Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (513)

Search Parameters:
Keywords = non-linear acoustic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4851 KiB  
Article
Mathematical Modeling, Bifurcation Theory, and Chaos in a Dusty Plasma System with Generalized (r,q) Distributions
by Beenish, Maria Samreen and Fehaid Salem Alshammari
Axioms 2025, 14(8), 610; https://doi.org/10.3390/axioms14080610 - 5 Aug 2025
Abstract
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. [...] Read more.
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. The Galilean transformation is subsequently applied to reformulate the second-order ordinary differential equation into an unperturbed dynamical system. Next, phase portraits of the system are examined under all possible conditions of the discriminant of the associated cubic polynomial, identifying regions of stability and instability. The Runge–Kutta method is employed to construct the phase portraits of the system. The Hamiltonian function of the unperturbed system is subsequently derived and used to analyze energy levels and verify the phase portraits. Under the influence of an external periodic perturbation, the quasi-periodic and chaotic dynamics of dust ion acoustic waves are explored. Chaos detection tools confirm the presence of quasi-periodic and chaotic patterns using Basin of attraction, Lyapunov exponents, Fractal Dimension, Bifurcation diagram, Poincaré map, Time analysis, Multi-stability analysis, Chaotic attractor, Return map, Power spectrum, and 3D and 2D phase portraits. In addition, the model’s response to different initial conditions was examined through sensitivity analysis. Full article
(This article belongs to the Special Issue Trends in Dynamical Systems and Applied Mathematics)
23 pages, 7315 KiB  
Article
Nonlinear Narrowband Active Noise Control for Tractors Based on a Momentum-Enhanced Volterra Filter
by Tao Zhang, Zhixuan Guan, Shuai Zhang, Kai Song and Boyan Huang
Agriculture 2025, 15(15), 1655; https://doi.org/10.3390/agriculture15151655 - 1 Aug 2025
Viewed by 190
Abstract
Nonlinear narrowband low-frequency noise generated during tractors’ operation significantly affects operators’ comfort and working efficiency. Traditional linear active noise control algorithms often struggle to effectively suppress such complex acoustic disturbances. To address this challenge, this paper proposes a momentum-enhanced Volterra filter-based active noise [...] Read more.
Nonlinear narrowband low-frequency noise generated during tractors’ operation significantly affects operators’ comfort and working efficiency. Traditional linear active noise control algorithms often struggle to effectively suppress such complex acoustic disturbances. To address this challenge, this paper proposes a momentum-enhanced Volterra filter-based active noise control (ANC) algorithm that improves both the modeling capability of nonlinear acoustic paths and the convergence performance of the system. The proposed approach integrates the nonlinear representation power of the Volterra filter with a momentum optimization mechanism to enhance convergence speed while maintaining robust steady-state accuracy. Simulations are conducted under second- and third-order nonlinear primary paths, followed by performance validation using multi-tone signals and real in-cabin tractor noise recordings. The results demonstrate that the proposed algorithm achieves superior performance, reducing the NMSE to approximately −35 dB and attenuating residual noise energy by 3–5 dB in the 200–800 Hz range, compared to FXLMS and VFXLMS algorithms. The findings highlight the algorithm’s potential for practical implementation in nonlinear and narrowband active noise control scenarios within complex mechanical environments. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 438 KiB  
Article
Analytic Solutions and Conservation Laws of a 2D Generalized Fifth-Order KdV Equation with Power Law Nonlinearity Describing Motions in Shallow Water Under a Gravity Field of Long Waves
by Chaudry Masood Khalique and Boikanyo Pretty Sebogodi
AppliedMath 2025, 5(3), 96; https://doi.org/10.3390/appliedmath5030096 (registering DOI) - 31 Jul 2025
Viewed by 77
Abstract
The Korteweg–de Vries (KdV) equation is a nonlinear evolution equation that reflects a wide variety of dispersive wave occurrences with limited amplitude. It has also been used to describe a range of major physical phenomena, such as shallow water waves that interact weakly [...] Read more.
The Korteweg–de Vries (KdV) equation is a nonlinear evolution equation that reflects a wide variety of dispersive wave occurrences with limited amplitude. It has also been used to describe a range of major physical phenomena, such as shallow water waves that interact weakly and nonlinearly, acoustic waves on a crystal lattice, lengthy internal waves in density-graded oceans, and ion acoustic waves in plasma. The KdV equation is one of the most well-known soliton models, and it provides a good platform for further research into other equations. The KdV equation has several forms. The aim of this study is to introduce and investigate a (2+1)-dimensional generalized fifth-order KdV equation with power law nonlinearity (gFKdVp). The research methodology employed is the Lie group analysis. Using the point symmetries of the gFKdVp equation, we transform this equation into several nonlinear ordinary differential equations (ODEs), which we solve by employing different strategies that include Kudryashov’s method, the (G/G) expansion method, and the power series expansion method. To demonstrate the physical behavior of the equation, 3D, density, and 2D graphs of the obtained solutions are presented. Finally, utilizing the multiplier technique and Ibragimov’s method, we derive conserved vectors of the gFKdVp equation. These include the conservation of energy and momentum. Thus, the major conclusion of the study is that analytic solutions and conservation laws of the gFKdVp equation are determined. Full article
Show Figures

