Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (180)

Search Parameters:
Keywords = non-graphitizing carbon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 6778 KiB  
Review
Challenges and Opportunities for g-C3N4-Based Heterostructures in the Photodegradation of Environmental Pollutants
by Eduardo Estrada-Movilla, Jhonathan Castillo-Saenz, Benjamín Valdez-Salas, Álvaro Ortiz-Pérez, Ernesto Beltrán-Partida, Jorge Salvador-Carlos and Esneyder Puello-Polo
Catalysts 2025, 15(7), 653; https://doi.org/10.3390/catal15070653 - 4 Jul 2025
Viewed by 490
Abstract
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it [...] Read more.
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it the ability to absorb in the visible light range. However, the characteristic sensitivity to light absorption is limited, leading to rapid recombination of electron–hole pairs. Therefore, different strategies have been explored to optimize this charge separation, among which the formation of heterostructures based on g-C3N4 is highlighted. This review addresses recent advances in photocatalysis mediated by g-C3N4 heterostructures, considering the synthesis methods enabling the optimization of the morphology and active interface of these materials. Next, the mechanisms of charge transfer are discussed in detail, with special emphasis on type II, type S, and type Z classifications and their influence on the efficiency of photodegradation. Subsequently, the progress in the application of these photocatalysts for the degradation of water pollutants, such as toxic organic dyes, pharmaceutical pollutants, pesticides, and per- and polyfluoroalkyl substances (PFAS), are analyzed, highlighting both experimental advances and remaining challenges. Finally, future perspectives oriented towards the optimization of heterostructures, the efficiency of synthesis methods, and the practical application of these in photocatalytic processes for environmental remediation. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Figure 1

30 pages, 5199 KiB  
Review
Modification Strategies of g-C3N4-Based Materials for Enhanced Photoelectrocatalytic Degradation of Pollutants: A Review
by Yijie Zhang, Peng Lian, Xinyu Hao, Li Zhang, Lihua Yang, Li Jiang, Kaiyou Zhang, Lei Liao and Aimiao Qin
Inorganics 2025, 13(7), 225; https://doi.org/10.3390/inorganics13070225 - 3 Jul 2025
Viewed by 353
Abstract
Graphite carbon nitride (g-C3N4) is a low band gap non-metallic polymer semiconductor that has broad application prospects and is an ideal material for absorbing visible light, as g-C3N4 materials have strong oxidation properties and are easy [...] Read more.
Graphite carbon nitride (g-C3N4) is a low band gap non-metallic polymer semiconductor that has broad application prospects and is an ideal material for absorbing visible light, as g-C3N4 materials have strong oxidation properties and are easy to modify. The structure formation of g-C3N4-based materials makes a series of photocatalytic synthesis reactions possible and improves photocatalytic reaction activity. In this paper, the development history, structures, and performance of g-C3N4 are briefly introduced, and the modification strategies of g-C3N4 are summarized to improve its photocatalytic and photoelectric catalytic properties via doping, heterojunction construction, etc. The light absorption and utilization of the catalysts are also analyzed in terms of light source conditions, and the application of g-C3N4 and its modified materials in photocatalysis and photocatalytic degradation is reviewed. Full article
Show Figures

