Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (888)

Search Parameters:
Keywords = non-conventional waters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 24500 KiB  
Article
Ambient to Elevated Temperature: Ecotribology of Water-Based Lubricants Incorporating hBN/TiO2 Nanoadditives
by Afshana Morshed, Fei Lin, Hui Wu, Zhao Xing, Sihai Jiao and Zhengyi Jiang
Lubricants 2025, 13(8), 344; https://doi.org/10.3390/lubricants13080344 (registering DOI) - 1 Aug 2025
Abstract
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In [...] Read more.
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In this study, hexagonal boron nitride nanosheets (hBNNSs) and titanium dioxide nanoparticles (TiO2 NPs) were used to prepare water-based lubricants with glycerol and surfactant sodium dodecyl benzene sulfonate (SDBS) in water under ultrasonication. An Rtec ball-on-disk tribometer was used to investigate the tribological performance of the synthesised water-based lubricants containing different nano-hBN/TiO2 concentrations, with dry and water conditions used as benchmarks. The results indicated that the water-based nanolubricant containing 0.5 wt% hBN and 0.5 wt% TiO2 exhibited the best tribological performance at both ambient (25 °C) and elevated (500 °C) temperatures. This optimal concentration leads to a reduction in the coefficient of friction (COF) by 72.9% and 37.5%, wear of disk by 62.5% and 49%, and wear of ball by 74% and 69% at ambient and elevated temperatures, respectively, compared to that of distilled water. Lubrication mechanisms were attributed to the rolling, mending, tribofilm, solid layer formation, and synergistic effects of hBNNSs and TiO2 NPs. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Figure 1

17 pages, 3389 KiB  
Article
Enhanced OH Transport Properties of Bio-Based Anion-Exchange Membranes for Different Applications
by Suer Kurklu-Kocaoglu, Daniela Ramírez-Espinosa and Clara Casado-Coterillo
Membranes 2025, 15(8), 229; https://doi.org/10.3390/membranes15080229 - 31 Jul 2025
Viewed by 26
Abstract
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current [...] Read more.
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current AEMs still face challenges, such as insufficient permeability and stability in strongly acidic or alkaline media, which limit their durability and the sustainability of membrane fabrication. In this study, polyvinyl alcohol (PVA) and chitosan (CS) biopolymers are selected for membrane preparation. Zinc oxide (ZnO) and porous organic polymer (POP) nanoparticles are also introduced within the PVA-CS polymer blends to make mixed-matrix membranes (MMMs) with increased OH transport sites. The membranes are characterized based on typical properties for AEM applications, such as thickness, water uptake, KOH uptake, Cl and OH permeability and ion exchange capacity (IEC). The OH transport of the PVA-CS blend is increased by at least 94.2% compared with commercial membranes. The incorporation of non-porous ZnO and porous POP nanoparticles into the polymer blend does not compromise the OH transport properties. On the contrary, ZnO nanoparticles enhance the membrane’s water retention capacity, provide basic surface sites that facilitate hydroxide ion conduction and reinforce the mechanical and thermal stability. In parallel, POPs introduce a highly porous architecture that increases the internal surface area and promotes the formation of continuous hydrated pathways, essential to efficient OH mobility. Furthermore, the presence of POPs also contributes to reinforcing the mechanical integrity of the membrane. Thus, PVA-CS bio-based membranes are a promising alternative to conventional ion exchange membranes for various applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