Figure 1

15 pages, 5631 KiB  
Article
Design and Evaluation of a Capacitive Micromachined Ultrasonic Transducer(CMUT) Linear Array System for Thickness Measurement of Marine Structures Under Varying Environmental Conditions
by Changde He, Mengke Luo, Hanchi Chai, Hongliang Wang, Guojun Zhang, Renxin Wang, Jiangong Cui, Yuhua Yang, Wendong Zhang and Licheng Jia
Micromachines 2025, 16(8), 898; https://doi.org/10.3390/mi16080898 (registering DOI) - 31 Jul 2025
Viewed by 137
Abstract
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to [...] Read more.
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to ensure acoustic impedance matching and environmental protection in underwater conditions. The acoustic performance of the encapsulated CMUT was characterized using standard piezoelectric transducers as reference. The array achieved a transmitting sensitivity of 146.82 dB and a receiving sensitivity of −229.55 dB at 1 MHz. A complete thickness detection system was developed by integrating the CMUT array with a custom transceiver circuit and implementing a time-of-flight (ToF) measurement algorithm. To evaluate environmental robustness, systematic experiments were conducted under varying water temperatures and salinity levels. The results demonstrate that the absolute thickness measurement error remains within ±0.1 mm under all tested conditions, satisfying the accuracy requirements for marine structural health monitoring. The results validate the feasibility of CMUT-based systems for precise and stable thickness measurement in underwater environments, and support their application in non-destructive evaluation of marine infrastructure. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

22 pages, 2437 KiB  
Article
Anomaly Detection of Acoustic Signals in Ultra-High Voltage Converter Valves Based on the FAVAE-AS
by Shuyan Pan, Mingzhu Tang, Na Li, Jiawen Zuo and Xingpeng Zhou
Sensors 2025, 25(15), 4716; https://doi.org/10.3390/s25154716 - 31 Jul 2025
Viewed by 217
Abstract
The converter valve is the core component of the ultra-high voltage direct current (UHVDC) transmission system, and its fault detection is very important to ensure the safe and stable operation of the transmission system. However, the voiceprint signals collected by converter stations under [...] Read more.
The converter valve is the core component of the ultra-high voltage direct current (UHVDC) transmission system, and its fault detection is very important to ensure the safe and stable operation of the transmission system. However, the voiceprint signals collected by converter stations under complex operating conditions are often affected by background noise, spikes, and nonlinear interference. Traditional methods make it difficult to achieve high-precision detection due to the lack of feature extraction ability and poor noise robustness. This paper proposes a fault-aware variational self-encoder model (FAVAE-AS) based on a weak correlation between attention and self-supervised learning. It extracts probability features via a conditional variational autoencoder, strengthens feature representation using multi-layer convolution and residual connections, and introduces a weak correlation attention mechanism to capture global time point relationships. A self-supervised learning module with six signal transformations improves generalization, while KL divergence-based correlation inconsistency quantization with dynamic thresholds enables accurate anomaly detection. Experiments show that FAVAE-AS achieves 0.925 accuracy in fault detection, which is 5% higher than previous methods, and has strong robustness. This research provides critical technical support for UHVDC system safety by addressing converter valve acoustic anomaly detection. It proposes an extensible framework for industrial intelligent maintenance. Full article
Show Figures