Graphical abstract

17 pages, 48587 KiB  
Article
Characterization of Briquettes from Potato Stalk Residues for Sustainable Solid Biofuel Production
by Marlon Andrés Piarpuezán Enríquez, Daniel Roberto Zapata Hidalgo and Fernando Pantoja-Suárez
Processes 2025, 13(6), 1851; https://doi.org/10.3390/pr13061851 - 12 Jun 2025
Viewed by 524
Abstract
The development of biofuels aligned with the circular economy has gained increasing attention as a sustainable alternative to non-renewable energy sources. This study aims to evaluate the physical and thermal properties of biomass briquettes derived from potato stalk residues to assess their potential [...] Read more.
The development of biofuels aligned with the circular economy has gained increasing attention as a sustainable alternative to non-renewable energy sources. This study aims to evaluate the physical and thermal properties of biomass briquettes derived from potato stalk residues to assess their potential as biofuels. For this, dried potato stalk residues were subjected to pyrolysis for carbonization, followed by grinding and mixing with potato and achira binders in proportions of 10% and 20%, respectively. The briquetting process was performed at a pressure of 10 MPa with compaction times of 30 and 60 s. Scanning electron microscopy (SEM) revealed a porous structure with uniform binder distribution, while Raman spectroscopy confirmed the presence of D and G bands, indicative of amorphous carbon structures with graphite-like imperfections. Thermogravimetric analysis (TGA) determined a moisture content of 10%, which ensures stability. Non-carbonized briquettes exhibited higher compressive strength, withstanding forces in excess of 400 N at 20% deformation. The average calorific value of both briquette types was 15 MJ/kg, comparable to biofuels derived from sugarcane bagasse and rice hulls, with samples exceeding the 12 MJ/kg threshold for biomass fuel classification. These results indicate that potato stalk briquettes could be a viable biofuel alternative to support renewable energy diversification. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 2983 KiB  
Article
Coating Formulations Based on Carbon Black: An Alternative to Develop Environmentally Friendly Conductive Cellulose Paper
by Adriana Millan, Anny Morales, Richard A. Venditti and Joel J. Pawlak
Materials 2025, 18(12), 2708; https://doi.org/10.3390/ma18122708 - 9 Jun 2025
Viewed by 449
Abstract
The current economic growth and increasing needs of society have led to developing processes that harm our environment and have severe long-term consequences. For this reason, different attempts have been made to mitigate these effects by substituting conventional toxic materials with environmentally friendly [...] Read more.
The current economic growth and increasing needs of society have led to developing processes that harm our environment and have severe long-term consequences. For this reason, different attempts have been made to mitigate these effects by substituting conventional toxic materials with environmentally friendly ones. Industry sectors related to energy storage, printed electronics, and wearable technology are moving towards applying sustainable strategies. Renewable biopolymers such as cellulose and its derivatives, as well as carbon-based alternatives, which include carbon nanotubes (CNTs), single-wall carbon nanotubes (SWCNTs), graphite, graphene, and carbon black (CB), are leading the advances in this field. The present research aimed to develop conductive cellulose paper using environmentally friendly components compatible with the paper recycling process. Coating formulations based on carbon black were proposed using three different types of binders: polytetrafluoroethylene (PTFE), latex (styrene butadiene), and sodium carboxymethyl cellulose (CMC). The formulation, composition, and preparation were studied, and they were related to the coating’s electrical resistance and integrity. This last parameter was determined through a new method described in this research, implementing a mechanical/optical technique to measure the coating’s durability. The formulation with the best performance in terms of electrical resistance (0.29 kΩ), integrity, and non-toxicity was obtained using sodium carboxymethyl cellulose (CMC) as a binder and dispersant. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

24 pages, 9418 KiB  
Article
Exploring the Role of Non-Metal Doping in g-C3N4 for CO2 Reduction: A DFT Investigation
by Wassana Mongkonkan, Kaito Takahashi, Yuwanda Injongkol, Nuttapon Yodsin, Supawadee Namuangruk and Siriporn Jungsuttiwong
Catalysts 2025, 15(6), 553; https://doi.org/10.3390/catal15060553 - 3 Jun 2025
Viewed by 545
Abstract
The electrochemical reduction of CO2 (CO2RR) to valuable chemicals and fuels is a promising strategy for addressing environmental challenges. Graphitic carbon nitride (g-C3N4) is a promising electrocatalyst for CO2 reduction. However, poor electron transfer and [...] Read more.
The electrochemical reduction of CO2 (CO2RR) to valuable chemicals and fuels is a promising strategy for addressing environmental challenges. Graphitic carbon nitride (g-C3N4) is a promising electrocatalyst for CO2 reduction. However, poor electron transfer and low CO2 affinity often limit its catalytic performance. In this study, we employ density functional theory (DFT) calculations to systematically investigate the effect of various non-metal dopants (B, P, O, and S) on the electronic structure and CO2 adsorption properties of g-C3N4. Our results demonstrated that O-C3N4 preferentially catalyzes the formation of HCOOH with a low limiting potential of −0.12 V. Meanwhile, S-C3N4 efficiently promotes the generation of CH2O, CH3OH, and CH4 at a limiting potential of −0.58 V, as well as CO at −0.77 V. These findings provide valuable insights toward the rational design of effective non-metal-doped g-C3N4 catalysts for efficient CO2 conversion. Full article
(This article belongs to the Topic Electrocatalytic Advances for Sustainable Energy)
Show Figures

