The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites
Abstract
1. Introduction
2. Methods
3. Structural Biology of Fungi
4. Materials
4.1. Fungal Species
4.2. Substrates
4.3. Fungal Growth Conditions: Moisture Content and Temperature
4.4. Growth Profile and Biomass Fabrication
5. Properties
5.1. Mechanical Properties
5.1.1. Tensile Strength
5.1.2. Compressive Strength
5.1.3. Flexural Strength
Property | Substrate | Fungal Species | Value (MPa) |
---|---|---|---|
Compressive strength | Oat husk | Agaricus bisporus | 0.06 [159] |
Ganoderma lucidum | 0.13 [159] | ||
Pleurotus ostreatus | 0.03 [159] | ||
Sawdust | Ganoderma lucidum | 4.44 [158] | |
Ganoderma resinaceum | 1.32 [95] | ||
Lentinus velutinus | 1.3 [89] | ||
Pleutorus albidus | 0.4 [89] | ||
Pleurotus ostreatus | 1.02 [37] | ||
Wheat straw | Ganoderma lucidum | 0.07 [168] | |
Pleurotus sp. | 0.04 [161] | ||
MBC-Regardless of substrate (average) | 0.36–0.52 [164] 0.17–1.1 [26] | ||
Tensile strength | Rapeseed straw | Pleurotus ostreatus | 0.1 [17] |
Pleurotus ostreatus | 0.03 [17] | ||
Pleurotus ostreatus | 0.24 [17] | ||
Trametes versicolor | 0.04 [17] | ||
Trametes versicolor | 0.15 [17] | ||
Sawdust | Ganoderma lucidum | 1.55 [158] | |
Trametes versicolor | 0.05 [17] | ||
Wheat straw | Pleurotus sp. | 0.05 [161] | |
MBC-Regardless of substrate (average) | 0.03–0.24 [7] Up to 0.343 [169] | ||
Flexural strength | Rapeseed straw | Pleurotus ostreatus | 0.06 [17] |
Pleurotus ostreatus | 0.21 [17] | ||
Trametes versicolor | 0.86 [17] | ||
Trametes versicolor | 0.22 [17] | ||
Pleurotus ostreatus | 0.87 [17] | ||
Sawdust | Ganoderma lucidum | 2.68 [158] | |
Pleurotus ostreatus | 3.91 [25] | ||
Trametes versicolor | 0.29 [17] | ||
Cotton | Pleurotus ostreatus | 0.05 [17] | |
Pleurotus ostreatus | 0.24 [17] | ||
Pleurotus ostreatus | 0.62 [17] | ||
BC-mycelium composite | Trametes versicolor | 1.91–2.9 [151] | |
MBC-Regardless of substrate (average) | 0.87–15 [7] 0.05–0.29 [26] |
5.2. Physical Properties
5.2.1. Density
Substrate | Fungal Species | Value (kg/m3) |
---|---|---|
Oat husk | Agaricus bisporus | 36.0 [159] |
Ganoderma lucidum | 25.0 [159] | |
Pleurotus ostreatus | 38.0 [159] | |
Sawdust | Ganoderma lucidum | 130.0 [158] |
Ganoderma lucidum | 954.0 [158] | |
Ganoderma resinaceum | 143.0 [95] | |
Trametes versicolor | 170.0 [17] | |
Trametes versicolor | 200.1 [175] | |
Pine sawdust | Lentinus velutinus | 350.0 [89] |
Pleutorus albidus | 300.0 [89] | |
Pycnoporus sanguineus | 320.0 [89] | |
Rapeseed cake | Agaricus bisporus | 58.0 [159] |
Ganoderma lucidum | 41.0 [159] | |
Pleurotus ostreatus | 49.0 [159] | |
Rapeseed straw | Pleurotus ostreatus | 130.0 [17] |
Pleurotus ostreatus | 240.0 [17] | |
Pleurotus ostreatus | 390.0 [17] | |
Trametes versicolor | 100.0 [17] | |
Trametes versicolor | 350.0 [17] | |
MBC-Regardless of substrate (average) | 110–330 [150] |
5.2.2. Water Absorption Rate
5.2.3. Acoustic Absorption Behaviour
5.2.4. Thermal Conductivity/Degradation
5.2.5. Shrinkage
6. Scanning Electron Microscopy Analysis
7. Fourier Transform Infrared (FTIR) Spectroscopy
8. Cost Comparison
9. Termite Resistance
10. Life Cycle Assessment
11. Future Directions and Outlook
12. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MBC | Mycelium-based Composite |
MDD | Material Driven Design |
PDA | Potato Dextrose Agar |
PDB | Potato Dextrose Broth |
H2O2 | Hydrogen Peroxide |
BC | Bacterial Cellulose |
MBF | Mycelium-based Foam |
NRPs | Natural Reinforcing Particles |
PFA | Polyfurfuryl Alcohol |
SiO2 | Silica |
PMMA | Poly Methyl Methacrylate |
PLA FTIR | Polylactic Acid Fourier Transform Infrared |
TGA | Thermogravimetric Analysis |
SEM | Scanning Electron Microscopy |
CPI | Consumer Price Index |
LCA | Life Cycle Assessment |
GWP | Global Warming Potential |
GHG | Greenhouse Gas |
References
- Madurwar, M.V.; Ralegaonkar, R.V.; Mandavgane, S.A. Application of agro-waste for sustainable construction materials: A review. Constr. Build. Mater. 2013, 38, 872–878. [Google Scholar] [CrossRef]
- Pheng, S.; Premnath, R. Construction Quality and the Economy; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Sahu, M.K.; Singh, L.; Choudhary, S.N. Critical review on bricks. Int. J. Eng. Manag. Res. 2016, 6, 80–88. [Google Scholar]
- Sharma, R.; Sumbria, R. Mycelium bricks and composites for sustainable construction industry: A state-of-the-art review. Innov. Infrastruct. Solut. 2022, 7, 298. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop residue burning in India: Policy challenges and potential solutions. Int. J. Environ. Res. Public Health 2019, 16, 832. [Google Scholar] [CrossRef] [PubMed]
- Defonseka, C. Polymeric Composites with Rice Hulls: An Introduction; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2019. [Google Scholar]
- Javadian, A.; Le Ferrand, H.; Hebel, D.E.; Saeidi, N. Application of mycelium-bound composite materials in construction industry: A short review. SOJ Mater. Sci. Eng. 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Lingam, D.; Narayan, S.; Mamun, K.; Charan, D. Engineered mycelium-based composite materials: Comprehensive study of various properties and applications. Constr. Build. Mater. 2023, 391, 131841. [Google Scholar] [CrossRef]