Figure 1

18 pages, 5328 KiB  
Article
Theoretical and Experimental Investigation of Dynamic Characteristics in Propulsion Shafting Support System with Integrated Squeeze Film Damper
by Qilin Liu, Wu Ouyang, Gao Wan and Gaohui Xiao
Lubricants 2025, 13(8), 335; https://doi.org/10.3390/lubricants13080335 - 30 Jul 2025
Viewed by 145
Abstract
The lateral vibration of propulsion shafting is a critical factor affecting the acoustic stealth performance of underwater vehicles. As the main vibration isolation component in transmitting vibrational energy, the damping efficiency of the propulsion shafting support system (PSSS) holds particular significance. This study [...] Read more.
The lateral vibration of propulsion shafting is a critical factor affecting the acoustic stealth performance of underwater vehicles. As the main vibration isolation component in transmitting vibrational energy, the damping efficiency of the propulsion shafting support system (PSSS) holds particular significance. This study investigates the dynamic characteristics of the PSSS with the integral squeeze film damper (ISFD). A dynamic model of ISFD–PSSS is developed to systematically analyze the effects of shaft speed and external load on its dynamic behavior. Three test bearings (conventional, 1S, and 3S structure) are designed and manufactured to study the influence of damping structure layout scheme, damping fluid viscosity, unbalanced load, and shaft speed on the vibration reduction ability of ISFD–PSSS through axis orbit and vibration velocity. The results show that the damping effects of ISFD–PSSS are observed across all test conditions, presenting distinct nonlinear patterns. Suppression effectiveness is more pronounced in the vertical direction compared to the horizontal direction. The 3S structure bearing has better vibration reduction and structural stability than other schemes. The research results provide a reference for the vibration control method of rotating machinery. Full article
(This article belongs to the Special Issue Water Lubricated Bearings)
Show Figures

Figure 1

20 pages, 2399 KiB  
Article
Exploring Novel Optical Soliton Molecule for the Time Fractional Cubic–Quintic Nonlinear Pulse Propagation Model
by Syed T. R. Rizvi, Atef F. Hashem, Azrar Ul Hassan, Sana Shabbir, A. S. Al-Moisheer and Aly R. Seadawy
Fractal Fract. 2025, 9(8), 497; https://doi.org/10.3390/fractalfract9080497 - 29 Jul 2025
Viewed by 282
Abstract
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions [...] Read more.
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions in medical science. The nonlinear effects exhibited by the model—such as self-focusing, self-phase modulation, and wave mixing—are influenced by the combined impact of the cubic and quintic nonlinear terms. To explore the dynamics of this model, we apply a robust analytical technique known as the sub-ODE method, which reveals a diverse range of soliton structures and offers deep insight into laser pulse interactions. The investigation yields a rich set of explicit soliton solutions, including hyperbolic, rational, singular, bright, Jacobian elliptic, Weierstrass elliptic, and periodic solutions. These waveforms have significant real-world relevance: bright solitons are employed in fiber optic communications for distortion-free long-distance data transmission, while both bright and dark solitons are used in nonlinear optics to study light behavior in media with intensity-dependent refractive indices. Solitons also contribute to advancements in quantum technologies, precision measurement, and fiber laser systems, where hyperbolic and periodic solitons facilitate stable, high-intensity pulse generation. Additionally, in nonlinear acoustics, solitons describe wave propagation in media where amplitude influences wave speed. Overall, this work highlights the theoretical depth and practical utility of soliton dynamics in fractional nonlinear systems. Full article
Show Figures

