; Fang, A.; Liang, H. Synthesis and Morphological Characterization of Electroless-Deposited Ni-P Coatings on Diamond Abrasives. Lubricants 2021, 9, 20. [Google Scholar] [CrossRef]
- Nemane, V.; Sharma, V.; Chatterjee, S. Tribological Electroless Ternary Ni-B-W Coatings: A Suitable Alternative to Hard Chromium Coatings. J. Tribol. 2022, 144, 121401. [Google Scholar] [CrossRef]
- Bharim, A.H.; Sarian, M.Z.; Baba, N.B. Tribology of Electroless Nickel and Interlayer Coatings: A Review. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1068, p. 012011. [Google Scholar]
- Shahidi, S.; Kalaoglu, F. In Situ Deposition of Nickel Nano Particles on Polyester Fabric and Its Application as a Flexible Electrode in Supercapacitor. J. Ind. Text. 2022, 51, 4913S–4930S. [Google Scholar] [CrossRef]
- Raghavendra, C.; Basavarajappa, S.; Sogalad, I.; Kumar, S. A Review on Ni Based Nano Composite Coatings. Mater. Today Proc. 2021, 39, 6–16. [Google Scholar] [CrossRef]
- Shozib, I.A.; Ahmad, A.; Abdul-Rani, A.M.; Beheshti, M.; Aliyu, A.A. A Review on the Corrosion Resistance of Electroless Ni-P Based Composite Coatings and Electrochemical Corrosion Testing Methods. Corros. Rev. 2022, 40, 1–37. [Google Scholar] [CrossRef]
- Agarwala, R.C.; Agarwala, V.; Sharma, R. Electroless Ni-P Based Nanocoating Technology—A Review. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2006, 36, 493–515. [Google Scholar] [CrossRef]
- Sudagar, J.; Lian, J.; Sha, W. Electroless Nickel, Alloy, Composite and Nano Coatings—A Critical Review. J. Alloys Compd. 2013, 571, 183–204. [Google Scholar] [CrossRef]
- Simmons, C.H.; Maguire, D.E.; Phelps, N. 27—Surface Finish and Corrosion of Metals. In Manual of Engineering Drawing, 5th ed.; Simmons, C.H., Maguire, D.E., Phelps, N., Eds.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 383–393. ISBN 978-0-12-818482-0. [Google Scholar]
- Sha, W.; Wu, X.; Keong, K.G. 15—Applications of Electroless Nickel–Phosphorus (Ni–P) Plating. In Electroless Copper and Nickel–Phosphorus Plating; Sha, W., Wu, X., Keong, K.G., Eds.; Woodhead Publishing Series in Metals and Surface Engineering; Woodhead Publishing: Sawston, UK, 2011; pp. 263–274. ISBN 978-1-84569-808-9. [Google Scholar]
- Sahoo, P. 6—Tribological Performance of Electroless Ni-P Coatings. In Materials and Surface Engineering; Davim, J.P., Ed.; Woodhead Publishing Reviews: Mechanical Engineering Series; Woodhead Publishing: Sawston, UK, 2012; pp. 163–205. ISBN 978-0-85709-151-2. [Google Scholar]
- Yan, J.; Xu, Z.; Wu, G.; Yang, S. Interface Structure and Mechanical Performance of TLP Bonded Joints of Al2O3p/6061Al Composites Using Cu/Ni Composite Interlayers. Scr. Mater. 2004, 51, 147–150. [Google Scholar] [CrossRef]
- Arulvel, S.; Elayaperumal, A.; Jagatheeshwaran, M. Electroless Nickel–Phosphorus Coating on Crab Shell Particles and Its Characterization. J. Solid State Chem. 2017, 248, 87–95. [Google Scholar] [CrossRef]
- Zhu, C.; Li, Y.; Liu, X. Polymer Interface Molecular Engineering for E-Textiles. Polymers 2018, 10, 573. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wen, G.; Guo, Z. Durable Superhydrophobic and Underwater Superoleophobic Cotton Fabrics Growing Zinc Oxide Nanoarrays for Application in Separation of Heavy/Light Oil and Water Mixtures as Need. Colloids Surf. Physicochem. Eng. Asp. 2018, 559, 115–126. [Google Scholar] [CrossRef]
- You, J.-L.; Chang, C.-P.; Youh, M.-J.; Wu, M.-Z.; Chen, Y.-S.; Ger, M.-D. A Reliable Method by Utilizing Thermo-Responsive Palladium Nanocomposite for Fabricating Nickel Coating on Nylon 6 Fabrics. Colloids Surf. Physicochem. Eng. Asp. 2022, 655, 130160. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Zheng, Z. Polymer-Assisted Metal Deposition (PAMD) for Flexible and Wearable Electronics: Principle, Materials, Printing, and Devices. Adv. Mater. 2019, 31, 1902987. [Google Scholar] [CrossRef]
- Abdul-Bari, M.M.; McQueen, R.H.; Nguyen, H.; Wismer, W.V.; de la Mata, A.P.; Harynuk, J.J. Synthetic Clothing and the Problem With Odor: Comparison of Nylon and Polyester Fabrics. Cloth. Text. Res. J. 2018, 36, 251–266. [Google Scholar] [CrossRef]
- Rakshit, A.K.; Hira, M.A. Electrically Conductive Fibre Substrates. Int. J. Fiber Text. Res. 2014, 4, 44–48. [Google Scholar]
- Jiang, S.; Guo, R. Effect of Polyester Fabric through Electroless Ni-P Plating. Fibers Polym. 2008, 9, 755–760. [Google Scholar] [CrossRef]
- Frunza, L.; Preda, N.; Matei, E.; Frunza, S.; Ganea, C.P.; Vlaicu, A.M.; Diamandescu, L.; Dorogan, A. Synthetic Fabrics Coated with Zinc Oxide Nanoparticles by Electroless Deposition: Structural Characterization and Wetting Properties. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 1427–1437. [Google Scholar] [CrossRef]
- Binder, W.H. The Past 40 Years of Macromolecular Sciences: Reflections on Challenges in Synthetic Polymer and Material Science. Macromol. Rapid Commun. 2019, 40, 1800610. [Google Scholar] [CrossRef]
- Ali, M.A.; Kaneko, T. Polyamide syntheses. In Encyclopedia of Polymeric Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1750–1762. [Google Scholar] [CrossRef]