- Kalka, S.; Huber, T.; Steinberg, J.; Baronian, K.; Müssig, J.; Staiger, M.P. Biodegradability of all-cellulose composite laminates. Compos. Part A Appl. Sci. Manuf. 2014, 59, 37–44. [Google Scholar] [CrossRef]
- Jones, M.; Huynh, T.; Dekiwadia, C.; Daver, F.; John, S. Mycelium composites: A review of engineering characteristics and growth kinetics. J. Bionanosci. 2017, 11, 241–257. [Google Scholar] [CrossRef]
- Nawawi, W.M.; Jones, M.; Murphy, R.J.; Lee, K.-Y.; Kontturi, E.; Bismarck, A. Nanomaterials derived from fungal sources—Is it the new hype? Biomacromolecules 2019, 21, 30–55. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R. Morphology and mechanics of fungal mycelium. Sci. Rep. 2017, 7, 13070. [Google Scholar] [CrossRef] [PubMed]
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Guerrero, J.A.H.; Athanassiou, A. Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Sci. Rep. 2017, 7, 41292. [Google Scholar] [CrossRef] [PubMed]
- Swift, R.S. Organic matter characterization. In Methods of Soil Analysis: Part 3 Chemical Methods; Soil Science Society of America Inc.: Madison, WI, USA, 1996; Volume 5, pp. 1011–1069. [Google Scholar]
- Sydor, M.; Cofta, G.; Doczekalska, B.; Bonenberg, A. Fungi in mycelium-based composites: Usage; recommendations. Materials 2022, 15, 6283. [Google Scholar] [CrossRef] [PubMed]
- Victoria, S. Market Summary–Recycled Glass. Retrieved May 2014. Available online: https://assets.sustainability.vic.gov.au/susvic/Report-Market-Analysis-Glass-Sept-2014.pdf (accessed on 14 April 2025).
- Appels, F.V.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.M.; Dijksterhuis, J.; Wösten, H.A. Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites. Mater. Des. 2019, 161, 64–71. [Google Scholar] [CrossRef]
- Zimele, Z.; Irbe, I.; Grinins, J.; Bikovens, O.; Verovkins, A.; Bajare, D. Novel mycelium-based biocomposites (Mbb) as building materials. J. Renew. Mater. 2020, 8, 1067–1076. [Google Scholar] [CrossRef]
- Deepa, B.; Abraham, E.; Cordeiro, N.; Mozetic, M.; Mathew, A.P.; Oksman, K.; Pothan, L.A. Utilization of various lignocellulosic biomass for the production of nanocellulose: A comparative study. Cellulose 2015, 22, 1075–1090. [Google Scholar] [CrossRef]
- Elsacker, E.; Vandelook, S.; Brancart, J.; Peeters, E.; De Laet, L. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS ONE 2019, 14, e0213954. [Google Scholar] [CrossRef] [PubMed]
- Abhijith, R.; Ashok, A.; Rejeesh, C. Sustainable packaging applications from mycelium to substitute polystyrene: A review. Mater. Today Proc. 2018, 5, 2139–2145. [Google Scholar] [CrossRef]
- Shanmugam, V.; Mensah, R.A.; Försth, M.; Sas, G.; Restás, Á.; Addy, C.; Singha, S. Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Compos. Part C Open Access 2021, 5, 100138. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, F.; Still, B.; White, M.; Amstislavski, P. Physical and mechanical properties of fungal mycelium-based biofoam. J. Mater. Civ. Eng. 2017, 29, 04017030. [Google Scholar] [CrossRef]
- Attias, N.; Danai, O.; Tarazi, E.; Pereman, I.; Grobman, Y.J. Implementing bio-design tools to develop mycelium-based products. Des. J. 2019, 22, 1647–1657. [Google Scholar] [CrossRef]
- Shakir, M.A.; Azahari, B.; Yusup, Y.; Yhaya, M.F.; Salehabadi, A.; Ahmad, M.I. Preparation and characterization of mycelium as a bio-matrix in fabrication of bio-composite. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 65, 253–263. [Google Scholar]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- Attias, N.; Danai, O.; Ezov, N.; Tarazi, E.; Grobman, Y.J. Developing novel applications of mycelium based bio-composite materials for design and architecture. In Proceedings of the Building with Biobased Materials: Best Practice and Performance Specification, Zagreb, Croatia, 16 September 2017; Volume 1. [Google Scholar]
- Gezer, E.D.; Gümüşkaya, E.; Uçar, E.; Ustaömer, D. Mechanical properties of mycelium based MDF. Sigma J. Eng. Nat. Sci. 2020, 11, 135–140. [Google Scholar]
- Elsacker, E.; Vandelook, S.; Van Wylick, A.; Ruytinx, J.; De Laet, L.; Peeters, E. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 2020, 725, 138431. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Bucinell, R. A new approach to manufacturing biocomposite sandwich structures: Mycelium-based cores. In International Manufacturing Science and Engineering Conference; American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar]
- Zhao, S.; Shen, Y.; Jiang, X.; Lv, H.; Han, C.; Zhao, Q. A critical review of clay mineral-based photocatalysts for wastewater treatment. Catalysts 2024, 14, 575. [Google Scholar] [CrossRef]
- Gao, D.-c.; Sun, Y.; Fong, A.M.; Gu, X. Mineral-based form-stable phase change materials for thermal energy storage: A state-of-the art review. Energy Storage Mater. 2022, 46, 100–128. [Google Scholar] [CrossRef]
- Syduzzaman, M.; Al Faruque, M.A.; Bilisik, K.; Naebe, M. Plant-based natural fibre reinforced composites: A review on fabrication, properties and applications. Coatings 2020, 10, 973. [Google Scholar] [CrossRef]