Graphical abstract

14 pages, 3109 KiB  
Article
Optimization of Textural and Structural Properties of Carbon Materials for Sodium Dual-Ion Battery Electrodes
by Ignacio Cameán, Belén Lobato, Rachelle Omnée, Encarnación Raymundo-Piñero and Ana B. García
Molecules 2025, 30(11), 2439; https://doi.org/10.3390/molecules30112439 - 2 Jun 2025
Viewed by 447
Abstract
Sodium dual-ion batteries combine economic and environmental benefits by using carbon materials in both electrodes and sodium compounds in the electrolyte. Among other factors, their successful implementation for energy storage relies on optimization of the properties of the carbon electrode materials. To this [...] Read more.
Sodium dual-ion batteries combine economic and environmental benefits by using carbon materials in both electrodes and sodium compounds in the electrolyte. Among other factors, their successful implementation for energy storage relies on optimization of the properties of the carbon electrode materials. To this end, carbon materials with a wide range of textural and structural properties were prepared by simply heat treating a single porous carbon in the absence or presence of a low-cost highly effective iron-based catalyst. These materials were investigated as anode or cathode in the sodium dual-ion batteries by prolonged galvanostatic cycling. The optimal textural and structural properties for carbon materials to achieve the best performance as electrodes in sodium dual-ion batteries were identified as having a high degree of graphitic structural order combined with minimal microporosity in the cathode and a non-graphitic structure with a layer spacing of around 0.37 nm and moderate microporosity in the anode. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

21 pages, 9841 KiB  
Article
Influence of Different Precursors on Properties and Photocatalytic Activity of g-C3N4 Synthesized via Thermal Polymerization
by Debora Briševac, Ivana Gabelica, Floren Radovanović-Perić, Kristina Tolić Čop, Gordana Matijašić, Davor Ljubas and Lidija Ćurković
Materials 2025, 18(11), 2522; https://doi.org/10.3390/ma18112522 - 27 May 2025
Viewed by 438
Abstract
In this research, an emerging, non-metallic photocatalyst was prepared by the thermal polymerization method from three different precursors: urea, melamine, and three mixtures of melamine and cyanuric acid. Graphitic carbon nitride (g-C3N4) samples from urea and melamine were synthesized [...] Read more.
In this research, an emerging, non-metallic photocatalyst was prepared by the thermal polymerization method from three different precursors: urea, melamine, and three mixtures of melamine and cyanuric acid. Graphitic carbon nitride (g-C3N4) samples from urea and melamine were synthesized in a muffle furnace at three different temperatures: 450°, 500°, and 550 °C for 2 h, while the samples made of a mixture of melamine and cyanuric acid (with mass ratios of 1:1, 1:2, and 2:1) were synthesized at 550 °C for 2 h. All the samples were characterized in order to determine their chemical and physical properties, such as crystallite size and structure, and phase composition by the following techniques: Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). Nitrogen adsorption/desorption isotherms were used to investigate the Brunauer, Emmett, and Teller (BET) specific surface area and Barrett–Joyner–Halenda (BJH) pore size distribution. Band gap values were determined by diffuse reflectance spectroscopy (DRS). Furthermore, adsorption and photocatalytic degradation of the local anesthetic drug procaine were monitored under UV-A, visible, and simulated solar irradiation in a batch reactor. Kinetic parameters, as well as photocatalytic mechanisms using scavengers, were determined and analyzed. The results of the photocatalysis experiments were compared to the benchmark TiO2 Evonik Aeroxide P25. The results indicated that the g-C3N4 sample synthesized from urea at 500 °C for 2 h exhibited the highest degradation rate of procaine under visible light. Full article
Show Figures