- Deopura, B.; Padaki, N. Synthetic Textile Fibres: Polyamide, Polyester and Aramid Fibres. In Textiles and Fashion; Elsevier: Amsterdam, The Netherlands, 2015; pp. 97–114. [Google Scholar]
- Zhu, C.; Li, R.; Chen, X.; Chalmers, E.; Liu, X.; Wang, Y.; Xu, B.B.; Liu, X. Ultraelastic Yarns from Curcumin-Assisted ELD toward Wearable Human–Machine Interface Textiles. Adv. Sci. 2020, 7, 2002009. [Google Scholar] [CrossRef]
- Li, L.; Liu, B. Study of Ni-Catalyst for Electroless Ni–P Deposition on Glass Fiber. Mater. Chem. Phys. 2011, 128, 303–310. [Google Scholar] [CrossRef]
- You, J.-L.; Chen, Y.-S.; Chang, C.-P.; Wu, M.-Z.; Ger, M.-D. Utilizing a pH-Responsive Palladium Nanocomposite to Fabricate Adhesion-Enhanced and Highly Reliable Copper Coating on Nylon 6 Fabrics. J. Mater. Res. Technol. 2021, 15, 3983–3994. [Google Scholar] [CrossRef]
- Zhu, C.; Guan, X.; Wang, X.; Li, Y.; Chalmers, E.; Liu, X. Mussel-Inspired Flexible, Durable, and Conductive Fibers Manufacturing for Finger-Monitoring Sensors. Adv. Mater. Interfaces 2019, 6, 1801547. [Google Scholar] [CrossRef]
- Ai, X.; Cheng, J.; Hou, X.; Chen, G.; Xing, T. Fabrication of Robust Silver Plated Conductive Polyamide Fibres Based on Tannic Acid Modification. RSC Adv. 2022, 12, 18585–18593. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Guan, X.; Wang, Y.; Chen, X.; Liu, X. Tannic Interfacial Linkage within ZnO-Loaded Fabrics for Durable UV-Blocking Applications. Appl. Surf. Sci. 2021, 568, 150960. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Y.; Bessho, T.; Sang, J.; Hirahara, H.; Mori, K.; Kang, Z. Layer by Layer Electroless Deposition: An Efficient Route for Preparing Adhesion-Enhanced Metallic Coatings on Plastic Surfaces. Chem. Eng. J. 2016, 303, 100–108. [Google Scholar] [CrossRef]
- Park, S.-J.; Lee, H.-Y. Effect of Atmospheric-Pressure Plasma on Adhesion Characteristics of Polyimide Film. J. Colloid Interface Sci. 2005, 285, 267–272. [Google Scholar] [CrossRef]
- Šimor, M.; Ráhel’, J.; Černák, M.; Imahori, Y.; Štefečka, M.; Kando, M. Atmospheric-Pressure Plasma Treatment of Polyester Nonwoven Fabrics for Electroless Plating. Surf. Coat. Technol. 2003, 172, 1–6. [Google Scholar] [CrossRef]
- Sohbatzadeh, F.; Shakerinasab, E.; Mirzanejhad, S. Surface Modification of Aramid Yarn by Atmospheric Pressure Plasma: Reinforcement and Floating Properties. Polym. Test. 2023, 117, 107836. [Google Scholar] [CrossRef]
- Esrom, H.; Seeböck, R.; Charbonnier, M.; Romand, M. Surface Activation of Polyimide with Dielectric Barrier Discharge for Electroless Metal Deposition. Surf. Coat. Technol. 2000, 125, 19–24. [Google Scholar] [CrossRef]
- Guo, W.; Khan, M.; Zhou, T.; He, Y.; Zhang, Y.; Liu, P.; Zhao, B.; Yu, Q.; Wang, X.; Deng, H. Enhanced Electroless Ni-P Plating Quality on Binderless Tungsten Carbide by Atmospheric Pressure Plasma Pretreatment. Surf. Coat. Technol. 2023, 474, 130094. [Google Scholar] [CrossRef]
- Sauvageau, J.-F.; Fortin, M.-A. Recovery of Noble Metal Elements from Effluents of the Semiconductor Industry as Nanoparticles, by Dielectric Barrier Discharge (DBD) Plasma Treatment. Hydrometallurgy 2020, 197, 105483. [Google Scholar] [CrossRef]
- Geng, Y.; Lu, C.; Liang, M.; Zhang, W. Characterization and Properties of Electroless Nickel Plated Poly (Ethylene Terephthalate) Nonwoven Fabric Enhanced by Dielectric Barrier Discharge Plasma Pretreatment. Plasma Sci. Technol. 2010, 12, 715. [Google Scholar] [CrossRef]
- Jia, X.; Herrera-Alonso, M.; McCarthy, T.J. Nylon Surface Modification. Part 1. Targeting the Amide Groups for Selective Introduction of Reactive Functionalities. Polymer 2006, 47, 4916–4924. [Google Scholar] [CrossRef]
- Lin, Z.T.; Chu, C.M.; Chang, Y.H.; Li, W.J. Influence of Aminosilane Self-Assembled Layers on the Adhesion of Electroless Nickel–Phosphorus on a Silicon Wafer. Sens. Mater. 2021, 33, 1849. [Google Scholar] [CrossRef]
- Williams, M.; Nechaev, A.N.; Lototsky, M.V.; Yartys, V.A.; Solberg, J.K.; Denys, R.V.; Pineda, C.; Li, Q.; Linkov, V.M. Influence of Aminosilane Surface Functionalization of Rare Earth Hydride-Forming Alloys on Palladium Treatment by Electroless Deposition and Hydrogen Sorption Kinetics of Composite Materials. Mater. Chem. Phys. 2009, 115, 136–141. [Google Scholar] [CrossRef]
- Xu, L.; Liao, J.; Huang, L.; Gu, N.; Zhang, H.; Liu, J. Pendant Thiol Groups-Attached Pd(II) for Initiating Metal Deposition. Appl. Surf. Sci. 2003, 211, 184–188. [Google Scholar] [CrossRef]
- Veisi, H.; Nikseresht, A.; Mohammadi, S.; Hemmati, S. Facile In-Situ Synthesis and Deposition of Monodisperse Palladium Nanoparticles on Polydopamine-Functionalized Silica Gel as a Heterogeneous and Recyclable Nanocatalyst for Aerobic Oxidation of Alcohols. Chin. J. Catal. 2018, 39, 1044–1050. [Google Scholar] [CrossRef]
- Su, W.; Yao, L.; Yang, F.; Li, P.; Chen, J.; Liang, L. Electroless Plating of Copper on Surface-Modified Glass Substrate. Appl. Surf. Sci. 2011, 257, 8067–8071. [Google Scholar] [CrossRef]