- Courard, L.; Vallas, T. Using nature in architecture: Building a living house with mycelium and living trees. Front. Archit. Res. 2017, 6, 318–328. [Google Scholar]
- Karana, E.; Blauwhoff, D.; Hultink, E.-J.; Camere, S. When the material grows: A case study on designing (with) mycelium-based materials. Int. J. Des. 2018, 12, 119–136. [Google Scholar]
- Santhosh, B.; Bhavana, D.; Rakesh, M. Mycelium composites: An emerging green building material. Int. Res. J. Eng. Technol. 2018, 5, 3066–3068. [Google Scholar]
- Ghazvinian, A.; Farrokhsiar, P.; Vieira, F.; Pecchia, J.; Gursoy, B. Mycelium-based bio-composites for architecture: Assessing the effects of cultivation factors on compressive strength. Mater. Res. Inno. 2019, 2, 505–514. [Google Scholar]
- Blauwhoff, D. Mycelium Based Materials: A Study on Material Driven Design and Forecasting Acceptance. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2016. [Google Scholar]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Bartnicki-Garcia, S. Cell wall chemistry; morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 1968, 22, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Wessels, J.; Mol, P.; Sietsma, J.; Vermeulen, C. Wall structure, wall growth, and fungal cell morphogenesis. In Biochemistry of Cell Walls and Membranes in Fungi; Springer: Berlin/Heidelberg, Germany, 1990; pp. 81–95. [Google Scholar]
- Appels, F.V.; Dijksterhuis, J.; Lukasiewicz, C.E.; Jansen, K.M.; Wösten, H.A.; Krijgsheld, P. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Sci. Rep. 2018, 8, 4703. [Google Scholar] [CrossRef] [PubMed]
- Zabel, R.; Morrell, J. The characteristics and classification of fungi and bacteria. In Wood Microbiology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 55–98. [Google Scholar]
- Geoghegan, I.; Steinberg, G.; Gurr, S. The role of the fungal cell wall in the infection of plants. Trends Microbiol. 2017, 25, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Prasher, I. Wood-Rotting Non-Gilled Agaricomycetes of Himalayas; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Pegler, D. Hyphal analysis of basidiomata. Mycol. Res. 1996, 100, 129–142. [Google Scholar] [CrossRef]
- Bayer, E.; McIntyre, G. Substrate Composition and Method for Growing Mycological Materials. U.S. Patent Application 13/492,230, 8 June 2012. [Google Scholar]
- Islam, M.R.; Omar, M.; Moyen Uddin, M.P.K.; Phytochemicals, K. Ganoderma lucidum and Lentinula edodes accessible in Bangladesh. Am. J. Biol. Life Sci. 2015, 3, 31–35. [Google Scholar]
- Pk, U.; Talukder, R.I.; Sarkar, M.K.; Rahman, T.; Pervin, R.; Rahman, M.; Akther, L. Effect of Solvents on Phytochemicals Content and Antioxidant Activity of Ganoderma lucidum. Open Microbiol. J. 2019, 13, 10–15. [Google Scholar] [CrossRef]
- Petre, M. Mushroom Biotechnology: Developments and Applications; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Bayer, E.; McIntyre, G.R. Method for Growing Mycological Materials. U.S. Patent 9,394,512, 19 July 2016. [Google Scholar]
- Parisi, S.; Rognoli, V.; Garcia, C.A. Designing materials experiences through passing of time: Material driven design method applied to mycelium-based composites. In Celebration & Contemplation: Proceedings of the 10th International Conference on Design and Emotion 2016; The Design and Emotion Society: Delft, The Netherlands, 2016. [Google Scholar]
- Ziegler, A.R.; Bajwa, S.G.; Holt, G.A.; McIntyre, G.; Bajwa, D.S. Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. Appl. Eng. Agric. 2016, 32, 931–938. [Google Scholar] [CrossRef]
- Dahmen, J. Soft futures: Mushrooms and regenerative design. J. Archit. Educ. 2017, 71, 57–64. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Bucinell, R.; Tudryn, G. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. J. Manuf. Process. 2017, 28, 50–59. [Google Scholar] [CrossRef]
- Girometta, C.; Picco, A.M.; Baiguera, R.M.; Dondi, D.; Babbini, S.; Cartabia, M.; Savino, E. Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: A review. Sustainability 2019, 11, 281. [Google Scholar] [CrossRef]
- Golak-Siwulska, I.; Kałużewicz, A.; Spiżewski, T.; Siwulski, M.; Sobieralski, K. Bioactive compounds and medicinal properties of Oyster mushrooms (Pleurotus sp.). Folia Hortic. 2018, 30, 191–201. [Google Scholar] [CrossRef]
- Josephine, R. A review on oyster mushroom (Pleurotus spp.). Int. J. Curr. Res. 2015, 7, 11225–11227. [Google Scholar]
- Sharma, M.; Verma, S.; Chauhan, G.; Arya, M.; Kumari, A. Mycelium-based biocomposites: Synthesis and applications. Environ. Sustain. 2014, 7, 265–278. [Google Scholar] [CrossRef]
- Aiduang, W.; Chanthaluck, A.; Kumla, J.; Jatuwong, K.; Srinuanpan, S.; Waroonkun, T.; Suwannarach, N. Amazing fungi for eco-friendly composite materials: A comprehensive review. J. Fungi 2022, 8, 842. [Google Scholar] [CrossRef] [PubMed]
- Suwannarach, N.; Kumla, J.; Zhao, Y.; Kakumyan, P. Impact of cultivation substrate and microbial community on improving mushroom productivity: A review. Biology 2022, 11, 569. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Rana, R.; Thapliyal, D.; Verma, S.; Mehra, A.; Bhargava, C.K.; Arya, R.K. Potential Exploitation of Agro-Industrial Waste. In From Waste to Wealth; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1013–1046. [Google Scholar]