Figure 1

18 pages, 1458 KiB  
Article
Dependency of Catalytic Reactivity on the Characteristics of Expanded Graphites as Representatives of Carbonaceous Materials
by Do Gun Kim, Seong Won Im, Kyung Hwan Ryu, Seoung Ho Jo, Min Gyeong Choe and Seok Oh Ko
Molecules 2025, 30(11), 2275; https://doi.org/10.3390/molecules30112275 - 22 May 2025
Viewed by 434
Abstract
Carbonaceous materials (CMs) have gained great attention as heterogeneous catalysts in water treatment because of their high efficiency and potential contribution to achieving carbon neutrality. Expanded graphite (EG) is ideal for studying CMs because the reactivity in CMs largely depends on graphitic structures, [...] Read more.
Carbonaceous materials (CMs) have gained great attention as heterogeneous catalysts in water treatment because of their high efficiency and potential contribution to achieving carbon neutrality. Expanded graphite (EG) is ideal for studying CMs because the reactivity in CMs largely depends on graphitic structures, and most surface of EG is exposed, minimizing mass transfer resistance. However, EG is poor in adsorption and catalysis. In this study, EG was modified by simple thermal treatment to investigate the effects of characteristics of graphitic structures on reactivity. Tetracycline (TC) removal rate via activating peroxydisulfate (PDS) by the EG treated at 550 °C (EG550) was more than 10 times that of EG. The thermal modification did not significantly increase surfaces but led to increases in damaged, rough surfaces, graphitization degree, C content, defects, and C=O. Radical and non-radical pathways, such as SO4•−, O2•−, 1O2, and electron transfer, were involved in TC removal in EG550+PDS. TC degradation in EG550+PDS was initiated by hydroxylation, followed by demethylation, dehydroxylation, decarbonylation, and ring-opening. The ions ubiquitous in water systems did not significantly affect the performance of EG550+PDS, except for H2PO4 and HCO3, suggesting the high potential of practical applications. This study demonstrated that graphitic structure itself and surface area are not detrimental in the catalytic reactivity of CMs, which is different from previous studies. Rather, the reactivity is governed by the characteristics, i.e., defects and functional groups of the graphitic structure. It is thought that this study provides valuable insights into the development of highly reactive CMs and the catalytic systems using them. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Graphical abstract

44 pages, 7325 KiB  
Article
Synthesis and Characterization of Bio-Composite Based on Urea–Formaldehyde Resin and Hydrochar: Inherent Thermal Stability and Decomposition Kinetics
by Bojan Janković, Vladimir Dodevski, Marija Janković, Marija Milenković, Suzana Samaržija-Jovanović, Vojislav Jovanović and Milena Marinović-Cincović
Polymers 2025, 17(10), 1375; https://doi.org/10.3390/polym17101375 - 16 May 2025
Viewed by 508
Abstract
This work reports a study on the structural characterization, evaluation of thermal stability, and non-isothermal decomposition kinetics of urea–formaldehyde (UF) resin modified with hydrochar (obtained by the hydrothermal carbonization of spent mushroom substrate (SMS)) (UF-HC). The structural characterization of UF-HC, performed by scanning [...] Read more.
This work reports a study on the structural characterization, evaluation of thermal stability, and non-isothermal decomposition kinetics of urea–formaldehyde (UF) resin modified with hydrochar (obtained by the hydrothermal carbonization of spent mushroom substrate (SMS)) (UF-HC). The structural characterization of UF-HC, performed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and X-ray diffraction analyses, showed that UF-HC consists of a large number of spheroidal particles, which are joined, thus forming clusters. It constitutes agglomerates, which are composed of crystals that have curved plate-like forms, including crystalline UF structure and graphite lattices with an oxidized face (graphene oxide, GO). The measurement of inherent thermal stability and non-isothermal decomposition kinetic analysis was carried out using simultaneous thermogravimetric–differential thermal analyses (TGA-DTA) at various heating rates. Parameters that are obtained from thermal stability assessment have indicated the significant thermal stability of UF-HC. Substantial variation in activation energy and the pre-exponential factor with the advancement of decomposition process verifies the multi-step reaction pathway. The decomposition process takes place through three independent single-step reactions and one consecutive reactions step. The consecutive stage represents a path to the industrial production of valuable heterocyclic organic compounds (furan) and N-heterocyclic compounds (pyrroles), building a green-protocol trail. It was found that a high heating rate stimulates a high production of furan from cellulose degradation via the ring opening step, while a low heating rate favors the production of urea compounds (methylolurea hemiformal (HFn)) by means of methylene ether bridges breaking. Full article
(This article belongs to the Collection Biopolymers: Synthesis and Properties)
Show Figures