19 pages, 4710 KiB  
Article
A Non-Contact Method of Measuring Capillary Rise Based on the Hygroscopic Expansion of the Material
by Andrzej Kucharczyk, Kamil Pawlik and Mariusz Czabak
Materials 2025, 18(15), 3501; https://doi.org/10.3390/ma18153501 - 25 Jul 2025
Viewed by 177
Abstract
This paper presents a novel, non-contact method for measuring capillary water uptake in porous materials based on the phenomenon of moisture-induced expansion. The proposed approach establishes a quantitative relationship between the amount of water absorbed by the material and the deformations measured on [...] Read more.
This paper presents a novel, non-contact method for measuring capillary water uptake in porous materials based on the phenomenon of moisture-induced expansion. The proposed approach establishes a quantitative relationship between the amount of water absorbed by the material and the deformations measured on its surface. Digital Image Correlation (DIC) was used to track the displacements of reference points on gypsum specimens during capillary rise. The absorbed water mass was determined from the recorded displacements using a mechanical model that incorporates the moisture expansion coefficient. The method was validated by comparison with conventional continuous gravimetric measurements. The results demonstrate that the displacement-based approach accurately captures the capillary rise process, particularly in the initial phase, where the gravimetric method suffers from significant measurement errors due to surface tension effects. The proposed method eliminates these limitations, providing higher accuracy and temporal resolution. In addition, it enables the testing of larger samples and offers the potential for spatially resolved moisture analysis. The findings confirm that the method is suitable for studying moisture transport in porous materials and may serve as a valuable alternative to traditional gravimetric techniques. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

36 pages, 5042 KiB  
Review
The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites
by Zahra Parhizi, John Dearnaley, Kate Kauter, Deirdre Mikkelsen, Priya Pal, Tristan Shelley and Paulomi (Polly) Burey
J. Fungi 2025, 11(8), 549; https://doi.org/10.3390/jof11080549 - 23 Jul 2025
Viewed by 479
Abstract
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, [...] Read more.
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, converting abundant agricultural by-products and waste into sustainable alternatives to energy-intensive synthetic construction materials. Their affordability and eco-friendly characteristics make them attractive for both research and commercialisation. Currently, mycelium-based foams and sandwich composites are being actively developed for applications in construction. These materials offer exceptional thermal insulation, excellent acoustic absorption, and superior fire safety compared to conventional building materials like synthetic foams and engineered wood. As a result, MBCs show great potential for applications in thermal and acoustic insulation. However, their foam-like mechanical properties, high water absorption, and limited documentation of material properties restrict their use to non- or semi-structural roles, such as insulation, panelling, and furniture. This paper presents a comprehensive review of the fabrication process and the factors affecting the production and performance properties of MBCs. It addresses key elements such as fungal species selection, substrate choice, optimal growth conditions, dehydration methods, post-processing techniques, mechanical and physical properties, termite resistance, cost comparison, and life cycle assessment. Full article
Show Figures

Figure 1

14 pages, 405 KiB  
Review
A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes
by Anissa Somrani, Kholoud Abohelal and Maxime Pontié
Membranes 2025, 15(7), 217; https://doi.org/10.3390/membranes15070217 - 21 Jul 2025
Viewed by 418
Abstract
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the [...] Read more.
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the disposal of End-of-Life (EoL) RO membranes, which are made of non-biodegradable polymers. The reuse of EoL membranes as a sustainable approach for waste saving and resource efficiency has recently attracted considerable attention. The present work provides a comprehensive overview of the strategies for reusing EoL RO membranes as sustainable alternatives to conventional disposal methods. Furthermore, the fundamental principles of RO technology, the primary types and impacts of membrane fouling, and advanced cleaning and regeneration techniques are discussed. The conversion of EoL membranes into nanofiltration (NF), ultrafiltration (UF), and forward osmosis (FO) membranes is also covered in this review, as well as their uses in brackish water desalination, dye/salt separation, groundwater treatment, and household wastewater reuse. Environmental and economic benefits, as well as technical, social, and regulatory challenges, are also discussed. Finally, the review highlights innovative approaches and future directions for incorporating EoL membrane reuse into circular economy models, outlining its potential to improve sustainability and reduce operational costs in water treatment systems. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