- Mondin, G.; Lohe, M.R.; Wisser, F.M.; Grothe, J.; Mohamed-Noriega, N.; Leifert, A.; Dörfler, S.; Bachmatiuk, A.; Rümmeli, M.H.; Kaskel, S. Electroless Copper Deposition on (3-Mercaptopropyl)Triethoxysilane-Coated Silica and Alumina Nanoparticles. Electrochim. Acta 2013, 114, 521–526. [Google Scholar] [CrossRef]
- Fattahi, N.; Gorgannezhad, L.; Masoule, S.F.; Babanejad, N.; Ramazani, A.; Raoufi, M.; Sharifikolouei, E.; Foroumadi, A.; Khoobi, M. PEI-Based Functional Materials: Fabrication Techniques, Properties, and Biomedical Applications. Adv. Colloid Interface Sci. 2024, 325, 103119. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Liu, H.; Liang, W.; Zhu, L.; Li, W.; Chen, H. Creating Gradient Wetting Surfaces via Electroless Displacement of Zinc-Coated Carbon Steel by Nickel Ions. Appl. Surf. Sci. 2018, 434, 940–949. [Google Scholar] [CrossRef]
- Nwosu, N.; Davidson, A.; Hindle, C.; Barker, M. On the Influence of Surfactant Incorporation during Electroless Nickel Plating. Ind. Eng. Chem. Res. 2012, 51, 5635–5644. [Google Scholar] [CrossRef]
- Hamid, Z.A. Mechanism of Electroless Deposition of Ni–W–P Alloys by Adding Surfactants. Surf. Interface Anal. 2003, 35, 496–501. [Google Scholar] [CrossRef]
- Yeetsorn, R.; Ouajai, W.P.; Onyu, K. Studies on Surface Modification of Polypropylene Composite Bipolar Plates Using an Electroless Deposition Technique. RSC Adv. 2020, 10, 24330–24342. [Google Scholar] [CrossRef]
- Charbonnier, M.; Romand, M. Polymer Pretreatments for Enhanced Adhesion of Metals Deposited by the Electroless Process. Int. J. Adhes. Adhes. 2003, 23, 277–285. [Google Scholar] [CrossRef]
- Wang, W.; Ji, S.; Lee, I. A Facile Method of Nickel Electroless Deposition on Various Neutral Hydrophobic Polymer Surfaces. Appl. Surf. Sci. 2013, 283, 309–320. [Google Scholar] [CrossRef]
- Rohan, J.F.; O’Riordan, G.; Boardman, J. Selective Electroless Nickel Deposition on Copper as a Final Barrier/Bonding Layer Material for Microelectronics Applications. Appl. Surf. Sci. 2002, 185, 289–297. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Wang, W.-Y.; Wang, K.-T.; Chen, H.-A.; Wei, T.-C. Manipulating the Adhesion of Electroless Nickel-Phosphorus Film on Silicon Wafers by Silane Compound Modification and Rapid Thermal Annealing. Sci. Rep. 2017, 7, 9656. [Google Scholar] [CrossRef]
- Loto, C. Electroless Nickel Plating—A Review; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Thoeny, V.; Melnik, E.; Maier, T.; Kurzhals, S.; Derntl, C.; Pulverer, W.; Mutinati, G.C.; Asadi, M.; Mehrabi, P.; Huetter, M.; et al. Comparison of Different Noble Metal-Based Screen-Printed Sensors for Detection of PIK3CA Point-Mutations as Biomarker for Circulating Tumor DNA. Electrochim. Acta 2023, 455, 142336. [Google Scholar] [CrossRef]
- Mencer, D. Electroless Deposition of Amorphous Ni–Re–P Alloys from Acidic Hypophosphite Solutions. J. Alloys Compd. 2000, 306, 158–162. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Li, F. Preparation of Conductive Polyester Fabric by Electroless Plating with Graft Modification of Silane Coupling Agent. Mater. Lett. 2024, 354, 135279. [Google Scholar] [CrossRef]
- Guo, R.H.; Jiang, S.X.; Zheng, Y.D.; Lan, J.W. Electroless Nickel Deposition of a Palladium-Activated Self-Assembled Monolayer on Polyester Fabric. J. Appl. Polym. Sci. 2013, 127, 4186–4193. [Google Scholar] [CrossRef]
- Mirzamohammadi, S.; Khorsand, H.; Aliofkhazraei, M. Effect of Different Organic Solvents on Electrodeposition and Wear Behavior of Ni-Alumina Nanocomposite Coatings. Surf. Coat. Technol. 2017, 313, 202–213. [Google Scholar] [CrossRef]
- Snyder, L. Classification off the Solvent Properties of Common Liquids. J. Chromatogr. Sci. 1978, 16, 223–234. [Google Scholar] [CrossRef]
- Ahmad, N.B.; Fadil, N.A.B.; Hashim, H.B. The Effect of Organic Solvent (Ethanol) on Electroless Ni-P Deposition. In Proceedings of the 36th International Electronics Manufacturing Technology Conference, Johor, Malaysia, 11–13 November 2014; pp. 1–4. [Google Scholar]
- Huffman, B.A.; Poltash, M.L.; Hughey, C.A. Effect of Polar Protic and Polar Aprotic Solvents on Negative-Ion Electrospray Ionization and Chromatographic Separation of Small Acidic Molecules. Anal. Chem. 2012, 84, 9942–9950. [Google Scholar] [CrossRef]
- Marcus, Y. The Effectiveness of Solvents as Hydrogen Bond Donors. J. Solut. Chem. 1991, 20, 929–944. [Google Scholar] [CrossRef]
- Silva, P.L.; Bastos, E.L.; El Seoud, O.A. Solvation in Binary Mixtures of Water and Polar Aprotic Solvents: Theoretical Calculations of the Concentrations of Solvent- Water Hydrogen-Bonded Species and Application to Thermosolvatochromism of Polarity Probes. J. Phys. Chem. B 2007, 111, 6173–6180. [Google Scholar] [CrossRef]
- Adachi, H.; Taki, K.; Nagamine, S.; Yusa, A.; Ohshima, M. Supercritical Carbon Dioxide Assisted Electroless Plating on Polymer Substrates-Effect of CO2 and Ethanol on Plating Reaction. J. Supercrit. Fluids 2008, 333, 309. [Google Scholar]
- Sundarram, S.S.; Jiang, W.; Li, W. Fabrication of Small Pore-Size Nickel Foams Using Electroless Plating of Solid-State Foamed Immiscible Polymer Blends. J. Manuf. Sci. Eng. 2014, 136, 021002. [Google Scholar] [CrossRef]