- Wan, B.; Dong, F.; Chen, M.; Zhu, J.; Tan, J.; Fu, X.; Chen, S. Advances in recycling and utilization of agricultural wastes in China: Based on environmental risk, crucial pathways, influencing factors, policy mechanism. Procedia Environ. Sci. 2016, 31, 12–17. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, P.; Shu, H.; Wang, R.; Zhang, S. Agricultural waste. Water Environ. Res. 2016, 88, 1334–1369. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Dutta, A.; Ray, S. Municipal solid waste management in Kolkata, India—A review. Waste Manag. 2009, 29, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Hoornweg, D.; Bhada-Tata, P. What A Waste: A Global Review of Solid Waste Management; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Antinori, M.E.; Contardi, M.; Suarato, G.; Armirotti, A.; Bertorelli, R.; Mancini, G.; Athanassiou, A. Advanced mycelium materials as potential self-growing biomedical scaffolds. Sci. Rep. 2021, 11, 12630. [Google Scholar] [CrossRef] [PubMed]
- Paul, V.; Kanny, K.; Redhi, G.G. Mechanical, thermal and morphological properties of a bio-based composite derived from banana plant source. Compos. Part A Appl. Sci. Manuf. 2015, 68, 90–100. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G. A new process for manufacturing biocomposite laminate and sandwich parts using mycelium as a binder. In Proceedings of the Applied Superconductivity Conference (ASC 2014), Charlotte, NC, USA, 10–15 August 2014; pp. 8–10. [Google Scholar]
- Jiang, L.; Walczyk, D.F.; McIntyre, G. Vacuum infusion of mycelium-bound biocomposite preforms with natural resins. In Proceedings of the CAMX Conference Proceedings, Orlando, FL, USA, 13–16 October 2014. [Google Scholar]
- Cheng, C.M.; Su, D.G.; Zhong, M.F. Study on the mechanical properties of the latex-mycelium composite. Appl. Mech. Mater. 2014, 507, 415–420. [Google Scholar] [CrossRef]
- Travaglini, S.; Dharan, C.; Ross, P. Mycology matrix sandwich composites flexural characterization. In Proceedings of American Society for Composites; DEStech Publications, Incorporated: Toronto, ON, Canada, 2014; pp. 8–10. [Google Scholar]
- Travaglini, S.; Dharan, C.; Ross, P.G. Thermal properties of mycology materials. In Proceedings of the American Society of Composites-30th Technical Conference, East Lansing, MI, USA, 28–30 September 2015. [Google Scholar]
- Lelivelt, R.; Lindner, G.; Teuffel, P.; Lamers, H. The production process and compressive strength of mycelium-based materials. In Proceedings of the First International Conference on Bio-based Building Materials, Clermont-Ferrand, France, 22–25 June 2015; pp. 1–6. [Google Scholar]
- Travaglini, S.; Dharan, C.; Ross, P. Manufacturing of mycology composites. In Proceedings of the American Society for Composites: Thirty-First Technical Conference, Williamsburg, Virginia, USA, 19–22 September 2016. [Google Scholar]
- Mayoral González, E.; Gonzalez Diez, I. Bacterial induced cementation processes and mycelium panel growth from agricultural waste. Key Eng. Mater. 2016, 663, 42–49. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G. A new approach to manufacturing biocomposite sandwich structures: Investigation of preform shell behavior. J. Manuf. Sci. Eng. 2017, 139, 021014. [Google Scholar] [CrossRef]
- Pelletier, M.; Holt, G.; Wanjura, J.; Lara, A.; Tapia-Carillo, A.; McIntyre, G.; Bayer, E. An evaluation study of pressure-compressed acoustic absorbers grown on agricultural by-products. Ind. Crops Prod. 2017, 95, 342–347. [Google Scholar] [CrossRef]
- Tudryn, G.J.; Smith, L.C.; Freitag, J.; Bucinell, R.; Schadler, L.S. Processing and morphology impacts on mechanical properties of fungal based biopolymer composites. J. Polym. Environ. 2018, 26, 1473–1483. [Google Scholar] [CrossRef]
- Campbell, S.; Correa, D.; Wood, D.; Menges, A. Modular Mycelia: Scaling Fungal Growth for Architectural Assembly. In Proceedings of the Computational Fabrication—eCAADe RIS, Cardiff, UK, 27–28 April 2017. [Google Scholar]
- Jones, M.; Bhat, T.; Huynh, T.; Kandare, E.; Yuen, R.; Wang, C.H.; John, S. Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire Mater. 2018, 42, 816–825. [Google Scholar] [CrossRef]
- Xing, Y.; Brewer, M.; El-Gharabawy, H.; Griffith, G.; Jones, P. Growing and testing mycelium bricks as building insulation materials. In IOP Conference Series: Earth and Environmental Science: Earth And Environmental Science; IOP Publishing: Bristol, England, 2018; p. 022032. [Google Scholar]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Bucinell, R.; Li, B. Bioresin infused then cured mycelium-based sandwich-structure biocomposites: Resin transfer molding (RTM) process, flexural properties, and simulation. J. Clean. Prod. 2019, 207, 123–135. [Google Scholar] [CrossRef]
- Islam, M.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R. Stochastic continuum model for mycelium-based bio-foam. Mater. Des. 2018, 160, 549–556. [Google Scholar] [CrossRef]