32 pages, 1444 KiB  
Article
Enhancing Airport Resource Efficiency Through Statistical Modeling of Heavy-Tailed Service Durations: A Case Study on Potable Water Trucks
by Changcheng Li, Minghua Hu, Yuxin Hu, Zheng Zhao and Yanjun Wang
Aerospace 2025, 12(7), 643; https://doi.org/10.3390/aerospace12070643 - 21 Jul 2025
Viewed by 238
Abstract
In airport operations management, accurately estimating the service durations of ground support equipment such as Potable Water Trucks (PWTs) is essential for improving resource allocation efficiency and ensuring timely aircraft turnaround. Traditional estimation methods often use fixed averages or assume normal distributions, failing [...] Read more.
In airport operations management, accurately estimating the service durations of ground support equipment such as Potable Water Trucks (PWTs) is essential for improving resource allocation efficiency and ensuring timely aircraft turnaround. Traditional estimation methods often use fixed averages or assume normal distributions, failing to capture real-world variability and extreme scenarios effectively. To address these limitations, this study performs a comprehensive statistical analysis of PWT service durations using operational data from Beijing Daxing International Airport (ZBAD) and Shanghai Pudong International Airport (ZSPD). Employing chi-square goodness-of-fit tests, twenty probability distributions—including several heavy-tailed candidates—were rigorously evaluated under segmented scenarios, such as peak versus non-peak periods, varying temperature conditions, and different aircraft sizes. Results reveal that heavy-tailed distributions offer context-dependent advantages: the stable distribution exhibits superior modeling performance during peak operational periods, whereas the Burr distribution excels under non-peak conditions. Interestingly, contrary to existing operational assumptions, service durations at extremely high and low temperatures showed no significant statistical differences, prompting a reconsideration of temperature-dependent planning practices. Additionally, analysis by aircraft category showed that the Burr distribution best described service durations for large aircraft, while stable and log-logistic distributions were optimal for medium-sized aircraft. Numerical simulations confirmed these findings, demonstrating that the proposed heavy-tailed probabilistic models significantly improved resource prediction accuracy, reducing estimation errors by 13% to 25% compared to conventional methods. This research uniquely demonstrates the practical effectiveness of employing context-sensitive heavy-tailed distributions, substantially enhancing resource efficiency and operational reliability in airport ground handling management. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

16 pages, 1637 KiB  
Article
Contextualizing Radon Mitigation into Healthy and Sustainable Home Design in the Commonwealth of Kentucky: A Conjoint Analysis
by Osama E. Mansour, Lydia (Niang) Cing and Omar Mansour
Sustainability 2025, 17(14), 6543; https://doi.org/10.3390/su17146543 - 17 Jul 2025
Viewed by 309
Abstract
Indoor radon constitutes a public health issue in various regions across the United States as the second leading cause of lung cancer following tobacco smoke. The U.S. Environmental Protection Agency advises radon mitigation interventions for residential buildings with indoor radon concentrations exceeding the [...] Read more.
Indoor radon constitutes a public health issue in various regions across the United States as the second leading cause of lung cancer following tobacco smoke. The U.S. Environmental Protection Agency advises radon mitigation interventions for residential buildings with indoor radon concentrations exceeding the threshold level of 4 pCi/L. Despite considerable research assessing the technical effectiveness of radon mitigation systems, there remains a gap in understanding their broader influence on occupant behavior and preferences in residential design. This study aims to investigate the impact of residing in radon-mitigated homes within the Commonwealth of Kentucky—an area known for elevated radon concentrations—on occupants’ preferences regarding healthy home design attributes. The objectives of this research are twofold: firstly to determine if living in radon-mitigated homes enhances occupant awareness and consequently influences their preferences toward health-related home attributes and secondly to quantitatively evaluate and compare the relative significance homeowners assign to health-related attributes such as indoor air quality, thermal comfort, and water quality relative to conventional attributes including home size, architectural style, and neighborhood quality. The overarching purpose is to explore the potential role radon mitigation initiatives may play in motivating occupants towards healthier home construction and renovation practices. Using choice-based conjoint (CBC) analysis, this paper compares preferences reported by homeowners from radon-mitigated homes against those from non-mitigated homes. While the findings suggest a relationship between radon mitigation and increased preference for indoor air quality, the cross-sectional design limits causal interpretation, and the possibility of reverse causation—where health-conscious individuals are more likely to seek mitigation—must be considered. The results provide novel insights into how radon mitigation efforts might effectively influence occupant priorities towards integrating healthier design elements in residential environments. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