- Charazińska, S.; Burszta-Adamiak, E.; Lochyński, P. Recent trends in Ni (II) sorption from aqueous solutions using natural materials. Rev. Environ. Sci. Bio/Technol. 2022, 21, 105–138. [Google Scholar] [CrossRef]
- Sahoo, P.; Das, S.K. Tribology of Electroless Nickel Coatings—A Review. Mater. Des. 2011, 32, 1760–1775. [Google Scholar] [CrossRef]
- Evans, W.T.; Schlesinger, M. The Effect of Solution pH and Heat-Treatment on the Properties of Electroless Nickel Boron Films. J. Electrochem. Soc. 1994, 141, 78. [Google Scholar] [CrossRef]
- Gorbunova, K.; Ivanov, M.; Moiseev, V. Electroless Deposition of Nickel-Boron Alloys Mechanism of Process, Structure, and Some Properties of Deposits. J. Electrochem. Soc. 1973, 120, 613. [Google Scholar] [CrossRef]
- Teli, M.D.; Annaldewar, B.N. Superhydrophobic and Ultraviolet Protective Nylon Fabrics by Modified Nano Silica Coating. J. Text. Inst. 2017, 108, 460–466. [Google Scholar] [CrossRef]
- Sedláček, D.; Roso, M.; Manian, A.P. The Effect of a Hydrophobic Coating on the Photodegradation of Dyed Nylon 6 Yarns. Fibers Polym. 2023, 24, 3889–3900. [Google Scholar] [CrossRef]
- Liao, J.-D.; Chen, C.; Wu, Y.-T.; Weng, C.-C. Hydrophilic Treatment of the Dyed Nylon-6 Fabric Using High-Density and Extensible Antenna-Coupling Microwave Plasma System. Plasma Chem. Plasma Process. 2005, 25, 255–273. [Google Scholar] [CrossRef]
- Thompson, R.; Austin, D.; Wang, C.; Neville, A.; Lin, L. Low-Frequency Plasma Activation of Nylon 6. Appl. Surf. Sci. 2021, 544, 148929. [Google Scholar] [CrossRef]
- Gleissner, C.; Biermaier, C.; Bechtold, T.; Pham, T. Complexation-Mediated Surface Modification of Polyamide-66 Textile to Enhance Electroless Copper Deposition. Mater. Chem. Phys. 2022, 288, 126383. [Google Scholar] [CrossRef]
- Ahmad, N.; Fadil, N.A.; Hashim, H. Electroless NI-P Deposition by Using Organic Solvent. J. Mek. 2015, 38, 73–80. [Google Scholar]
- Wang, C.; Zhai, H.; Liu, X.; Lewis, D.J.; Huang, Y.; Ai, L.; Gong, R.H.; Liu, X.; Fernando, A. Ethanol-Based Electroless Nickel Coatings for Functional Polymer Yarns. ACS Appl. Eng. Mater. 2025, 3, 2129–2140. [Google Scholar] [CrossRef]
- Chen, G.-S.; Chang, W.-H.; Chang, C.-C.; Chien, Y.-H.; Fang, J.-S.; Cheng, Y.-L. Structural Models and Barrier Properties of Amine-Terminated Trialkoxysilane Monolayers Incubated in Nonpolar vs. Polar Protic Solvents. Mater. Chem. Phys. 2021, 274, 125113. [Google Scholar] [CrossRef]
- Moi, R.; Maity, K.; Biradha, K. Binary Solvent System Composed of Polar Protic and Polar Aprotic Solvents for Controlling the Dimensionality of MOFs in the Solvothermal Synthesis. Cryst. Growth Des. 2022, 22, 1276–1282. [Google Scholar] [CrossRef]
- Trikkaliotis, D.G.; Christoforidis, A.K.; Mitropoulos, A.C.; Kyzas, G.Z. Adsorption of Copper Ions onto Chitosan/Poly (Vinyl Alcohol) Beads Functionalized with Poly (Ethylene Glycol). Carbohydr. Polym. 2020, 234, 115890. [Google Scholar] [CrossRef]
- Pressman, P.; Clemens, R.; Sahu, S.; Hayes, A.W. A Review of Methanol Poisoning: A Crisis beyond Ocular Toxicology. Cutan. Ocul. Toxicol. 2020, 39, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-Y.; Kala, K.; Wei, T.-C. Solvent-Dependent Adhesion Strength of Electroless Deposited Ni–P Layer on an Amino-Terminated Silane Compound-Modified Si Wafer. Langmuir 2018, 34, 13597–13602. [Google Scholar] [CrossRef]
- Cao, X.; Shi, Y.; Shi, W.; Lu, G.; Huang, X.; Yan, Q.; Zhang, Q.; Zhang, H. Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small 2011, 7, 3163–3168. [Google Scholar] [CrossRef]
- Huang, S.; Wei, R.; Weng, J.; Wang, J. An Experimental Study on the Effects of Ethanol Content on the Decomposition and Burning Risks of Nitrocellulose. Cellulose 2021, 28, 4595–4609. [Google Scholar] [CrossRef]
- Gao, F.; Chang, H.; Li, J.; Wang, R.; Gu, Y. Replacing Polar Aprotic Solvents with Water in Organic Synthesis. Curr. Opin. Green Sustain. Chem. 2023, 40, 100774. [Google Scholar] [CrossRef]
- Miller, J.; Parker, A.J. Dipolar Aprotic Solvents in Bimolecular Aromatic Nucleophilic Substitution Reactions1. J. Am. Chem. Soc. 1961, 83, 117–123. [Google Scholar] [CrossRef]
- Hutchins, R.O.; Taffer, I.M. Aqueous Polar Aprotic Solvents. Efficient Sources of Nucleophilic Oxygen. J. Org. Chem. 1983, 48, 1360–1362. [Google Scholar] [CrossRef]
- Maniam, K.K.; Paul, S. Progress in Electrodeposition of Zinc and Zinc Nickel Alloys Using Ionic Liquids. Appl. Sci. 2020, 10, 5321. [Google Scholar] [CrossRef]
- Dahonog, L.A.; Balela, M.D.L. Electroless Deposition of Nickel-Cobalt Nanoparticles for Hydrogen Evolution Reaction. Mater. Today Proc. 2020, 22, 268–274. [Google Scholar] [CrossRef]
- Muraliraja, R.; Selvan, R.A.S.; Selvakumar, A.; Franco, M.; Tamilarasan, T.R.; Sanjith, U.; Sha, W.; Sudagar, J. A Review of Electroless Coatings on Non-Metals: Bath Conditions, Properties and Applications. J. Alloys Compd. 2023, 960, 170723. [Google Scholar] [CrossRef]
- MacGregor, W.S. The Chemical and Physical Properties of DMSO. Ann. N. Y. Acad. Sci. 1967, 141, 3–12. [Google Scholar] [CrossRef]