- Sun, W.; Tajvidi, M.; Hunt, C.G.; McIntyre, G.; Gardner, D.J. Fully bio-based hybrid composites made of wood, fungal mycelium and cellulose nanofibrils. Sci. Rep. 2019, 9, 3766. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.P.; Teixeira, J.L.; Nascimento, B.L.; Griza, S.; Holanda, F.S.R.; Marino, R.H. Production of biocomposites from the reuse of coconut powder colonized by Shiitake mushroom. Ciência Agrotecnolog. 2019, 43, e003819. [Google Scholar] [CrossRef]
- Wimmers, G.; Klick, J.; Tackaberry, L.; Zwiesigk, C.; Egger, K.; Massicotte, H. Fundamental studies for designing insulation panels from wood shavings and filamentous fungi. BioResources 2019, 14, 5506–5520. [Google Scholar] [CrossRef]
- Bruscato, C.; Malvessi, E.; Brandalise, R.N.; Camassola, M. High performance of macrofungi in the production of mycelium-based biofoams using sawdust—Sustainable technology for waste reduction. J. Clean. Prod. 2019, 234, 225–232. [Google Scholar] [CrossRef]
- de Lima, G.G.; Schoenherr, Z.C.P.; Magalhães, W.L.E.; Tavares, L.B.B.; Helm, C.V. Enzymatic activities and analysis of a mycelium-based composite formation using peach palm (Bactris gasipaes) residues on Lentinula edodes. Bioresour. Bioprocess. 2020, 7, 1–17. [Google Scholar] [CrossRef]
- Joshi, K.; Meher, M.K.; Poluri, K.M. Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications. ACS Appl. Bio Mater. 2020, 3, 1884–1892. [Google Scholar] [CrossRef] [PubMed]
- Soh, E.; Chew, Z.Y.; Saeidi, N.; Javadian, A.; Hebel, D.; Le Ferrand, H. Development of an extrudable paste to build mycelium-bound composites. Mater. Des. 2020, 195, 109058. [Google Scholar] [CrossRef]
- Liu, R.; Li, X.; Long, L.; Sheng, Y.; Xu, J.; Wang, Y. Improvement of mechanical properties of mycelium/cotton stalk composites by water immersion. Compos. Interfaces 2020, 27, 953–966. [Google Scholar] [CrossRef]
- César, E.; Canche-Escamilla, G.; Montoya, L.; Ramos, A.; Duarte-Aranda, S.; Bandala, V.M. Characterization and physical properties of mycelium films obtained from wild fungi: Natural materials for potential biotechnological applications. J. Polym. Environ. 2021, 29, 4098–4105. [Google Scholar] [CrossRef]
- Elsacker, E.; Søndergaard, A.; Van Wylick, A.; Peeters, E.; De Laet, L. Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Constr. Build. Mater. 2021, 283, 122732. [Google Scholar] [CrossRef]
- Sisti, L.; Gioia, C.; Totaro, G.; Verstichel, S.; Cartabia, M.; Camere, S.; Celli, A. Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Ind. Crops Prod. 2021, 170, 113742. [Google Scholar] [CrossRef]
- Sivaprasad, S.; Byju, S.K.; Prajith, C.; Shaju, J.; Rejeesh, C. Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Mater. Today Proc. 2021, 47, 5038–5044. [Google Scholar] [CrossRef]
- Sato, D.; Tsumori, F. Glass Microchannel Formation by Mycelium. J. Photopolym. Sci. Technol. 2021, 34, 381–384. [Google Scholar] [CrossRef]
- Nashiruddin, N.I.; Chua, K.S.; Mansor, A.F.; Rahman, R.A.; Lai, J.C.; Wan Azelee, N.I.; El Enshasy, H. Effect of growth factors on the production of mycelium-based biofoam. Clean Technol. Environ. Policy 2022, 24, 351–361. [Google Scholar] [CrossRef]
- Trabelsi, M.; Mamun, A.; Klöcker, M.; Brockhagen, B.; Kinzel, F.; Kapanadze, D.; Sabantina, L. Polyacrylonitrile (PAN) nanofiber mats for mushroom mycelium growth investigations and formation of mycelium-reinforced nanocomposites. J. Eng. Fibers Fabr. 2021, 16, 15589250211037982. [Google Scholar] [CrossRef]
- Cartabia, M.; Girometta, C.E.; Milanese, C.; Baiguera, R.M.; Buratti, S.; Branciforti, D.S.; Vadivel, D.; Girella, A.; Babbini, S.; Savino, E. Collection and characterization of wood decay fungal strains for developing pure mycelium mats. J. Fungi 2021, 7, 1008. [Google Scholar] [CrossRef] [PubMed]
- Angelova, G.; Brazkova, M.; Stefanova, P.; Blazheva, D.; Vladev, V.; Petkova, N.; Slavov, A.; Denev, P.; Karashanova, D.; Zaharieva, R. Waste rose flower and lavender straw biomass—An innovative lignocellulose feedstock for mycelium bio-materials development using newly isolated Ganoderma resinaceum GA1M. J. Fungi 2021, 7, 866. [Google Scholar] [CrossRef] [PubMed]
- Alemu, D.; Tafesse, M.; Gudetta Deressa, Y. Production of mycoblock from the mycelium of the fungus Pleurotus ostreatus for use as sustainable construction materials. Adv. Mater. Sci. Eng. 2022, 2022, 2876643. [Google Scholar] [CrossRef]
- Hoenerloh, A.; Ozkan, D.; Scott, J. Multi-organism composites: Combined growth potential of mycelium and bacterial cellulose. Biomimetics 2022, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Cai, X.; Gao, Y.; Yan, H.; Fu, J.; Tang, X.; Zhang, Q.; Li, P. A versatile nanozyme integrated colorimetric and photothermal lateral flow immunoassay for highly sensitive and reliable Aspergillus flavus detection. Biosens. Bioelectron. 2022, 213, 114435. