Enhancing Transboundary Water Governance Using African Earth Observation Data Cubes in the Nile River Basin: Insights from the Grand Ethiopian Renaissance Dam and Roseries Dam
Abstract
1. Introduction
2. Methodology
2.1. Study Area
2.1.1. GERD
2.1.2. Roseires Dam
2.2. Study Period
2.3. DE Africa’s ODC and WOfS
2.4. Sentinel Satellites
2.5. Data Processing Environment
2.6. Data Processing and Water Mapping
- Important python functions and packages for image processing are loaded in the notebook
- Initiate the datacube database to enable the loading and visualization of stored Earth observation data.
- The “load_ard” function applies a mask to remove low-quality pixels, retaining images with a majority of good pixels.
- Reliable images are reconstructed using a geomedian algorithm, considering a specified percentage.
- A Boolean function (“True” and “False”) is utilized to process water observations in the images.
- This function extracts pixels recognized as “Water” or “Non-water,” enabling water surface classification and tracking over time.
- The calculation of the Modified Normalized Difference Water Index (MNDWI) is then performed to evaluate water presence and characteristics.
2.7. Validation
3. Result and Discussion
3.1. Result
3.2. Discussion
- The decline in the water extent of the Roseires dam from 2019 to 2020, coinciding with a significant rise in average rainfall, is more likely linked to the initiation of the first filling of GERD and other climatological factors.
- The decrease in the water extent of the Roseires dam from 2020 to 2021, during a period of notable rainfall decrease, can be associated with the commencement of the second filling of GERD and the prevailing rainfall conditions.
- Despite a substantial expansion in the water spread area at GERD during its third filling phase from 2021 to 2022, with consistent rainfall in both regions, the water spread area at the Roseires dam decreased. This suggests the influence of GERD operations and the presence of additional factors impacting the water extent at the Roseires dam.
3.3. Implications for Transboundary Water Governance in the Nile River Basin
3.3.1. Data Sharing and Transparency
3.3.2. Multi-National Decision Support
3.3.3. Institutional Cooperation
3.3.4. Broader Implications
3.4. Significance and Limitations of the Study
4. Conclusions and Recommendations
4.1. Conclusions
4.2. Recommendations
- Enhance Data Sharing and Transparency: Establish standardized protocols for sharing EO-derived data through a centralized repository, as supported by the CFA, to build trust and reduce disputes during GERD’s filling phases.
- Strengthen Multi-National Decision Support: Integrate EO data and AI-driven models into the NBI-DSS to forecast impacts and optimize water allocation, enabling cooperative filling strategies to mitigate downstream effects.
- Promote Institutional Cooperation: Establish a permanent Nile River Basin Commission to institutionalize joint monitoring and adaptive management, leveraging EO data to track water extent changes.
- Implement Benefit-Sharing Mechanisms: Promote energy trade from GERD to offset downstream water losses, fostering mutual gains and aligning with CFA goals.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-Nashar, W.Y.; Elyamany, A.H. Managing risks of the Grand ethiopian renaissance dam on Egypt. Ain Shams Eng. J. 2018, 9, 2383–2388. [Google Scholar] [CrossRef]
- Gebreluel, G. Ethiopia’s Grand Renaissance Dam: Ending Africa’s oldest geopolitical rivalry? Wash. Q. 2014, 37, 25–37. [Google Scholar] [CrossRef]
- Wheeler, K.G.; Jeuland, M.; Hall, J.W.; Zagona, E.; Whittington, D. Understanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nat. Commun. 2020, 11, 5222. [Google Scholar] [CrossRef]