- Jie, Q.; Guo-Zhu, J. Dielectric Constant of Polyhydric Alcohol–DMSO Mixture Solution at the Microwave Frequency. J. Phys. Chem. A 2013, 117, 12983–12989. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Takahashi, K.; Kitagishi, K.; Shinoda, K.; Huaman, J.L.C.; Piquemal, J.-Y.; Jeyadevan, B. Dissolution and Reduction of Cobalt Ions in the Polyol Process Using Ethylene Glycol: Identification of the Active Species and Its Role. New J. Chem. 2015, 39, 5008–5018. [Google Scholar] [CrossRef]
- Bonet, F.; Tekaia-Elhsissen, K.; Sarathy, K.V. Study of Interaction of Ethylene Glycol/PVP Phase on Noble Metal Powders Prepared by Polyol Process. Bull. Mater. Sci. 2000, 23, 165–168. [Google Scholar] [CrossRef]
- Georgieva, M.; Girginov, C.; Petrova, M.; Lazarova, D.; Dobreva, E.; Kozhukharov, S. Electroless Copper Plating of Dielectrics from Environmentally Friendly Reducer-Free Electrolyte. Trans. IMF 2021, 99, 238–245. [Google Scholar] [CrossRef]
- Xue, L.; Liang, Q.; Lu, Y. Electroless Copper Plating on 1,2-Ethylenediamine Grafted Poly(Ethyleneterepthalate) for the Fabrication of Flexible Copper Clad Laminate. J. Mater. Sci. Mater. Electron. 2013, 24, 2211–2217. [Google Scholar] [CrossRef]
- Cordonier, C.E.J.; Okabe, K.; Horiuchi, Y.; Nakamura, A.; Ishikawa, K.; Seino, S.; Takagi, S.; Honma, H. Formation of Micrometer Scale Metal Structures on Glass by Selective Electroless Plating on Photopatterned Titanium and Copper Containing Films. Langmuir 2017, 33, 14571–14579. [Google Scholar] [CrossRef]
- Vasconcelos, B.; Vediappan, K.; Oliveira, J.; Fonseca, C. Mechanically Robust Silver Coatings Prepared by Electroless Plating on Thermoplastic Polyurethane. Appl. Surf. Sci. 2018, 443, 39–47. [Google Scholar] [CrossRef]
- Pang, H.; Bai, R.; Shao, Q.; Gao, Y.; Li, A.; Tang, Z. A Novel Ag Catalyzation Process Using Swelling Impregnation Method for Electroless Ni Deposition on Kevlar® Fiber. Appl. Surf. Sci. 2015, 359, 280–287. [Google Scholar] [CrossRef]
- Wang, C.; Zhai, H.; Liu, X.; Lewis, D.; Huang, Y.; Ai, L.; Guan, X.; Gong, H.; Liu, X.; Fernando, A. Tuning Polymer–Metal Interfaces via Solvent-Engineered Electroless Nickel Coatings on Functional Fibres. Polymers 2025, 17, 1693. [Google Scholar] [CrossRef]
- Gamal, R.; Sheha, E.; El Kholy, M. Dimethyl Sulfoxide as a Function Additive on Halogen-Free Electrolyte for Magnesium Battery Application. RSC Adv. 2023, 13, 11959–11966. [Google Scholar] [CrossRef] [PubMed]
- Harandizadeh, Z.; Xie, J.; Moore, M.M.; Hohn, K.L.; Ito, T. Sensitization with Stannous Acetate in Dimethyl Sulfoxide for Silver Electroless Deposition. J. Electrochem. Soc. 2018, 165, D488. [Google Scholar] [CrossRef]
- Li, C.; Shuford, K.L.; Park, Q.-H.; Cai, W.; Li, Y.; Lee, E.J.; Cho, S.O. High-Yield Synthesis of Single-Crystalline Gold Nano-Octahedra. Angew. Chem. 2007, 119, 3328–3332. [Google Scholar] [CrossRef]
- Yue, H.; Zhao, Y.; Ma, X.; Gong, J. Ethylene Glycol: Properties, Synthesis, and Applications. Chem. Soc. Rev. 2012, 41, 4218–4244. [Google Scholar] [CrossRef]
- De Guzman, N.; Ramos, M., Jr.; Balela, M.D. Improvements in the Electroless Deposition of Ag Nanowires in Hot Ethylene Glycol for Resistive Touchscreen Device. Mater. Res. Bull. 2018, 106, 446–454. [Google Scholar] [CrossRef]
- Jayakumar, M.; Murugesan, C.; Andrew, C.; Natarajan, K.; Sekar, R. Electro-and Electroless Deposition of Rhenium from Reline Deep Eutectic Solvent. J. Electrochem. Soc. 2022, 169, 032510. [Google Scholar] [CrossRef]
- De Guzman, N.; Balela, M.D.L. Electroless Deposition of Silver Nanowires Using Waste Ethylene Glycol for Highly Transparent Flexible Conducting Electrodes. Key Eng. Mater. 2018, 775, 254–259. [Google Scholar] [CrossRef]
- Rabah, M.A.; Girgis, N.N. Mechanism of Silver Nanoparticles Deposition by Electrolysis and Electroless Methods on a Graphite Substrate. Int. J. Nonferrous Metall. 2022, 10, 1–14. [Google Scholar] [CrossRef]
- Yeagle, P.L. Chapter 1—Introduction. In The Membranes of Cells (Third Edition); Yeagle, P.L., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 1–25. ISBN 978-0-12-800047-2. [Google Scholar]
- Woo, B.-H.; Sone, M.; Shibata, A.; Ishiyama, C.; Edo, S.; Tokita, M.; Watanabe, J.; Higo, Y. Impregnation of Ni–P Metal into Polymer Substrate via Catalyzation in Sc-CO2 and Electroless Plating in Sc-CO2 Emulsion. Surf. Coat. Technol. 2010, 204, 1785–1792. [Google Scholar] [CrossRef]
- Woo, B.-H.; Sone, M.; Shibata, A.; Ishiyama, C.; Masuda, K.; Yamagata, M.; Endo, T.; Hatsuzawa, T.; Higo, Y. Metallization on Polymer by Catalyzation in Supercritical CO2 and Electroless Plating in Dense CO2 Emulsion. Surf. Coat. Technol. 2008, 202, 3921–3926. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, Z.; Hao, H.; Huang, L.; Song, Y. Adsorption Behavior of N-Hexane and Its Mixtures with CO2, CH4, H2O and SDBS in Hydrophobic Silica Nanopores. Fuel 2022, 312, 122872. [Google Scholar] [CrossRef]