13 pages, 537 KiB  
Review
An Overview of Electrochemical Advanced Oxidation Processes for Pesticide Removal
by Maiara A. P. Frigulio, Alexandre S. Valério and Juliane C. Forti
Processes 2025, 13(7), 2227; https://doi.org/10.3390/pr13072227 - 11 Jul 2025
Viewed by 359
Abstract
This article provides an overview of the use of electrochemical advanced oxidation processes (EAOPs) applied to the treatment of water contaminated by pesticides. Given the global increase in the use of pesticides and the ineffectiveness of conventional treatment methods, EAOPs emerge as promising [...] Read more.
This article provides an overview of the use of electrochemical advanced oxidation processes (EAOPs) applied to the treatment of water contaminated by pesticides. Given the global increase in the use of pesticides and the ineffectiveness of conventional treatment methods, EAOPs emerge as promising alternatives. They stand out for their efficiency in the degradation of organic compounds, minimal reliance on additional chemical reagents, and minimal generation of waste. The main methods addressed include anodic oxidation, photoelectro-oxidation, electro-Fenton and photoelectro-Fenton, which use hydroxyl radicals, a potent non-selective oxidant, to mineralize pollutants. A total of 165 studies were reviewed, with emphasis on the contributions of countries such as China, Spain, Brazil, and India. Factors such as electrode type, presence of catalysts, pH, and current density influence the effectiveness of treatments. Combined processes, especially those integrating UV light and renewable sources, have proven to be more efficient. Despite challenges related to electrode cost and durability, recent advances highlight the sustainability and scalability of EAOPs for the treatment of agricultural and industrial effluents contaminated with pesticides. Full article
(This article belongs to the Special Issue Green Separation and Purification Processes)
Show Figures

Figure 1

15 pages, 990 KiB  
Article
Towards a Green and Sustainable Valorization of Salix amplexicaulis: Integrating Natural Deep Eutectic Solvents and Microwave-Assisted Extraction for Enhanced Recovery of Phenolic Compounds
by Milica Vidić, Nevena Grujić-Letić, Branislava Teofilović and Emilia Gligorić
Sustainability 2025, 17(14), 6347; https://doi.org/10.3390/su17146347 - 10 Jul 2025
Viewed by 301
Abstract
Combining advanced extraction technologies with non-pollutant solvents represents a sustainable approach toward valorizing medicinal plants and aligns with the principles of green chemistry. This study aimed to evaluate the efficiency of microwave-assisted extraction (MAE) combined with natural deep eutectic solvents (NADES) to extract [...] Read more.
Combining advanced extraction technologies with non-pollutant solvents represents a sustainable approach toward valorizing medicinal plants and aligns with the principles of green chemistry. This study aimed to evaluate the efficiency of microwave-assisted extraction (MAE) combined with natural deep eutectic solvents (NADES) to extract bioactive compounds from the underexplored leaves and bark of Salix amplexicaulis Bory & Chaub. Additionally, the potential of NADES as sustainable alternatives to conventional solvents was assessed through a comparative evaluation of MAE-NADES with MAE–water and traditional ethanol maceration. NADES based on lactic acid–glycerol, lactic acid–glucose, glycerol–glucose, and glycerol–urea were synthesized by heating and stirring. Willow extracts were characterized by HPLC-DAD, resulting in the identification and quantification of seven phenolic acids and four flavonoids. Lactic acid–glucose (5:1)-based NADES extracted the highest number of phenolics in the greatest amount from the bark and leaves of S. amplexicaulis. MAE-NADES offers a fast, cost-effective preparation, high extraction efficiency, and environmentally friendly properties, opening new perspectives on the valorization of S. amplexicaulis in the pharmaceutical field. Furthermore, NADES provide a promising alternative to water and toxic organic solvents for extracting bioactives. Full article
Show Figures