- Basheer, M.; Nechifor, V.; Calzadilla, A.; Gebrechorkos, S.; Pritchard, D.; Forsythe, N.; Gonzalez, J.M.; Sheffield, J.; Fowler, H.J.; Harou, J.J. Cooperative adaptive management of the Nile River with climate and socio-economic uncertainties. Nat. Clim. Change 2023, 13, 48–57. [Google Scholar] [CrossRef]
- Elkelani, Z. Towards Risk-Informed Development: Improving Political Disaster Risk Modeling in the Nile Basin Region Using Big Data and Machine Learning; The Claremont Graduate University: Claremont, CA, USA, 2021. [Google Scholar]
- Al-Saidi, M. Institutions in the Nile Basin: Extending the Present State of Transboundary Affairs. In World Scientific Handbook of Transboundary Water Management: Science, Economics, Policy and Politics: Volume 3: The Role of Formal and Informal Institutions in Managing Transboundary Basins; World Scientific: Singapore, 2025; pp. 251–276. [Google Scholar]
- Soliman, A.H.; El Zawahry, A.; Bekhit, H. GERD failure analysis and the impacts on downstream countries. In Grand Ethiopian Renaissance Dam Versus Aswan High Dam: A View from Egypt; Springer: Cham, Switzerland, 2019; pp. 149–171. [Google Scholar]
- Soliman, A.; Bekhit, H.; Hamed, K.; El-Zawahry, A. Impacts of Grand Ethiopian Renaissance Dam failure on downstream region. J. Eng. Appl. Sci. 2014, 61, 371–389. [Google Scholar]
- Wheeler, K.G.; Basheer, M.; Mekonnen, Z.T.; Eltoum, S.O.; Mersha, A.; Abdo, G.M.; Zagona, E.A.; Hall, J.W.; Dadson, S.J. Cooperative filling approaches for the grand Ethiopian renaissance dam. Water Int. 2016, 41, 611–634. [Google Scholar] [CrossRef]
- Chen, H.; Swain, A. The Grand Ethiopian Renaissance Dam: Evaluating its sustainability standard and geopolitical significance. Energy Dev. Front. 2014, 3, 11–19. [Google Scholar]
- Mordos, M.A.; Mohammed, B.A.; Wheeler, K. Hydrological Impacts of the Grand Ethiopian Renaissance Dam (GERD) on River Nile Hydrology Within Sudan. Hydrology 2020, 8, 41–51. [Google Scholar] [CrossRef]
- Mulat, A.G.; Moges, S.A. Assessment of the impact of the Grand Ethiopian Renaissance Dam on the performance of the High Aswan Dam. J. Water Resour. Prot. 2014, 2014, 583–598. [Google Scholar] [CrossRef]
- Salhi, A.; Benabdelouahab, S. The downstream impact of the first and second filling of the Grand Ethiopian Renaissance Dam. Sustain. Water Resour. Manag. 2023, 9, 14. [Google Scholar] [CrossRef]
- Almesafri, A.; Abdulsattar, S.; Alblooshi, A.; Al-Juboori, R.A.; Jephson, N.; Hilal, N. Waters of Contention: The GERD and Its Impact on Nile Basin Cooperation and Conflict. Water 2024, 16, 2174. [Google Scholar] [CrossRef]
- Solomon, T.; Hyunshik, M. Trends of forest cover and prospects of Great Ethiopian Renaissance Dam (GERD) to Ethiopia and the downstream countries. J. Infrastruct. Policy Dev. 2024, 8, 6424. [Google Scholar] [CrossRef]
- Deribe, M.M.; Melesse, A.M.; Kidanewold, B.B.; Dinar, S.; Anderson, E.P. Assessing international transboundary water management practices to extract contextual lessons for the Nile river basin. Water 2024, 16, 1960. [Google Scholar] [CrossRef]
- Aljahdali, M.H.; Adisu, B.; Adem, E.; Chaabani, A.; Boteva, S.; Zhang, L.; Elhag, M. Monitoring of mangrove forests vegetation based on optical versus microwave data: A case study western coast of Saudi Arabia. Open Geosci. 2024, 16, 20220573. [Google Scholar] [CrossRef]
- Anwar, M.A.; Graham, M. The Digital Continent: Placing Africa in Planetary Networks of Work; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- National Research Council; Division on Earth, Life Studies; Board on Earth Sciences; Resources, Mapping Science Committee; Committee on Geography; Committee on the Geographic Foundation for Agenda 21. Down to Earth: Geographic Information for Sustainable Development in Africa; National Academies Press: Washington, DC, USA, 2002. [Google Scholar]
- Craglia, M.; de Bie, K.; Jackson, D.; Pesaresi, M.; Remetey-Fülöpp, G.; Wang, C.; Annoni, A.; Bian, L.; Campbell, F.; Ehlers, M. Digital Earth 2020: Towards the vision for the next decade. Int. J. Digit. Earth 2012, 5, 4–21. [Google Scholar] [CrossRef]