Figure 1

23 pages, 12169 KiB  
Article
Effect of Quasi-Static Door Operation on Shear Layer Bifurcations in Supersonic Cavities
by Skyler Baugher, Datta Gaitonde, Bryce Outten, Rajan Kumar, Rachelle Speth and Scott Sherer
Aerospace 2025, 12(8), 668; https://doi.org/10.3390/aerospace12080668 - 26 Jul 2025
Viewed by 197
Abstract
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena [...] Read more.
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena that couple with the shear layer at the cavity lip, further modulating shear layer bifurcations and tonal mechanisms. In particular, asymmetric states manifest as ‘tornado’ vortices with significant practical consequences on the design and operation. Both inward- and outward-facing leading-wedge doors, resulting in leading edge shocks directed into and away from the cavity, are examined at select opening angles ranging from 22.5° to 90° (fully open) at Mach 1.6. The computational approach utilizes the Reynolds-Averaged Navier–Stokes equations with a one-equation model and is augmented by experimental observations of cavity floor pressure and surface oil-flow patterns. For the no-doors configuration, the asymmetric results are consistent with a long-time series DDES simulation, previously validated with two experimental databases. When fully open, outer wedge doors (OWD) yield an asymmetric flow, while inner wedge doors (IWD) display only mildly asymmetric behavior. At lower door angles (partially closed cavity), both types of doors display a successive bifurcation of the shear layer, ultimately resulting in a symmetric flow. IWD tend to promote symmetry for all angles observed, with the shear layer experiencing a pitchfork bifurcation at the ‘critical angle’ (67.5°). This is also true for the OWD at the ‘critical angle’ (45°), though an entirely different symmetric flow field is established. The first observation of pitchfork bifurcations (‘critical angle’) for the IWD is at 67.5° and for the OWD, 45°, complementing experimental observations. The back wall signature of the bifurcated shear layer (impingement preference) was found to be indicative of the 3D cavity dynamics and may be used to establish a correspondence between 3D cavity dynamics and the shear layer. Below the critical angle, the symmetric flow field is comprised of counter-rotating vortex pairs at the front and back wall corners. The existence of a critical angle and the process of door opening versus closing indicate the possibility of hysteresis, a preliminary discussion of which is presented. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

28 pages, 3531 KiB  
Review
Review of Acoustic Emission Detection Technology for Valve Internal Leakage: Mechanisms, Methods, Challenges, and Application Prospects
by Dongjie Zheng, Xing Wang, Lingling Yang, Yunqi Li, Hui Xia, Haochuan Zhang and Xiaomei Xiang
Sensors 2025, 25(14), 4487; https://doi.org/10.3390/s25144487 - 18 Jul 2025
Viewed by 427
Abstract
Internal leakage within the valve body constitutes a severe potential safety hazard in industrial fluid control systems, attributable to its high concealment and the resultant difficulty in detection via conventional methodologies. Acoustic emission (AE) technology, functioning as an efficient non-destructive testing approach, is [...] Read more.
Internal leakage within the valve body constitutes a severe potential safety hazard in industrial fluid control systems, attributable to its high concealment and the resultant difficulty in detection via conventional methodologies. Acoustic emission (AE) technology, functioning as an efficient non-destructive testing approach, is capable of capturing the transient stress waves induced by leakage, thereby furnishing an effective means for the real-time monitoring and quantitative assessment of internal leakage within the valve body. This paper conducts a systematic review of the theoretical foundations, signal-processing methodologies, and the latest research advancements related to the technology for detecting internal leakage in the valve body based on acoustic emission. Firstly, grounded in Lechlier’s acoustic analogy theory, the generation mechanism of acoustic emission signals arising from valve body leakage is elucidated. Secondly, a detailed analysis is conducted on diverse signal processing techniques and their corresponding optimization strategies, encompassing parameter analysis, time–frequency analysis, nonlinear dynamics methods, and intelligent algorithms. Moreover, this paper recapitulates the current challenges encountered by this technology and delineates future research orientations, such as the fusion of multi-modal sensors, the deployment of lightweight deep learning models, and integration with the Internet of Things. This study provides a systematic reference for the engineering application and theoretical development of the acoustic emission-based technology for detecting internal leakage in valves. Full article
(This article belongs to the Topic Advances in Non-Destructive Testing Methods, 3rd Edition)
Show Figures