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, E.; Saeidi, N.; Javadian, A.; Rossi, A.; Nolte, N.; Ren, S.; Dwan, A.; Acosta, I.; Hebel, D.E.; Wurm, J. Wood-veneer-reinforced mycelium composites for sustainable building components. Biomimetics 2022, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Walter, N.; Gürsoy, B. A study on the sound absorption properties of mycelium-based composites cultivated on waste paper-based substrates. Biomimetics 2022, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- Elsacker, E.; Peeters, E.; De Laet, L. Large-scale robotic extrusion-based additive manufacturing with living mycelium materials. Sustain. Futures 2022, 4, 100085. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Solueva, D.; Spyridonos, E.; Dahy, H. Mycomerge: Fabrication of mycelium-based natural fiber reinforced composites on a rattan framework. Biomimetics 2022, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- César, E.; Montoya, L.; Bárcenas-Pazos, G.M.; Ordóñez-Candelaria, V.R.; Bandala, V.M. Performance of mycelium composites of Lentinus crinitus under two compression protocols. Madera Bosques 2021, 27, e2722047. [Google Scholar] [CrossRef]
- Aiduang, W.; Kumla, J.; Srinuanpan, S.; Thamjaree, W.; Lumyong, S.; Suwannarach, N. Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species. J. Fungi 2022, 8, 1125. [Google Scholar] [CrossRef] [PubMed]
- Elsacker, E.; De Laet, L.; Peeters, E. Functional grading of mycelium materials with inorganic particles: The effect of nanoclay on the biological, chemical and mechanical properties. Biomimetics 2022, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Yari, T.; Vaghari, H.; Adibpour, M.; Jafarizadeh-Malmiri, H.; Berenjian, A. Potential application of Aspergillus terreus, as a biofactory, in extracellular fabrication of silver nanoparticles. Fuel 2022, 308, 122007. [Google Scholar] [CrossRef]
- Mancera-López, M.E.; Barrera-Cortés, J.; Mendoza-Serna, R.; Ariza-Castolo, A.; Santillan, R. Polymeric encapsulate of Streptomyces mycelium resistant to dehydration with air flow at room temperature. Polymers 2022, 15, 207. [Google Scholar] [CrossRef] [PubMed]
- Charpentier-Alfaro, C.; Benavides-Hernández, J.; Poggerini, M.; Crisci, A.; Mele, G.; Della Rocca, G.; Emiliani, G.; Frascella, A.; Torrigiani, T.; Palanti, S. Wood-decaying fungi: From timber degradation to sustainable insulating biomaterials production. Materials 2023, 16, 3547. [Google Scholar] [CrossRef] [PubMed]
- French, V.; Du, C.; Foster, E.J. Mycelium as a self-growing biobased material for the fabrication of single-layer masks. J. Bioresour. Bioprod. 2023, 8, 399–407. [Google Scholar] [CrossRef]
- Olivero, E.; Gawronska, E.; Manimuda, P.; Jivani, D.; Chaggan, F.Z.; Corey, Z.; de Almeida, T.S.; Kaplan-Bie, J.; McIntyre, G.; Wodo, O. Gradient porous structures of mycelium: A quantitative structure–mechanical property analysis. Sci. Rep. 2023, 13, 19285. [Google Scholar] [CrossRef] [PubMed]
- Kohphaisansombat, C.; Jongpipitaporn, Y.; Laoratanakul, P.; Tantipaibulvut, S.; Euanorasetr, J.; Rungjindamai, N.; Chuaseeharonnachai, C.; Kwantong, P.; Somrithipol, S.; Boonyuen, N. Fabrication of mycelium (oyster mushroom)-based composites derived from spent coffee grounds with pineapple fibre reinforcement. Mycology 2023, 15, 665–682. [Google Scholar] [CrossRef] [PubMed]
- Gough, P.; Perera, P.B.; Kertesz, M.A.; Withana, A. Design, Mould, Grow!: A Fabrication Pipeline for Growing 3D Designs Using Myco-Materials. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–15. [Google Scholar]
- Bagheriehnajjar, G.; Yousefpour, H.; Rahimnejad, M. Environmental impacts of mycelium-based bio-composite construction materials. Int. J. Environ. Sci. Technol. 2024, 21, 5437–5458. [Google Scholar] [CrossRef]
- Aiduang, W.; Jatuwong, K.; Jinanukul, P.; Suwannarach, N.; Kumla, J.; Thamjaree, W.; Lumyong, S. Sustainable Innovation: Fabrication and characterization of mycelium-based green composites for modern interior materials using agro-industrial wastes and different species of fungi. Polymers 2024, 16, 550. [Google Scholar] [CrossRef] [PubMed]
- Teeraphantuvat, T.; Jatuwong, K.; Jinanukul, P.; Thamjaree, W.; Lumyong, S.; Aiduang, W. Improving the physical and mechanical properties of mycelium-based green composites using paper waste. Polymers 2024, 16, 262. [Google Scholar] [CrossRef] [PubMed]
- Sadaf, A.; Afolayan, J.S.; Perry, C.C. Developing gold nanoparticle mycelial composites: Effect of nanoparticle surface functionality on Aspergillus niger viability and cell wall biochemistry. Curr. Res. Biotechnol. 2024, 7, 100185. [Google Scholar] [CrossRef]
- Wang, H.; Tao, J.; Wu, Z.; Weiland, K.; Wang, Z.; Masania, K.; Wang, B. Fabrication of Living Entangled Network Composites Enabled by Mycelium. Adv. Sci. 2024, 11, 2309370. [Google Scholar] [CrossRef] [PubMed]
- Jinanukul, P.; Kumla, J.; Aiduang, W.; Thamjaree, W.; Oranratmanee, R.; Shummadtayar, U.; Tongtuam, Y.; Lumyong, S.; Suwannarach, N.; Waroonkun, T. Comparative Evaluation of Mechanical and Physical Properties of Mycelium Composite Boards Made from Lentinus sajor-caju with Various Ratios of Corn Husk and Sawdust. J. Fungi 2024, 10, 634. [Google Scholar] [CrossRef] [PubMed]
- Butu, A.; Rodino, S.; Miu, B.; Butu, M. Mycelium-based materials for the ecodesign of bioeconomy. Dig. J. Nanomater. Biostruct 2020, 15, 1129–1140. [Google Scholar] [CrossRef]