- Olthof, I.; Fraser, R.H. Mapping surface water dynamics (1985–2021) in the Hudson Bay Lowlands, Canada using sub-pixel Landsat analysis. Remote Sens. Environ. 2024, 300, 113895. [Google Scholar] [CrossRef]
- Dube, T.; Seaton, D.; Shoko, C.; Mbow, C. Advancements in earth observation for water resources monitoring and management in Africa: A comprehensive review. J. Hydrol. 2023, 623, 129738. [Google Scholar] [CrossRef]
- Sudmanns, M.; Augustin, H.; Killough, B.; Giuliani, G.; Tiede, D.; Leith, A.; Yuan, F.; Lewis, A. Think global, cube local: An Earth Observation Data Cube’s contribution to the Digital Earth vision. Big Earth Data 2023, 7, 831–859. [Google Scholar] [CrossRef]
- Giuliani, G.; Egger, E.; Italiano, J.; Poussin, C.; Richard, J.-P.; Chatenoux, B. Essential variables for environmental monitoring: What are the possible contributions of earth observation data cubes? Data 2020, 5, 100. [Google Scholar] [CrossRef]
- Guzinski, R.; Kass, S.; Huber, S.; Bauer-Gottwein, P.; Jensen, I.H.; Naeimi, V.; Doubkova, M.; Walli, A.; Tottrup, C. Enabling the use of earth observation data for integrated water resource management in Africa with the water observation and information system. Remote Sens. 2014, 6, 7819–7839. [Google Scholar] [CrossRef]
- Sudmanns, M.; Augustin, H.; van der Meer, L.; Baraldi, A.; Tiede, D. The Austrian semantic EO data cube infrastructure. Remote Sens. 2021, 13, 4807. [Google Scholar] [CrossRef]
- Batina, A. Data Cubes–A Modern Approach for Handling Earth Observation Data. In Proceedings of the 2023 International Conference on Earth Observation and Geo-Spatial Information (ICEOGI), Algiers, Algeria, 22–24 May 2023; pp. 1–6. [Google Scholar]
- Kerski, J.J. The role of GIS in Digital Earth education. Int. J. Digit. Earth 2008, 1, 326–346. [Google Scholar] [CrossRef]
- Lance, K.T.; Georgiadou, Y.P.; Bregt, A.K. Opening the black box of donor influence on Digital Earth in Africa. Int. J. Digit. Earth 2013, 6, 1–21. [Google Scholar] [CrossRef]
- Abtew, W.; Dessu, S.B. The grand Ethiopian Renaissance Dam on the Blue Nile; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Arebu, B.A.; Alamri, N.; Elfeki, A. Evaluation of Sediment Transport in Ephemeral Streams: A Case Study in the Southwestern Saudi Arabia. Arab. J. Sci. Eng. 2024, 49, 9781–9796. [Google Scholar] [CrossRef]
- Negm, A.M.; Abdel-Fattah, S. Grand Ethiopian Renaissance Dam Versus Aswan High Dam. Handb. Environ. Chem. 2019. [Google Scholar]
- Abtew, W.; Dessu, S.B. Grand Ethiopian renaissance dam site importance. In The Grand Ethiopian Renaissance Dam on the Blue Nile; Springer: Cham, Switzerland, 2019; pp. 63–77. [Google Scholar]
- Mohamed, M.M.; Elmahdy, S.I. Remote sensing of the Grand Ethiopian Renaissance Dam: A hazard and environmental impacts assessment. Geomat. Nat. Hazards Risk 2017, 8, 1225–1240. [Google Scholar] [CrossRef]
- Sharaky, A.M.; Elewa, H.H.; Kasem, A.M. Impact of the Grand Ethiopian Renaissance Dam (GERD) on Gezira Groundwater, Sudan. In Grand Ethiop. Renaiss. Dam Versus Aswan High Dam: A View Egypt; Springer: Cham, Switzerland, 2019; pp. 519–557. [Google Scholar]
- Ministry of Water and Energy. Grand Ethiopian Renaissance Dam. Available online: https://www.mowe.gov.et/en/project/grand-ethiopian-renaissance-dam-1 (accessed on 4 February 2023).
- iha. Sediment Management. Available online: https://www.hydropower.org/sediment-management-case-studies/ethiopia-grand-ethiopian-renaissance-dam-gerd (accessed on 25 May 2025).
- Elhag, M.; Psilovikos, A.; Sakellariou-Makrantonaki, M. Land use changes and its impacts on water resources in Nile Delta region using remote sensing techniques. Environ. Dev. Sustain. 2013, 15, 1189–1204. [Google Scholar] [CrossRef]
- Sentinel Online. Available online: https://sentinels.copernicus.eu/web/success-stories/list (accessed on 16 July 2021).