Figure 1

20 pages, 3672 KiB  
Article
Identification of Complicated Lithology with Machine Learning
by Liangyu Chen, Lang Hu, Jintao Xin, Qiuyuan Hou, Jianwei Fu, Yonggui Li and Zhi Chen
Appl. Sci. 2025, 15(14), 7923; https://doi.org/10.3390/app15147923 - 16 Jul 2025
Viewed by 211
Abstract
Lithology identification is one of the most important research areas in petroleum engineering, including reservoir characterization, formation evaluation, and reservoir modeling. Due to the complex structural environment, diverse lithofacies types, and differences in logging data and core data recording standards, there is significant [...] Read more.
Lithology identification is one of the most important research areas in petroleum engineering, including reservoir characterization, formation evaluation, and reservoir modeling. Due to the complex structural environment, diverse lithofacies types, and differences in logging data and core data recording standards, there is significant overlap in the logging responses between different lithologies in the second member of the Lucaogou Formation in the Santanghu Basin. Machine learning methods have demonstrated powerful nonlinear capabilities that have a strong advantage in addressing complex nonlinear relationships between data. In this paper, based on felsic content, the lithologies in the study area are classified into four categories from high to low: tuff, dolomitic tuff, tuffaceous dolomite, and dolomite. We also study select logging attributes that are sensitive to lithology, such as natural gamma, acoustic travel time, neutron, and compensated density. Using machine learning methods, XGBoost, random forest, and support vector regression were selected to conduct lithology identification and favorable reservoir prediction in the study. The prediction results show that when trained with 80% of the predictors, the prediction performance of all three models has improved to varying degrees. Among them, Random Forest performed best in predicting felsic content, with an MAE of 0.11, an MSE of 0.020, an RMSE of 0.14, and a R2 of 0.43. XGBoost ranked second, with an MAE of 0.12, an MSE of 0.022, an RMSE of 0.15, and an R2 of 0.42. SVR performed the poorest. By comparing the actual core data with the predicted data, it was found that the results are relatively close to the XRD results, indicating that the prediction accuracy is high. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 292
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 1865 KiB  
Article
A Robust Cross-Band Network for Blind Source Separation of Underwater Acoustic Mixed Signals
by Xingmei Wang, Peiran Wu, Haisu Wei, Yuezhu Xu and Siyu Wang
J. Mar. Sci. Eng. 2025, 13(7), 1334; https://doi.org/10.3390/jmse13071334 - 11 Jul 2025
Viewed by 274
Abstract
Blind source separation (BSS) of underwater acoustic mixed signals aims to improve signal clarity by separating noise components from aliased underwater signal sources. This enhancement directly increases target detection accuracy in underwater acoustic perception systems, particularly in scenarios involving multi-vessel interference or biological [...] Read more.
Blind source separation (BSS) of underwater acoustic mixed signals aims to improve signal clarity by separating noise components from aliased underwater signal sources. This enhancement directly increases target detection accuracy in underwater acoustic perception systems, particularly in scenarios involving multi-vessel interference or biological sound coexistence. Deep learning-based BSS methods have gained wide attention for their superior nonlinear modeling capabilities. However, existing approaches in underwater acoustic scenarios still face two key challenges: limited feature discrimination and inadequate robustness against non-stationary noise. To overcome these limitations, we propose a novel Robust Cross-Band Network (RCBNet) for the BSS of underwater acoustic mixed signals. To address insufficient feature discrimination, we decompose mixed signals into sub-bands aligned with ship noise harmonics. For intra-band modeling, we apply a parallel gating mechanism that strengthens long-range dependency learning so as to enhance robustness against non-stationary noise. For inter-band modeling, we design a bidirectional-frequency RNN to capture the global dependency relationships of the same signal across sub-bands. Our experiment demonstrates that RCBNet achieves a 0.779 dB improvement in the SDR compared to the advanced model. Additionally, the anti-noise experiment demonstrates that RCBNet exhibits satisfactory robustness across varying noise environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

62 pages, 4192 KiB  
Review
Advancements in Magnetorheological Foams: Composition, Fabrication, AI-Driven Enhancements and Emerging Applications
by Hesamodin Khodaverdi and Ramin Sedaghati
Polymers 2025, 17(14), 1898; https://doi.org/10.3390/polym17141898 - 9 Jul 2025
Viewed by 577
Abstract
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while [...] Read more.
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while offering advantages like lightweight design, acoustic absorption, high energy harvesting capability, and tailored mechanical responses. Despite their potential, challenges such as non-uniform particle dispersion, limited durability under cyclic loads, and suboptimal magneto-mechanical coupling continue to hinder their broader adoption. This review systematically addresses these issues by evaluating the synthesis methods (ex situ vs. in situ), microstructural design strategies, and the role of magnetic particle alignment under varying curing conditions. Special attention is given to the influence of material composition—including matrix types, magnetic fillers, and additives—on the mechanical and magnetorheological behaviors. While the primary focus of this review is on MR foams, relevant studies on MR elastomers, which share fundamental principles, are also considered to provide a broader context. Recent advancements are also discussed, including the growing use of artificial intelligence (AI) to predict the rheological and magneto-mechanical behavior of MR materials, model complex device responses, and optimize material composition and processing conditions. AI applications in MR systems range from estimating shear stress, viscosity, and storage/loss moduli to analyzing nonlinear hysteresis, magnetostriction, and mixed-mode loading behavior. These data-driven approaches offer powerful new capabilities for material design and performance optimization, helping overcome long-standing limitations in conventional modeling techniques. Despite significant progress in MR foams, several challenges remain to be addressed, including achieving uniform particle dispersion, enhancing viscoelastic performance (storage modulus and MR effect), and improving durability under cyclic loading. Addressing these issues is essential for unlocking the full potential of MR foams in demanding applications where consistent performance, mechanical reliability, and long-term stability are crucial for safety, effectiveness, and operational longevity. By bridging experimental methods, theoretical modeling, and AI-driven design, this work identifies pathways toward enhancing the functionality and reliability of MR foams for applications in vibration damping, energy harvesting, biomedical devices, and soft robotics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