- Anik, M.; Körpe, E.; Şen, E. Effect of Coating Bath Composition on the Properties of Electroless Nickel–Boron Films. Surf. Coat. Technol. 2008, 202, 1718–1727. [Google Scholar] [CrossRef]
- Wang, Z.-C.; Jia, F.; Yu, L.; Qi, Z.; Tang, Y.; Song, G.-L. Direct Electroless Nickel–Boron Plating on AZ91D Magnesium Alloy. Surf. Coat. Technol. 2012, 206, 3676–3685. [Google Scholar] [CrossRef]
- Vitry, V.; Yunacti, M.; Mégret, A.; Khalid, H.A.; Staia, M.H.; Montagne, A. Selection of New Heat Treatment Conditions for Novel Electroless Nickel-Boron Deposits and Characterization of Heat-Treated Coatings. Coatings 2023, 13, 1. [Google Scholar] [CrossRef]
- Ezugwu, E.; Wang, Z.; Machado, A. The Machinability of Nickel-Based Alloys: A Review. J. Mater. Process. Technol. 1999, 86, 1–16. [Google Scholar] [CrossRef]
- Gong, J.; Wang, L.L.; Liu, Y.; Yang, J.H.; Zong, Z.G. Structural and Magnetic Properties of Hcp and Fcc Ni Nanoparticles. J. Alloys Compd. 2008, 457, 6–9. [Google Scholar] [CrossRef]
- Pavithra, G.P.; Hegde, A.C. Magnetic Property and Corrosion Resistance of Electrodeposited Nanocrystalline Iron–Nickel Alloys. Appl. Surf. Sci. 2012, 258, 6884–6890. [Google Scholar] [CrossRef]
- Kamaraj, M. Rafting in Single Crystal Nickel-Base Superalloys—An Overview. Sadhana 2003, 28, 115–128. [Google Scholar] [CrossRef]
- Lu, S.; Tang, L.; Wei, H.; Huang, Y.; Yan, C.; He, Z.; Li, Y.; Mao, J.; Dai, K.; Zheng, J. Single-Crystal Nickel-Based Cathodes: Fundamentals and Recent Advances. Electrochem. Energy Rev. 2022, 5, 15. [Google Scholar] [CrossRef]
- Yokokawa, T.; Harada, H.; Kawagishi, K.; Kobayashi, T.; Yuyama, M.; Takata, Y. Advanced Alloy Design Program and Improvement of Sixth-Generation Ni-Base Single Crystal Superalloy TMS-238. In Proceedings of the Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys; Springer: Berlin/Heidelberg, Germany, 2020; pp. 122–130. [Google Scholar]
- Zhang, J.; Wang, L.; Xie, G.; Wang, D.; Shen, J.; Lu, Y.; Huang, Y.; Li, Y. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys. Acta Met. Sin. 2023, 59, 1109–1124. [Google Scholar]
- Graham, A.H.; Lindsay, R.W.; Read, H.J. The Structure and Mechanical Properties of Electroless Nickel. J. Electrochem. Soc. 1965, 112, 401. [Google Scholar] [CrossRef]
- Lambert, M.R.; Duquette, D.J. A Study of Electroless Nickel Coatings Containing Low Phosphorus. Thin Solid Films 1989, 177, 207–223. [Google Scholar] [CrossRef]
- Valova, E.; Armyanov, S.; Franquet, A.; Petrov, K.; Kovacheva, D.; Dille, J.; Delplancke, J.-L.; Hubin, A.; Steenhaut, O.; Vereecken, J. Comparison of the Structure and Chemical Composition of Crystalline and Amorphous Electroless Ni-WP Coatings. J. Electrochem. Soc. 2004, 151, C385. [Google Scholar] [CrossRef]
- Crobu, M.; Scorciapino, A.; Elsener, B.; Rossi, A. The Corrosion Resistance of Electroless Deposited Nano-Crystalline Ni–P Alloys. Electrochim. Acta 2008, 53, 3364–3370. [Google Scholar] [CrossRef]
- Julie, S.; Wasekar, N.P.; Parida, P.K.; Santra, S.; David, C.; Kamruddin, M. Effect of Grain Size on the Thermal Stability of Electrodeposited Nanocrystalline Nickel: X-Ray Diffraction Studies. Thin Solid Films 2022, 745, 139114. [Google Scholar] [CrossRef]
- Mishra, R.; Balasubramaniam, R. Effect of Nanocrystalline Grain Size on the Electrochemical and Corrosion Behavior of Nickel. Corros. Sci. 2004, 46, 3019–3029. [Google Scholar] [CrossRef]
- Balaraju, J.; Raman, N.; Manikandanath, N. Nanocrystalline Electroless Nickel Poly-Alloy Deposition: Incorporation of W and Mo. Trans. IMF 2014, 92, 169–176. [Google Scholar] [CrossRef]
- Latha, N.; Raj, V.; Selvam, M. Effect of Plating Time on Growth of Nanocrystalline Ni–P from Sulphate/Glycine Bath by Electroless Deposition Method. Bull. Mater. Sci. 2013, 36, 719–727. [Google Scholar] [CrossRef]
- Bayatlı, A.; Şahin, E.F.; Kocabaş, M. Effect of Boron Carbide Reinforcement on Surface Properties of Electroless Ni–B and Ni–B–W Coatings. Mater. Chem. Phys. 2023, 305, 127899. [Google Scholar] [CrossRef]
- Salicio-Paz, A.; Dalmau, A.; Grande, H.; Iriarte, A.; Sort, J.; Pellicer, E.; Fornell, J.; García-Lecina, E. Impact of the Multilayer Approach on the Tribocorrosion Behaviour of Nanocrystalline Electroless Nickel Coatings Obtained by Different Plating Modes. Wear 2020, 456, 203384. [Google Scholar] [CrossRef]
- Delaunois, F.; Lienard, P. Heat Treatments for Electroless Nickel–Boron Plating on Aluminium Alloys. Surf. Coat. Technol. 2002, 160, 239–248. [Google Scholar] [CrossRef]
- Narayanan, T.S.; Seshadri, S. Formation and Characterization of Borohydride Reduced Electroless Nickel Deposits. J. Alloys Compd. 2004, 365, 197–205. [Google Scholar] [CrossRef]
- Yuan, X.; Sun, D.; Yu, H.; Meng, H.; Fan, Z.; Wang, X. Preparation of Amorphous-Nanocrystalline Composite Structured Ni–P Electrodeposits. Surf. Coat. Technol. 2007, 202, 294–300. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, T.; Shen, W.; Jiang, M.; Hu, J.; Wen, H.; Wang, B. Crystallization Behavior of Electroless Ni–W–P–n SiO2 Amorphous/Nanocrystalline Coating. Prot. Met. Phys. Chem. Surf. 2023, 59, 199–205. [Google Scholar] [CrossRef]