- Midekisa, A.; Holl, F.; Savory, D.J.; Andrade-Pacheco, R.; Gething, P.W.; Bennett, A.; Sturrock, H.J. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PLoS ONE 2017, 12, e0184926. [Google Scholar] [CrossRef]
- Wardle, J.; Phillips, Z. Examining Spatiotemporal Photosynthetic Vegetation Trends in Djibouti Using Fractional Cover Metrics in the Digital Earth Africa Open Data Cube. Remote Sens. 2024, 16, 1241. [Google Scholar] [CrossRef]
- Yuan, F.; Repse, M.; Leith, A.; Rosenqvist, A.; Milcinski, G.; Moghaddam, N.F.; Dhar, T.; Burton, C.; Hall, L.; Jorand, C. An operational analysis ready radar backscatter dataset for the African continent. Remote Sens. 2022, 14, 351. [Google Scholar] [CrossRef]
- Adem, E.; Shults, R.; Ukasha, M.; Elfeki, A.; Alqahtani, F.; Elhag, M. Land subsidence and groundwater storage change assessment using InSAR and GRACE in the arid environment of Saudi Arabia. Nat. Hazards 2024, 120, 13137–13159. [Google Scholar] [CrossRef]
- Papa, F.; Crétaux, J.-F.; Grippa, M.; Robert, E.; Trigg, M.; Tshimanga, R.M.; Kitambo, B.; Paris, A.; Carr, A.; Fleischmann, A.S. Water resources in Africa under global change: Monitoring surface waters from space. Surv. Geophys. 2023, 44, 43–93. [Google Scholar] [CrossRef] [PubMed]
- Dandridge, C.; Lakshmi, V.; Bolten, J.; Srinivasan, R. Evaluation of satellite-based rainfall estimates in the Lower Mekong River Basin (Southeast Asia). Remote Sens. 2019, 11, 2709. [Google Scholar] [CrossRef]
- Lakew, H.B.; Moges, S.A.; Anagnostou, E.N.; Nikolopoulos, E.I.; Asfaw, D.H. Evaluation of global water resources reanalysis runoff products for local water resources applications: Case study-upper Blue Nile basin of Ethiopia. Water Resour. Manag. 2020, 34, 2157–2177. [Google Scholar] [CrossRef]
- Derin, Y.; Yilmaz, K.K. Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeorol. 2014, 15, 1498–1516. [Google Scholar] [CrossRef]
- Eini, M.R.; Rahmati, A.; Piniewski, M. Hydrological application and accuracy evaluation of PERSIANN satellite-based precipitation estimates over a humid continental climate catchment. J. Hydrol. Reg. Stud. 2022, 41, 101109. [Google Scholar] [CrossRef]
- Salmani-Dehaghi, N.; Samani, N. Development of bias-correction PERSIANN-CDR models for the simulation and completion of precipitation time series. Atmos. Environ. 2021, 246, 117981. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Elhag, M.; Psilovikos, A.; Manakos, I.; Perakis, K. Application of the SEBS water balance model in estimating daily evapotranspiration and evaporative fraction from remote sensing data over the Nile Delta. Water Resour. Manag. 2011, 25, 2731–2742. [Google Scholar] [CrossRef]
- Psilovikos, A.; Elhag, M. Forecasting of remotely sensed daily evapotranspiration data over Nile Delta region, Egypt. Water Resour. Manag. 2013, 27, 4115–4130. [Google Scholar] [CrossRef]
- Ali, A.M.; Melsen, L.A.; Teuling, A.J. Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: The case of the Grand Ethiopian Renaissance Dam (GERD). Hydrol. Earth Syst. Sci. 2023, 27, 4057–4086. [Google Scholar] [CrossRef]
- Ali, A.M.; Melsen, L.A.; Teuling, A.J. Inferring reservoir filling strategies under limited data availability using hydrological modelling and Earth observation: The case of the Grand Ethiopian Renaissance Dam (GERD). Hydrol. Earth Syst. Sci. Discuss. 2023, 2023, 1–39. [Google Scholar]
- Berhanu, B.; Gebretsadik, Y.; Awulachew, S.B. Stage-Based Filling of Grand Ethiopia Renaissance Dam (GERD): Flexible, Adaptive, and Cooperative Approach. In Nile Grand Ethiop. Renaiss. Dam: Past Present Future; Springer: Cham, Switzerland, 2021; pp. 235–244. [Google Scholar]
- Zhang, Y.; Erkyihum, S.T.; Block, P. Filling the GERD: Evaluating hydroclimatic variability and impoundment strategies for Blue Nile riparian countries. Water Int. 2016, 41, 593–610. [Google Scholar] [CrossRef]
- Elhag, M.; Ioannis, G.; Anas, o.; Jarbou, B. Effect of Water Surface Area on the Remotely Sensed Water Quality Parameters of Baysh Dam Lake, Saudi Arabia. Desalin Water Treat. 2020, 194, 369–378. [Google Scholar] [CrossRef]