Figure 1

17 pages, 2428 KiB  
Article
Combining Diluted Seawater and Fertilizer in an Ion-Based Multivariate Approach as an Effective Assay of Salt Tolerance in Brassica juncea Seedlings
by Morgan Tomlin, William Bridges, Qiong Su, Raghupathy Karthikeyan, Byoung Ryong Jeong, Haibo Liu, Gary L. Amy and Jeffrey Adelberg
Horticulturae 2025, 11(7), 820; https://doi.org/10.3390/horticulturae11070820 - 10 Jul 2025
Viewed by 296
Abstract
Non-conventional water sources (saline and brackish water) are viable options for crop cultivation. Current salt-tolerance research largely focuses on Na+ and Cl, while other ions in these waters remain ill-understood. Synthetic seawater was a representative of saline and brackish water [...] Read more.
Non-conventional water sources (saline and brackish water) are viable options for crop cultivation. Current salt-tolerance research largely focuses on Na+ and Cl, while other ions in these waters remain ill-understood. Synthetic seawater was a representative of saline and brackish water in a Design of Experiments (DoE) treatment design used to evaluate the effects of factors [synthetic seawater (0, 15, 30, or 45%, v/v, Instant Ocean®), total inorganic nitrogen (0, 14, or 28 mM; 1 NH4+:8 NO3 ratio), potassium (0, 9, or 21 mM), calcium (0, 2, or 5 mM), silicon (0, 0.03, or 0.09 mM) and zinc (0, 0.05, or 2 mM)] on seedlings for two varieties of Brassica juncea [‘Carolina Broadleaf’ (CB) and ‘Florida Broadleaf’ (FB)] using a hydroponic assay. In 30–45% synthetic seawater, 0.09 mM of silicon or 2 mM of calcium alleviated salt stress. In FB, 0.04–0.06 mM of silicon was optimal for the production of new leaves. The CB variety showed greater production of new leaves with 0.09 mM of silicon and 28 mM of potassium. Potassium and calcium are components of seawater, and a sodium chloride assay would not account for their interactions without a multivariate approach to evaluate salt tolerance. The seedling assay identified factors and established criteria for larger-scale harvest experiments. Full article
(This article belongs to the Topic Plants Nutrients, 2nd Volume)
Show Figures

Graphical abstract

16 pages, 743 KiB  
Article
Effects of Non-Inversion Tillage and Cover Crops on Weed Diversity and Density in Southeastern Romania
by Mădălin Radu, Ciprian Bolohan, Costel Mihalașcu, Andrei Măruțescu, Max John Newbert and Vasileios P. Vasileiadis
Sustainability 2025, 17(13), 6204; https://doi.org/10.3390/su17136204 - 7 Jul 2025
Viewed by 457
Abstract
Conservation agriculture is increasingly recognized as a sustainable alternative to conventional farming in temperate regions due to its benefits in terms of reducing soil erosion, enhancing water retention, and mitigating climate change. Despite these benefits, these practices are not broadly adopted, partially due [...] Read more.
Conservation agriculture is increasingly recognized as a sustainable alternative to conventional farming in temperate regions due to its benefits in terms of reducing soil erosion, enhancing water retention, and mitigating climate change. Despite these benefits, these practices are not broadly adopted, partially due to perceived weed management challenges in conservation systems. This paper explores how a conservation system that uses cover crops and non-inversion tillage (chiselling) influences the weed flora abundance and evolution before cover crop termination and over a complete rotation cycle (sunflower–winter wheat–maize–sunflower) in southeastern Romania when compared to conventional tillage (ploughing). Overall, the conservation system significantly reduced weed density by 31%, preserving a higher diversity and evenness (H′ = 0.75, E = 0.46) by the end of the rotation cycle and an evenly distributed weed community compared to the conventional system, where the opportunistic species Veronica hederifolia exhibited dominance. Full article
(This article belongs to the Special Issue Sustainable Management: Plant, Biodiversity and Ecosystem)
Show Figures