- Zhang, B. Amorphous and Nano Alloys Electroless Depositions: Technology, Composition, Structure and Theory; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Li, Z.; Bian, C.; Hu, L. Exploration of the Corrosion Behavior of Electroless Plated Ni-P Amorphous Alloys via X-Ray Photoelectron Spectroscopy. Molecules 2023, 28, 377. [Google Scholar] [CrossRef]
- Bozzini, B.; Cavallotti, P. Evidence of Clustering in X-Ray Amorphous NiP Prepared by Autocatalytic Chemical Deposition. Scr. Mater. 1997, 36, 1245–1248. [Google Scholar] [CrossRef]
- Xia, Q.; Ren, P.; Meng, H. Corrosion Resistance of Amorphous-Nanocrystalline Composite Structure Materials. ACS Omega 2023, 8, 3348–3353. [Google Scholar] [CrossRef]
- Reda, Y.; El-Shamy, A.; Eessaa, A.K. Effect of Hydrogen Embrittlement on the Microstructures of Electroplated Steel Alloy 4130. Ain Shams Eng. J. 2018, 9, 2973–2982. [Google Scholar] [CrossRef]
- Zhou, Q.; Qiao, L.; Qi, H.; Li, J.; He, J.; Chu, W. Hydrogen Blistering and Hydrogen-Induced Cracking in Amorphous Nickel Phosphorus Coating. J. Non-Cryst. Solids 2007, 353, 4011–4014. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, R.; Liu, S.; Wang, T.; Wu, D.; Zhang, Y.; Chen, J.; Zou, Y. Microstructure Analysis of Element W in Improving the Ni–P Deposit Thermal Stability. J. Mater. Res. Technol. 2020, 9, 5474–5486. [Google Scholar] [CrossRef]
- Graeser, K.A.; Patterson, J.E.; Zeitler, J.A.; Rades, T. The Role of Configurational Entropy in Amorphous Systems. Pharmaceutics 2010, 2, 224–244. [Google Scholar] [CrossRef]
- Costa, J.M.; de Almeida Neto, A.F. Nanocrystalline Nickel-Tungsten Alloys Assisted by Thermosonication: Effect of Temperature on the Anticorrosive Properties. J. Alloys Compd. 2021, 873, 159786. [Google Scholar] [CrossRef]
- He, Y.; Liu, G.; Duan, X.; Wu, T.; Dong, M.; Zhu, Y. Effects of Nanocrystals on Hydrogen Permeation and Diffusion in Amorphous Electroless Ni-P Coatings. Mater. Today Commun. 2024, 40, 109499. [Google Scholar] [CrossRef]
- Grewal, M.; Sastri, S.; Alexander, B. Amorphous to Crystalline Transformation in Bulk Electroless Nickel by Differential Scanning Calorimetry. Thermochim. Acta 1976, 14, 25–40. [Google Scholar] [CrossRef]
- Erming, M.; Shoufu, L.; Pengxing, L. A Transmission Electron Microscopy Study on the Crystallization of Amorphous Ni-P Electroless Deposited Coatings. Thin Solid Films 1988, 166, 273–280. [Google Scholar] [CrossRef]
- Mirak, M.; Akbari, A. Microstructural Characterization of Electrodeposited and Heat-Treated Ni-B Coatings. Surf. Coat. Technol. 2018, 349, 442–451. [Google Scholar] [CrossRef]
- Ogihara, H.; Udagawa, K.; Saji, T. Effect of Boron Content and Crystalline Structure on Hardness in Electrodeposited Ni–B Alloy Films. Surf. Coat. Technol. 2012, 206, 2933–2940. [Google Scholar] [CrossRef]
- Oraon, B.; Majumdar, G.; Ghosh, B. Improving Hardness of Electroless Ni–B Coatings Using Optimized Deposition Conditions and Annealing. Mater. Des. 2008, 29, 1412–1418. [Google Scholar] [CrossRef]
- Characterization of Phase Transformation Behaviour and Microstructural Development of Electroless Ni–B Coating—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0921509311008392?casa_token=4c8xtw-zNSkAAAAA:D76UTUNWQ4qQ-XR8rv1K8GO7y3P9qLmmYQ9LlKboFREFfmKsXXwQc4SMI3Tsd9aZrvrAEds (accessed on 13 February 2025).
- Liang, Y.; Li, Y.-S.; Yu, Q.-Y.; Zhang, Y.-X.; Zhao, W.; Zeng, Z.-X. Structure and Wear Resistance of High Hardness Ni-B Coatings as Alternative for Cr Coatings. Surf. Coat. Technol. 2015, 264, 80–86. [Google Scholar] [CrossRef]
- Mu, H.; Seok, J.; Lin, R. Nickel Thin Film Coatings on Steels with Electroless Plating and Sputter Deposition. J. Electrochem. Soc. 2003, 150, C67. [Google Scholar] [CrossRef]
- Zhang, P.; Lv, Z.; Liu, X.; Xie, G.; Zhang, B. Electroless Nickel Plating on Alumina Ceramic Activated by Metallic Nickel as Electrocatalyst for Oxygen Evolution Reaction. Catal. Commun. 2021, 149, 106238. [Google Scholar] [CrossRef]
- Mousavi, M.; Rahimi, E.; Mol, J.M.C.; Gonzalez-Garcia, Y. The Effect of Phosphorous Content on the Microstructure and Localised Corrosion of Electroless Nickel-Coated Copper. Surf. Coat. Technol. 2024, 492, 131174. [Google Scholar] [CrossRef]
- Yan, M.; Ying, H.G.; Ma, T.Y. Improved Microhardness and Wear Resistance of the As-Deposited Electroless Ni–P Coating. Surf. Coat. Technol. 2008, 202, 5909–5913. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, X.; Hu, X.; Liu, F. Corrosion Resistance Properties of Electroless Nickel Composite Coatings. Electrochim. Acta 2004, 49, 4313–4319. [Google Scholar] [CrossRef]
- Bonin, L.; Castro, C.C.; Vitry, V.; Hantson, A.-L.; Delaunois, F. Optimization of Electroless NiB Deposition without Stabilizer, Based on Surface Roughness and Plating Rate. J. Alloys Compd. 2018, 767, 276–284. [Google Scholar] [CrossRef]
- Bülbül, F.; Altun, H.; Küçük, Ö.; Ezirmik, V. Tribological and Corrosion Behaviour of Electroless Ni-B Coating Possessing a Blackberry like Structure. Met. Mater. Int. 2012, 18, 631–637. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, G.; Matsuda, K.; Zou, Y. Microstructure Evolution and Corrosion Resistance of Ni–Cu–P Amorphous Coating during Crystallization Process. Appl. Surf. Sci. 2019, 484, 835–844. [Google Scholar] [CrossRef]