Graphical abstract

22 pages, 6755 KiB  
Article
Structural, Mechanical, and Tribological Properties of Molybdenum-Doped Diamond-like Carbon Films
by Hassan Zhairabany, Hesam Khaksar, Edgars Vanags, Krisjanis Smits, Anatolijs Sarakovskis and Liutauras Marcinauskas
Crystals 2025, 15(5), 463; https://doi.org/10.3390/cryst15050463 - 15 May 2025
Viewed by 2445
Abstract
Non-hydrogenated diamond-like carbon (DLC) films and molybdenum-doped diamond-like carbon (Mo-DLC) films were deposited by direct current magnetron sputtering. The formation was carried out on Si (100) wafers. The influence of molybdenum concentration and deposition temperature on the surface morphology, chemical composition, type of [...] Read more.
Non-hydrogenated diamond-like carbon (DLC) films and molybdenum-doped diamond-like carbon (Mo-DLC) films were deposited by direct current magnetron sputtering. The formation was carried out on Si (100) wafers. The influence of molybdenum concentration and deposition temperature on the surface morphology, chemical composition, type of chemical bonds, friction force at nanoscale, and nanohardness of the DLC coatings were investigated by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and nanoindenter, respectively. The concentration of molybdenum in the films varies from 1.2 at.% to 10.3 at.%. The increase in molybdenum content promotes the graphitization of DLC films, lowering the sp3 site fraction and increasing the oxygen content, which contributes to the reduction in nanohardness (by 21%) of the DLC films. The decrease in the synthesis temperature from 235 °C to 180 °C enhanced the oxygen amount up to 20.4 at.%. The sp3 site fraction and nanohardness of the Mo-DLC films were enhanced with the reduction in the deposition temperature. The film deposited at a substrate temperature of 235 °C exhibited the lowest friction coefficient (CoF) of 0.03, where its molybdenum concentration was 1.2 at.%. The decline in the synthesis temperature increased the CoF of the Mo-DLC films up to seven times. Full article
(This article belongs to the Special Issue Advances in Diamond Crystals and Devices)
Show Figures

Figure 1

16 pages, 6936 KiB  
Article
A Green Synthesis of Controllable Shear-Assisted Catalytically Graphitized Biomass-Derived Carbon and Its Multi-Scale Reinforcement Mechanism in Natural Rubber
by Xingxin Xu, Chengjun Li, Xu Lin, Defa Hou, Yunwu Zheng, Fulin Yang, Hao Sun and Can Liu
Molecules 2025, 30(9), 1936; https://doi.org/10.3390/molecules30091936 - 27 Apr 2025
Viewed by 431
Abstract
Carbon black (CB) serves as the most crucial reinforcing filler in natural rubber (NR) applications. However, conventional CB production relies on petroleum or coal resources, raising concerns about non-renewability and unsustainable resource consumption. Although biomass-derived carbon materials have been explored as alternatives for [...] Read more.
Carbon black (CB) serves as the most crucial reinforcing filler in natural rubber (NR) applications. However, conventional CB production relies on petroleum or coal resources, raising concerns about non-renewability and unsustainable resource consumption. Although biomass-derived carbon materials have been explored as alternatives for natural rubber reinforcement, their practical application remains constrained by inherent limitations such as large particle size and low graphitic structure, which compromise reinforcement efficiency. This study presents a novel walnut shell biochar (WSB) for natural rubber enhancement. The biochar was prepared via conventional pyrolysis and subsequently subjected to an environmentally friendly physical ball-milling process. This treatment effectively increased graphitized domains while enriching surface functional groups. Systematic investigations were conducted on the effects of ball-milling duration and biochar loading on rubber reinforcement performance. Results demonstrate that the biochar-reinforced vulcanizates achieved a 22% improvement in tensile strength compared to unfilled rubber. Notably, at 10 phr loading, the tensile strength of biochar-filled vulcanizates reached 98% of that achieved by CB(N330)-filled counterparts. The study further revealed that biochar incorporation effectively reduced hysteresis loss and enhanced elastic recovery in rubber composites. This work proposes a facile method to develop sustainable biochar-based reinforcing agents with significant potential for natural rubber applications. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Figure 1