- Luna, L.; Awange, J.; Song, Y.; Bui, L.K.; Zerihun, A.; Kuhn, M. Surface water and geomorphological changes of the Blue Nile dynamics associated with the Grand Ethiopian Renaissance Dam (GERD): A multi-temporal analysis. GIScience Remote Sens. 2024, 61, 2346383. [Google Scholar] [CrossRef]
- Abdel Hak Hassan, S.M.; Mostafa, G.; Abdelaty, I.; Mokhtar, E.; Rashad, M. Egypt’s Water Budget under the Impact of the Filling Stages of the Grand Ethiopian Renaissance Dam. Egypt. Int. J. Eng. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Elhag, M.; Gitas, I.; Othman, A.; Bahrawi, J.; Psilovikos, A.; Al-Amri, N. Time series analysis of remotely sensed water quality parameters in arid environments, Saudi Arabia. Environ. Dev. Sustain. 2021, 23, 1392–1410. [Google Scholar] [CrossRef]
- Etichia, M.; Basheer, M.; Bravo, R.; Gutierrez, J.; Endegnanew, A.; Gonzalez, J.M.; Hurford, A.; Tomlinson, J.; Martinez, E.; Panteli, M. Energy trade tempers Nile water conflict. Nat. Water 2024, 2, 337–349. [Google Scholar] [CrossRef]
- Hassan, M.A.; Hassan, M.F.; Mohamed, Y.A.; Awad, W.A. Dam operation using satellite data and hydrological models: The case of Roseires dam and Grand Ethiopian Renaissance Dam in the Blue Nile River. Water Int. 2023, 48, 975–999. [Google Scholar] [CrossRef]
- Initiative, N.B. NBI Annual Report 2012. Available online: https://nilebasin.org (accessed on 4 May 2025).
- Swain, A. Challenges for water sharing in the Nile basin: Changing geo-politics and changing climate. Hydrol. Sci. J. 2011, 56, 687–702. [Google Scholar] [CrossRef]
- Salman, S.M. The Nile basin cooperative framework agreement: A peacefully unfolding African spring? Water Int. 2013, 38, 17–29. [Google Scholar] [CrossRef]
- Conway, D. Future Nile river flows. Nat. Clim. Change 2017, 7, 319–320. [Google Scholar] [CrossRef]
- Tawfik, R. The grand Ethiopian renaissance dam: A benefit-sharing project in the Eastern Nile? Water Int. 2016, 41, 574–592. [Google Scholar] [CrossRef]
- Tanzi, A.; Arcari, M. The United Nations Convention on the Law of International Watercourses: A Framework for Sharing; Brill: Leiden, The Netherlands, 2021; Volume 5. [Google Scholar]
Parameter | Description |
---|---|
Height | 78 m |
Area | 290 km2 |
Annual energy production | 1605 GWh/yr |
Discharge rate (spillways) | 694 m3/s |
Purpose | Irrigation and hydropower |
Data Type | Source | Links |
---|---|---|
Sentinel-2 | European Union’s Copernicus program | Sentinel-2 |
Rainfall data | NOAA climate data records | PERSIAN-CDR |
Evapotranspiration data | Food and Agriculture Organization (FAO) | WaPOR evapotranspiration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arebu, B.A.; Adem, E.; Alzahrani, F.; Alamri, N.; Elhag, M. Enhancing Transboundary Water Governance Using African Earth Observation Data Cubes in the Nile River Basin: Insights from the Grand Ethiopian Renaissance Dam and Roseries Dam. Water 2025, 17, 1956. https://doi.org/10.3390/w17131956
Arebu BA, Adem E, Alzahrani F, Alamri N, Elhag M. Enhancing Transboundary Water Governance Using African Earth Observation Data Cubes in the Nile River Basin: Insights from the Grand Ethiopian Renaissance Dam and Roseries Dam. Water. 2025; 17(13):1956. https://doi.org/10.3390/w17131956
Chicago/Turabian StyleArebu, Baradin Adisu, Esubalew Adem, Fahad Alzahrani, Nassir Alamri, and Mohamed Elhag. 2025. "Enhancing Transboundary Water Governance Using African Earth Observation Data Cubes in the Nile River Basin: Insights from the Grand Ethiopian Renaissance Dam and Roseries Dam" Water 17, no. 13: 1956. https://doi.org/10.3390/w17131956
APA StyleArebu, B. A., Adem, E., Alzahrani, F., Alamri, N., & Elhag, M. (2025). Enhancing Transboundary Water Governance Using African Earth Observation Data Cubes in the Nile River Basin: Insights from the Grand Ethiopian Renaissance Dam and Roseries Dam. Water, 17(13), 1956. https://doi.org/10.3390/w17131956