Figure 1

21 pages, 6342 KiB  
Article
Enhancing Transboundary Water Governance Using African Earth Observation Data Cubes in the Nile River Basin: Insights from the Grand Ethiopian Renaissance Dam and Roseries Dam
by Baradin Adisu Arebu, Esubalew Adem, Fahad Alzahrani, Nassir Alamri and Mohamed Elhag
Water 2025, 17(13), 1956; https://doi.org/10.3390/w17131956 - 30 Jun 2025
Viewed by 523
Abstract
The construction of the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile has heightened transboundary water tensions in the Nile River Basin, particularly affecting downstream Sudan and Egypt. This study leverages African Earth Observation Data Cubes, specifically Digital Earth Africa’s Water Observations [...] Read more.
The construction of the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile has heightened transboundary water tensions in the Nile River Basin, particularly affecting downstream Sudan and Egypt. This study leverages African Earth Observation Data Cubes, specifically Digital Earth Africa’s Water Observations from Space (WOfS) platform, to quantify the hydrological impacts of GERD’s three filling phases (2019–2022) on Sudan’s Roseires Dam. Using Sentinel-2 satellite data processed through the Open Data Cube framework, we analyzed water extent changes from 2018 to 2023, capturing pre- and post-filling dynamics. Results show that GERD’s water spread area increased from 80 km2 in 2019 to 528 km2 in 2022, while Roseires Dam’s water extent decreased by 9 km2 over the same period, with a notable 5 km2 loss prior to GERD’s operation (2018–2019). These changes, validated against PERSIANN-CDR rainfall data, correlate with GERD’s filling operations, alongside climatic factors like evapotranspiration and reduced rainfall. The study highlights the potential of Earth Observation (EO) technologies to support transparent, data-driven transboundary water governance. Despite the Cooperative Framework Agreement (CFA) ratified by six upstream states in 2024, mistrust persists due to Egypt and Sudan’s non-ratification. We propose enhancing the Nile Basin Initiative’s Decision Support System with EO data and AI-driven models to optimize water allocation and foster cooperative filling strategies. Benefit-sharing mechanisms, such as energy trade from GERD, could mitigate downstream losses, aligning with the CFA’s equitable utilization principles and the UN Watercourses Convention. This research underscores the critical role of EO-driven frameworks in resolving Nile Basin conflicts and achieving Sustainable Development Goal 6 for sustainable water management. Full article
Show Figures

Figure 1

20 pages, 313 KiB  
Article
Meat Production Potential of Local Horse Breeds: Sustainable Conservation Through Valorization
by Ante Ivanković, Mateja Pećina, Giovanni Bittante, Nicoló Amalfitano, Miljenko Konjačić and Nikolina Kelava Ugarković
Animals 2025, 15(13), 1911; https://doi.org/10.3390/ani15131911 - 28 Jun 2025
Viewed by 373
Abstract
Local horse breeds, particularly cold-blood types, are often marginalized in economic and social contexts, primarily due to the neglect of their economic, genetic, and cultural potential, as well as their role in preserving the identity of rural areas, local communities, and ecosystems. The [...] Read more.
Local horse breeds, particularly cold-blood types, are often marginalized in economic and social contexts, primarily due to the neglect of their economic, genetic, and cultural potential, as well as their role in preserving the identity of rural areas, local communities, and ecosystems. The valorization of these breeds is a crucial prerequisite for their economic repositioning. The Croatian Posavina horse is a local breed, well adapted to harsh, extensive production systems. Its sustainability is achieved through pasture-based meat production, primarily targeting foreign European markets. Ensuring the sustainability of conservation programs requires a thorough understanding of growth dynamics, carcass traits, and meat quality. This study assessed growth performance and carcass characteristics in a sample of 30 male foals, with ten animals selected for detailed analysis of fatty acid, amino acid, and volatile aromatic compound profiles. At eleven months of age, the foals reached a live weight of 347 kg and a dressing percentage of 60.62%. Color, tenderness, and water-holding capacity parameters were favorable for consumers. The meat’s high protein content (22.37%) and low intramuscular fat (3.61%) make it suitable for health-conscious or sensitive consumer groups. A high proportion of polyunsaturated fatty acids (28.5%) and a nutritionally balanced ω-6/ω-3 ratio (3.46) highlight the meat’s functional properties. The essential-to-non-essential amino acid ratio (0.81) further supports its nutritional value. Sensory analysis confirmed an attractive appearance, desirable texture and flavor, and a rich aromatic profile. The carcass and meat quality results, when compared with the production traits of other horse breeds, indicate that Croatian Posavina foal meat is a high-quality and nutritionally valuable alternative to conventional red meat. With optimized conservation and production strategies, the Croatian Posavina horse holds strong potential for market repositioning within sustainable and functional meat production systems. Full article
(This article belongs to the Section Equids)
Show Figures