- Kumla, J.; Suwannarach, N.; Sujarit, K.; Penkhrue, W.; Kakumyan, P.; Jatuwong, K.; Vadthanarat, S.; Lumyong, S. Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules 2020, 25, 2811. [Google Scholar] [CrossRef] [PubMed]
- Bellettini, M.B.; Fiorda, F.A.; Maieves, H.A.; Teixeira, G.L.; Ávila, S.; Hornung, P.S.; Júnior, A.M.; Ribani, R.H. Factors affecting mushroom Pleurotus spp. Saudi J. Biol. Sci. 2019, 26, 633–646. [Google Scholar]
- Kuribayashi, T.; Lankinen, P.; Hietala, S.; Mikkonen, K.S. Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106688. [Google Scholar] [CrossRef]
- Agustina, W.; Aditiawati, P.; Kusumah, S.; Dungani, R. Physical and mechanical properties of composite boards from the mixture of palm sugar fiber and cassava bagasse using mycelium of Ganoderma lucidum as a biological adhesive. In Proceedings of IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; p. 012012. [Google Scholar]
- Hoa, H.T.; Wang, C.-L. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Velasco, P.M.; Ortiz, M.P.M.; Giro, M.A.M.; Castelló, M.C.J.; Velasco, L.M. Development of better insulation bricks by adding mushroom compost wastes. Energy Build. 2014, 80, 17–22. [Google Scholar] [CrossRef]
- Deacon, J.W. Fungal Biology; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Attias, N.; Danai, O.; Abitbol, T.; Tarazi, E.; Ezov, N.; Pereman, I.; Grobman, Y.J. Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. J. Clean. Prod. 2020, 246, 119037. [Google Scholar] [CrossRef]
- Silverman, J.; Cao, H.; Cobb, K. Development of mushroom mycelium composites for footwear products. Cloth. Text. Res. J. 2020, 38, 119–133. [Google Scholar] [CrossRef]
- Cerimi, K.; Akkaya, K.C.; Pohl, C.; Schmidt, B.; Neubauer, P. Fungi as source for new bio-based materials: A patent review. Fungal Biol. Biotechnol. 2019, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gortner, F.; Schüffler, A.; Fischer-Schuch, J.; Mitschang, P. Use of bio-based and renewable materials for sheet molding compounds (SMC)—Mechanical properties and susceptibility to fungal decay. Compos. Part C Open Access 2022, 7, 100242. [Google Scholar] [CrossRef]
- Taylor, E.C. Seasonal distribution and abundance of fungi in two desert grassland communities. J. Arid. Environ. 1979, 2, 295–312. [Google Scholar] [CrossRef]
- Rowan, N.J.; Johnstone, C.M.; McLean, R.C.; Anderson, J.G.; Clarke, J.A. Prediction of toxigenic fungal growth in buildings by using a novel modelling system. Appl. Environ. Microbiol. 1999, 65, 4814–4821. [Google Scholar] [CrossRef] [PubMed]
- Lelivelt, R. The mechanical possibilities of mycelium materials. Eindh. Univ. Technol. (TU/E) 2015, 682. [Google Scholar]
- Holt, G.A.; Mcintyre, G.; Flagg, D.; Bayer, E.; Wanjura, J.; Pelletier, M. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. J. Biobased Mater. Bioenergy 2012, 6, 431–439. [Google Scholar] [CrossRef]
- Bjornhov, T.; Ljungh, J.; Olsson, R. Method for Producing a Composite Material. U.S. Patent US13/503,190, 22 October 2010. [Google Scholar]
- Griffin, D.H. Fungal Physiology; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Jones, M.P.; Lawrie, A.C.; Huynh, T.T.; Morrison, P.D.; Mautner, A.; Bismarck, A.; John, S. Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising Trametes versicolor and Polyporus brumalis mycelial growth. Process Biochem. 2019, 80, 95–102. [Google Scholar] [CrossRef]
- Gibson, I.; Ashby, M.F. The mechanics of three-dimensional cellular materials. Proc. R. Soc. London A Math. Phys. Sci. 1982, 382, 43–59. [Google Scholar]
- Dai, C.; Yu, C.; Zhou, X. Heat and mass transfer in wood composite panels during hot pressing. Part II. Modeling void formation and mat permeability. Wood Fiber Sci. 2005, 37, 242–257. [Google Scholar]
- Qin, Z.; Jung, G.S.; Kang, M.J.; Buehler, M.J. The mechanics and design of a lightweight three-dimensional graphene assembly. Sci. Adv. 2017, 3, e1601536. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, B.; Chapman, K.; Christie, L.; Dickson, A. Ultrastructural characteristics of failure surfaces in medium density fibreboard. For. Prod. J. 1992, 42, 55–60. [Google Scholar]
- Carvalho, L.M.; Costa, C.A. Modeling and simulation of the hot-pressing process in the production of medium density fiberboard (MDF). Chem. Eng. Commun. 1998, 170, 1–21. [Google Scholar] [CrossRef]
- Travaglini, S.; Noble, J.; Ross, P.; Dharan, C. Mycology matrix composites. In Proceedings of the 28th Annual Technical Conference of the American Society for Composites (ASC), University Park, PA, USA, 8–11 September 2013; pp. 9–11. [Google Scholar]
- Elsacker, E.; Vandelook, S.; Damsin, B.; Van Wylick, A.; Peeters, E.; De Laet, L. Mechanical characteristics of bacterial cellulose-reinforced mycelium composite materials. Fungal Biol. Biotechnol. 2021, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Birinci, A.U.; Demir, A.; Ozturk, H. Comparison of thermal performances of plywood shear walls produced with different thermal insulation materials. Maderas. Cienc. Tecnol. 2022, 24. [Google Scholar] [CrossRef]
- ASTM, C. ASTM, C. 578-06; Standard Specification for Rigid Cellular Polystyrene Thermal Insulation. ASTM International: West Conshohocken, PA, USA, 2006.