- Bonin, L.; Vitry, V.; Delaunois, F. Replacement of Lead Stabilizer in Electroless Nickel-Boron Baths: Synthesis and Characterization of Coatings from Bismuth Stabilized Bath. Sustain. Mater. Technol. 2020, 23, e00130. [Google Scholar] [CrossRef]
- Pal, S.; Jayaram, V. Effect of Microstructure on the Hardness and Dry Sliding Behavior of Electroless Ni–B Coating. Materialia 2018, 4, 47–64. [Google Scholar] [CrossRef]
- John Leon, S.; WinowlinJappes, J.T.; Edwin Sahayaraj, M. Comparison of Electroless Ni-P/ Ni-B on Corrosion Performance. Int. J. Eng. Technol. 2018, 7, 88. [Google Scholar] [CrossRef]
- Bonin, L.; Vitry, V.; Delaunois, F. The Tin Stabilization Effect on the Microstructure, Corrosion and Wear Resistance of Electroless NiB Coatings. Surf. Coat. Technol. 2019, 357, 353–363. [Google Scholar] [CrossRef]
- Hamid, Z.A.; Hassan, H.B.; Attyia, A.M. Influence of Deposition Temperature and Heat Treatment on the Performance of Electroless Ni–B Films. Surf. Coat. Technol. 2010, 205, 2348–2354. [Google Scholar] [CrossRef]
- Abdeen, D.H.; El Hachach, M.; Koc, M.; Atieh, M.A. A Review on the Corrosion Behaviour of Nanocoatings on Metallic Substrates. Materials 2019, 12, 210. [Google Scholar] [CrossRef]
- Krishnan, K.H.; John, S.; Srinivasan, K.; Praveen, J.; Ganesan, M.; Kavimani, P. An Overall Aspect of Electroless Ni-P Depositions—A Review Article. Metall. Mater. Trans. A 2006, 37, 1917–1926. [Google Scholar] [CrossRef]
- Riddle, Y.; Bailerare, T. Friction and Wear Reduction via an Ni-B Electroless Bath Coating for Metal Alloys. Jom 2005, 57, 40–45. [Google Scholar] [CrossRef]
- Bernasconi, R.; Molazemhosseini, A.; Cervati, M.; Armini, S.; Magagnin, L. Application of Self-Assembled Monolayers to the Electroless Metallization of High Aspect Ratio Vias for Microelectronics. J. Electron. Mater. 2016, 45, 5449–5455. [Google Scholar] [CrossRef]
- Lin, J.; Wang, C.; Wang, S.; Chen, Y.; He, W.; Xiao, D. Initiation Electroless Nickel Plating by Atomic Hydrogen for PCB Final Finishing. Chem. Eng. J. 2016, 306, 117–123. [Google Scholar] [CrossRef]
- Liu, F.; Lu, J.; Sundaram, V.; Sutter, D.; White, G.; Baldwin, D.F.; Tummala, R.R. Reliability Assessment of Microvias in HDI Printed Circuit Boards. IEEE Trans. Compon. Packag. Technol. 2002, 25, 254–259. [Google Scholar]
- Delaunois, F.; Vitry, V.; Bonin, L. Electroless Nickel Plating: Fundamentals to Applications; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Lebrouhi, B.E.; Baghi, S.; Lamrani, B.; Schall, E.; Kousksou, T. Critical Materials for Electrical Energy Storage: Li-Ion Batteries. J. Energy Storage 2022, 55, 105471. [Google Scholar] [CrossRef]
- Radke, A.; Gissibl, T.; Klotzbücher, T.; Braun, P.V.; Giessen, H. Three-Dimensional Bichiral Plasmonic Crystals Fabricated by Direct Laser Writing and Electroless Silver Plating. Adv. Mater. 2011, 23, 3018–3021. [Google Scholar] [CrossRef]
- Srinivasan, K.; Meenakshi, R.; Santhi, A.; Thangavelu, P.; John, S. Studies on Development of Electroless Ni–B Bath for Corrosion Resistance and Wear Resistance Applications. Surf. Eng. 2010, 26, 153–158. [Google Scholar] [CrossRef]
- Moazzenchi, B.; Montazer, M. Click Electroless Plating of Nickel Nanoparticles on Polyester Fabric: Electrical Conductivity, Magnetic and EMI Shielding Properties. Colloids Surf. Physicochem. Eng. Asp. 2019, 571, 110–124. [Google Scholar] [CrossRef]
- Yousif, M.; Zhang, M.; Hussain, B.; Khan, T.; Mahar, F.K.; Shaikh, A.R.; Ali, H.F.; Ahmed, R.; Mehdi, M. Revolutionizing PET Fabric Performance with Advanced Metal Deposition Techniques. J. Text. Inst. 2024, 14, 1–12. [Google Scholar] [CrossRef]
- Yuan, Y.; Ma, Y.; Li, X.; Liu, R.; Sun, L.; Zhang, H.; Wei, S. Preparation and Mechanical Properties of Absorbing Composites Based on Nickel Plated Fabric. J. Ind. Text. 2024, 54, 15280837241260065. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhai, H.; Lewis, D.; Gong, H.; Liu, X.; Fernando, A. Solvent-Driven Electroless Nickel Coatings on Polymers: Interface Engineering, Microstructure, and Applications. Coatings 2025, 15, 898. https://doi.org/10.3390/coatings15080898
Wang C, Zhai H, Lewis D, Gong H, Liu X, Fernando A. Solvent-Driven Electroless Nickel Coatings on Polymers: Interface Engineering, Microstructure, and Applications. Coatings. 2025; 15(8):898. https://doi.org/10.3390/coatings15080898
Chicago/Turabian StyleWang, Chenyao, Heng Zhai, David Lewis, Hugh Gong, Xuqing Liu, and Anura Fernando. 2025. "Solvent-Driven Electroless Nickel Coatings on Polymers: Interface Engineering, Microstructure, and Applications" Coatings 15, no. 8: 898. https://doi.org/10.3390/coatings15080898
APA StyleWang, C., Zhai, H., Lewis, D., Gong, H., Liu, X., & Fernando, A. (2025). Solvent-Driven Electroless Nickel Coatings on Polymers: Interface Engineering, Microstructure, and Applications. Coatings, 15(8), 898. https://doi.org/10.3390/coatings15080898