Graphical abstract

19 pages, 2692 KiB  
Article
Enhanced Spring Wheat Soil Plant Analysis Development (SPAD) Estimation in Hetao Irrigation District: Integrating Leaf Area Index (LAI) Under Variable Irrigation Conditions
by Qiang Wu, Dingyi Hou, Min Xie, Qi Gao, Mengyuan Li, Shuiyuan Hao, Chao Cui, Keke Fan, Yu Zhang and Yongping Zhang
Agriculture 2025, 15(13), 1372; https://doi.org/10.3390/agriculture15131372 - 26 Jun 2025
Viewed by 352
Abstract
Non-destructive monitoring of chlorophyll content through Soil Plant Analysis Development (SPAD) values is essential for precision agriculture in water-limited regions. However, current estimation methods using spectral information alone face significant limitations in sensitivity and transferability under variable irrigation conditions. While integrating canopy structural [...] Read more.
Non-destructive monitoring of chlorophyll content through Soil Plant Analysis Development (SPAD) values is essential for precision agriculture in water-limited regions. However, current estimation methods using spectral information alone face significant limitations in sensitivity and transferability under variable irrigation conditions. While integrating canopy structural parameters with spectral data represents a promising solution, systematic investigation of this approach throughout the entire growth cycle of spring wheat under different irrigation regimes remains limited. This study evaluated three machine learning algorithms (Random Forest, Support Vector Regression, and Multi-Layer Perceptron) for SPAD estimation in spring wheat cultivated in the Hetao Irrigation District. Using a split-plot experimental design with two irrigation treatments (conventional: four irrigations; limited: two irrigations) and five nitrogen levels (0–300 kg·ha−1), we analyzed ten vegetation indices derived from Unmanned Aerial Vehicle (UAV) multispectral imagery, with and without Leaf Area Index (LAI) integration, across six growth stages. Results demonstrated that incorporating LAI significantly improved SPAD estimation accuracy across all algorithms, with Random Forest exhibiting the most substantial enhancement (R2 increasing from 0.698 to 0.842, +20.6%; RMSE decreasing from 5.025 to 3.640, −27.6%). Notably, LAI contributed more significantly to SPAD estimation under limited irrigation conditions (R2 improvement: +17.6%) compared to conventional irrigation (+11.0%), indicating its particular value for chlorophyll monitoring in water-stressed environments. The Green Normalized Difference Vegetation Index (GNDVI) emerged as the most important predictor (importance score: 0.347), followed by LAI (0.213), confirming the complementary nature of spectral and structural information. These findings provide a robust framework for non-destructive SPAD estimation in spring wheat and highlight the importance of integrating canopy structural information with spectral data, particularly in water-limited agricultural systems. Full article
(This article belongs to the Special Issue Remote Sensing in Smart Irrigation Systems)
Show Figures

Figure 1

18 pages, 8224 KiB  
Article
Cascaded Absorption Heat Pump Integration in Biomass CHP Systems: Multi-Source Waste Heat Recovery for Low-Carbon District Heating
by Pengying Wang and Hangyu Zhou
Sustainability 2025, 17(13), 5870; https://doi.org/10.3390/su17135870 - 26 Jun 2025
Viewed by 265
Abstract
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from [...] Read more.
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from semi-dry flue gas desulfurization exhaust and turbine condenser cooling water. A multi-source operational framework is developed, coordinating biomass CHP units with coal-fired boilers for peak-load regulation. The proposed system employs a two-stage heat recovery methodology: preliminary sensible heat extraction from non-saturated flue gas (elevating primary heating loop (PHL) return water from 50 °C to 55 °C), followed by serial AHPs utilizing turbine extraction steam to upgrade waste heat from circulating cooling water (further heating PHL water to 85 °C). Parametric analyses demonstrate that the cascaded AHP system reduces turbine steam extraction by 4.4 to 8.8 t/h compared to conventional steam-driven heating, enabling 3235 MWh of annual additional power generation. Environmental benefits include an annual CO2 reduction of 1821 tonnes, calculated using regional grid emission factors. The integration of waste heat recovery and multi-source coordination achieves synergistic improvements in energy efficiency and operational flexibility, advancing low-carbon transitions in district heating systems. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

Back to TopTop