11 pages, 403 KiB  
Article
Modeling the Frequency–Amplitude Characteristics of a Tunable SAW Oscillator
by Ionut Nicolae and Cristian Viespe
Chemosensors 2025, 13(7), 240; https://doi.org/10.3390/chemosensors13070240 - 6 Jul 2025
Viewed by 329
Abstract
The resonant frequency of an SAW oscillator can be modulated by varying the signal amplitude, due to non-linear acoustic interactions within the chemoselective layer. In this study, we developed an explicit model to describe the amplitude–frequency behavior of a tunable SAW oscillator. A [...] Read more.
The resonant frequency of an SAW oscillator can be modulated by varying the signal amplitude, due to non-linear acoustic interactions within the chemoselective layer. In this study, we developed an explicit model to describe the amplitude–frequency behavior of a tunable SAW oscillator. A polymeric layer of variable thickness was deposited in a circular area (radius 1.1 mm) at the center of the piezoactive surface. Increasing the oscillator loop attenuation resulted in a continuous increase in the resonant frequency by up to 1.8 MHz. The layer was modeled as a succession of non-interacting sub-layers of varying thicknesses. As a result, the function model consists of a superposition of terms, each corresponding to a layer region of distinct length and thickness. The maximum difference between the experimental data and function model (also known as residual of the fit) was below 1% (13.02 kHz) of the resonant frequency variation, thus supporting the validity of our approach. While our model proved successful, the results suggest that some interactions are unaccounted for, as evidenced by the periodicity of the residuals of fit and unrealistically large variation in acoustic wave velocity. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

23 pages, 37536 KiB  
Article
Underwater Sound Speed Profile Inversion Based on Res-SACNN from Different Spatiotemporal Dimensions
by Jiru Wang, Fangze Xu, Yuyao Liu, Yu Chen and Shu Liu
Remote Sens. 2025, 17(13), 2293; https://doi.org/10.3390/rs17132293 - 4 Jul 2025
Viewed by 284
Abstract
The sound speed profile (SSP) is an important feature in the field of ocean acoustics. The accurate estimation of SSP is significant for the development of underwater position, communication, and associated fundamental marine research. The Res-SACNN model is proposed for SSP inversion based [...] Read more.
The sound speed profile (SSP) is an important feature in the field of ocean acoustics. The accurate estimation of SSP is significant for the development of underwater position, communication, and associated fundamental marine research. The Res-SACNN model is proposed for SSP inversion based on the convolutional neural network (CNN) embedded with the residual network and self-attention mechanism. It combines the spatiotemporal characteristics of sea level anomaly (SLA) and sea surface temperature anomaly (SSTA) data and establishes a nonlinear relationship between satellite remote sensing data and sound speed field by deep learning. The single empirical orthogonal function regression (sEOF-r) method is used in a comparative experiment to confirm the model’s performance in both the time domain and the region. Experimental results demonstrate that the proposed model outperforms sEOF-r regarding both spatiotemporal generalization ability and inversion accuracy. The average root mean square error (RMSE) is decreased by 0.92 m/s in the time-domain experiment in the South China Sea, and the inversion results for each month are more consistent. The optimization ratio hits 71.8% and the average RMSE decreases by 7.39 m/s in the six-region experiment. The Res-SACNN model not only shows more superior inversion ability in the comparison with other deep-learning models, but also achieves strong generalization and real-time performance while maintaining low complexity, providing an improved technical tool for SSP estimation and sound field perception. Full article
Show Figures

Figure 1

Back to TopTop