21 pages, 3845 KiB  
Article
Graphite Separation from Lithium-Ion Battery Black Mass Using Froth Flotation and Quality Evaluation for Reuse as a Secondary Raw Material Including Non-Battery Applications
by Johannes Rieger, Stephan Stuhr, Bettina Rutrecht, Stefan Morgenbesser, Thomas Nigl, Astrid Arnberger, Hartwig Kunanz and Stefanie Lesiak
Recycling 2025, 10(2), 75; https://doi.org/10.3390/recycling10020075 - 14 Apr 2025
Viewed by 1705
Abstract
This study investigates graphite separation from Lithium-Ion Battery (LIB) black mass (which is a mixture of anode and cathode materials) via froth flotation coupled with an open-loop recycling approach for the graphite (froth) product. Black mass samples originating from different LIB types were [...] Read more.
This study investigates graphite separation from Lithium-Ion Battery (LIB) black mass (which is a mixture of anode and cathode materials) via froth flotation coupled with an open-loop recycling approach for the graphite (froth) product. Black mass samples originating from different LIB types were used to produce a carbon-poor and a carbon-enriched fractions. The optimization of the flotation parameters was carried out depending on the black mass chemistry, i.e., the number of flotation stages and the dosing of flotation agents. The carbon-enriched product (with a carbon content of 92 wt.%, corresponding to a recovery of 89%) was subsequently used as a secondary carbon source for refractory material (magnesia carbon brick). Analyses of brick chemistry, as well as thermo-mechanic properties in terms of density, porosity, cold crushing strength (CCS), hot modulus of rupture (HMOR—the maximum bending stress that can be applied to a material before it breaks), and thermal conductivity showed no negative influence on brick quality. It could be demonstrated that flotation graphite can principally be used as a secondary source for non-battery applications. This is a highly valuable example that contributes to a more complete closure of a battery’s life cycle in terms of circular economy. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Figure 1

6 pages, 651 KiB  
Proceeding Paper
The Development of an Affordable Graphite-Based Conductive Ink for Printed Electronics
by Anandita Dey, Ankur Jyoti Kalita, Hiramoni Khatun and Utpal Sarma
Eng. Proc. 2025, 87(1), 17; https://doi.org/10.3390/engproc2025087017 - 13 Mar 2025
Viewed by 862
Abstract
Printed electronics (PEs) are rapidly attracting interest, especially in wearable sensors, smart textiles, and IoT devices. Conductive inks, essential for the fabrication of PE, must be highly conductive, cost-effective, biocompatible, easy to prepare, and less viscous. Conductive inks comprise a conducting material (metals [...] Read more.
Printed electronics (PEs) are rapidly attracting interest, especially in wearable sensors, smart textiles, and IoT devices. Conductive inks, essential for the fabrication of PE, must be highly conductive, cost-effective, biocompatible, easy to prepare, and less viscous. Conductive inks comprise a conducting material (metals like silver, gold, copper, or carbon-based alternatives like graphite, graphene, and carbon nanotubes), a binder, and a solvent. In this work, a water-based graphite conductive ink is developed using graphite as a conductive material, corn starch powder (non-toxic and biodegradable) as a binder, and distilled water as a solvent. Firstly, corn starch powder is added to distilled water, which is heated up to 100 °C and stirred continuously until a homogeneous gel-like mixture is formed. After cooling the mixture, graphite powder is added to it, and it is stirred for an hour at 450 rpm to obtain the ink. To check the conductivity, the ink is brush-painted on a paper substrate with a dimension of 20 mm × 10 mm and the result shows a low ohmic resistance of ~560 Ω, confirming the highly conductive nature of the ink. Additionally, thermogravimetric analysis (TGA) is performed on the prepared ink to evaluate its thermal stability, and a very strong X-ray diffraction (XRD) peak obtained at 2θ° = 26.5426° and a small peak at 2θ° = 54.6145°, along with a few other small peaks, confirms the presence of graphite with corn starch. Thus, this conductive ink can be used for PEs owing to its affordability, biocompatibility, and ease of preparation. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

16 pages, 5538 KiB  
Article
Magnetic Coal Gasification Slag/Graphite Phase Carbon Nitride Composites for Photocatalytic Degradation of Tetracycline
by Yue Yin, Tingan Yao, Guohui Dong and Chuanyi Wang
Processes 2025, 13(3), 770; https://doi.org/10.3390/pr13030770 - 7 Mar 2025
Viewed by 646
Abstract
Graphite-phase carbon nitride (CN) has the advantages of high stability, non-toxicity, and harmlessness in degrading antibiotic pollutants in water. How to achieve the reduction of its electron-hole complexation efficiency as well as the improvement of its recyclability, while at the same time ensuring [...] Read more.
Graphite-phase carbon nitride (CN) has the advantages of high stability, non-toxicity, and harmlessness in degrading antibiotic pollutants in water. How to achieve the reduction of its electron-hole complexation efficiency as well as the improvement of its recyclability, while at the same time ensuring these advantages, is the focus of this paper. In this study, modified magnetic particles selected from coal gasification slag were used as carriers, which were compounded with CN and then subjected to a simple roasting process to obtain composite magnetic photocatalysts (MCN) with different ratios. The introduction of porous magnetic carriers increased the specific surface area of MCN, provided more active sites, and effectively improved the migration ability and redox capacity of CN carriers. Among them, 50% MCN showed excellent photodegradation performance, and the removal rate of tetracycline reached 82% within 60 min, which was much higher than that of CN. 50% MCN has a saturated magnetisation intensity of 1.55 emu·g−1, which can be regenerated after recycling using a magnetic field, and the degradation efficiency of tetracycline is still more than 70% after five cycles, indicating that 50% MCN has good stability. This work demonstrates that magnetic gasification slag as a modified carrier can effectively promote the separation of photogenerated electron-hole pairs of graphite-phase carbon nitride, which provides a reference for the resourceful utilisation of coal gasification slag, as well as for the construction of g-C3N4-based photocatalysts with highly efficient and stable photodegradation activity. This work exemplifies how waste-derived materials can advance photocatalyst design, addressing both efficiency and sustainability challenges in water treatment. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

19 pages, 13686 KiB  
Article
Sustainable Conversion of Biomass to Multiwalled Carbon Nanotubes and Carbon Nanochains
by Kevin R. McKenzie, Nathan A. Banek and Michael J. Wagner
Materials 2025, 18(5), 1022; https://doi.org/10.3390/ma18051022 - 26 Feb 2025
Viewed by 680
Abstract
The conversion of biochar, the low value byproduct of pyrolysis bio-oil production from biomass multi-walled carbon nanotubes (MWCNTs) and carbon nanochains (CNCs), is reported. It is shown that biomass can be converted to long (>30 µm) carbon nanotubes with an anomalously deep (>280 [...] Read more.
The conversion of biochar, the low value byproduct of pyrolysis bio-oil production from biomass multi-walled carbon nanotubes (MWCNTs) and carbon nanochains (CNCs), is reported. It is shown that biomass can be converted to long (>30 µm) carbon nanotubes with an anomalously deep (>280 nm) stacked-cup structure. A mechanism of the transformation that is consistent with previously reported graphitization of biochar, a “non-graphitizable” carbon, is proposed, suggesting the molten metal catalyst is absorbed into the biochar by capillary action, forming graphene walls as it percolates through pore structure. Graphite is formed when the diameter of the molten catalyst droplets is large (microns), while smaller droplets (submicron) form MWCNTs and still smaller (<100 nm) form CNCs. Branching in the biochar pore structure leads to subdivision of the catalyst droplets resulting in the progression from MWCNT to CNC formation. Very long MWCNTs (>50 µm) can be formed in the absence of CNCs by transforming lignite char rather than biochar, presumably due to the elimination of smaller branching pores during coalification. CNCs, in the absence of MWCNTs, can be formed in biochar by using low concentrations of catalyst nanoparticles formed by carbon thermal reduction of a metal salt during charring. The results presented suggest that developing methods to control the porosity of the char could yield the ability to rationally synthesize carbon nanotubes with control of length, breadth and wall thickness. Full article
Show Figures

Figure 1

Back to TopTop