- van Empelen, J.C. A Study into More Sustainable, Alternative Building Materials as a Substitute for Concrete in Tropical Climates; Delft University of Technology: Delft, The Netherlands, 2018; pp. 1–26. [Google Scholar]
- Özlüsoylu, İ.; İstek, A. The effect of hybrid resin usage on thermal conductivity in ecological insulation panel production. In Proceedings of the 4th International Conference on Engineering Technology and Applied Sciences, Kiev, Ukraine, 24–28 April 2019; pp. 24–28. [Google Scholar]
- Gibson, L.J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 2012, 9, 2749–2766. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Park, D.; Qin, Z. Material function of mycelium-based bio-composite: A review. Front. Mater. 2021, 8, 737377. [Google Scholar] [CrossRef]
- Chan, X.Y.; Saeidi, N.; Javadian, A.; Hebel, D.E.; Gupta, M. Mechanical properties of dense mycelium-bound composites under accelerated tropical weathering conditions. Sci. Rep. 2021, 11, 22112. [Google Scholar] [CrossRef] [PubMed]
- Tacer-Caba, Z.; Varis, J.J.; Lankinen, P.; Mikkonen, K.S. Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Mater. Des. 2020, 192, 108728. [Google Scholar] [CrossRef]
- Mardijanti, D.S.; Megantara, E.N.; Bahtiar, A.; Sunardi, S. Turning the cocopith waste into myceliated biocomposite to make an insulator. Int. J. Biomater. 2021, 2021, 6630657. [Google Scholar] [CrossRef] [PubMed]
- López Nava, J.; Méndez González, J.; Ruelas Chacón, X.; Nájera Luna, J. Assessment of edible fungi and films bio-based material simulating expanded polystyrene. Mater. Manuf. Process. 2016, 31, 1085–1090. [Google Scholar] [CrossRef]
- Spyridonos, E.; Witt, M.-U.; Dippon, K.; Milwich, M.; Gresser, G.T.; Dahy, H. Natural fibre pultruded profiles: Illustration of optimisation processes to develop high-performance biocomposites for architectural and structural applications. Compos. Part C Open Access 2024, 14, 100492. [Google Scholar] [CrossRef]
- Silverman, J. Development and Testing of Mycelium-Based Composite Materials for Shoe Sole Applications; University of Delaware: Newark, DE, USA, 2018. [Google Scholar]
- Alemu, D.; Tafesse, M.; Mondal, A.K. Mycelium-based composite: The future sustainable biomaterial. Int. J. Biomater. 2022, 2022, 8401528. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.; Vinoth, J.; Sudhakar, R.; Hemalatha, G. Inspecting the behavior of insulated concrete form (icf) blocks with polypropylene sheet. Indian J. Sci. Res 2017, 14, 114–121. [Google Scholar]
- Wagner, M.; Biegler, V.; Wurm, S.; Baumann, G.; Nypelö, T.; Bismarck, A.; Feist, F. Pulp fibre foams: Morphology and mechanical performance. Compos. Part A Appl. Sci. Manuf. 2025, 188, 108515. [Google Scholar] [CrossRef]
- Gao, H.; Liu, J.; Liu, H. Geotechnical properties of EPS composite soil. Int. J. Geotech. Eng. 2011, 5, 69–77. [Google Scholar] [CrossRef]
- Răut, I.; Călin, M.; Vuluga, Z.; Oancea, F.; Paceagiu, J.; Radu, N.; Doni, M.; Alexandrescu, E.; Purcar, V.; Gurban, A.-M. Fungal based biopolymer composites for construction materials. Materials 2021, 14, 2906. [Google Scholar] [CrossRef] [PubMed]
- Yang, K. Investigations of Mycelium as a Low-Carbon Building Material. ENGS 88 Honors Thesis, Dartmouth College, Hanover, NH, USA, 2020. Available online: https://digitalcommons.dartmouth.edu/engs88/21/ (accessed on 14 April 2025).
- Gou, L.; Li, S.; Yin, J.; Li, T.; Liu, X. Morphological and physico-mechanical properties of mycelium biocomposites with natural reinforcement particles. Constr. Build. Mater. 2021, 304, 124656. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Brar, S.K.; Verma, M. Green synthesis approach: Extraction of chitosan from fungus mycelia. Crit. Rev. Biotechnol. 2013, 33, 379–403. [Google Scholar] [CrossRef] [PubMed]
- Arifin, Y.H.; Yusuf, Y. Mycelium fibers as new resource for environmental sustainability. Procedia Eng. 2013, 53, 504–508. [Google Scholar] [CrossRef]
- Santos, I.S.; Nascimento, B.L.; Marino, R.H.; Sussuchi, E.M.; Matos, M.P.; Griza, S. Influence of drying heat treatments on the mechanical behavior and physico-chemical properties of mycelial biocomposite. Compos. Part B Eng. 2021, 217, 108870. [Google Scholar] [CrossRef]
- Manan, S.; Ullah, M.W.; Ul-Islam, M.; Atta, O.M.; Yang, G. Synthesis and applications of fungal mycelium-based advanced functional materials. J. Bioresour. Bioprod. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Schritt, H.; Vidi, S.; Pleissner, D. Spent mushroom substrate and sawdust to produce mycelium-based thermal insulation composites. J. Clean. Prod. 2021, 313, 127910. [Google Scholar] [CrossRef]
- Huang, Z.; Wei, Y.; Hadigheh, S.A. Variations in the properties of engineered mycelium-bound composites (mbcs) under different manufacturing conditions. Buildings 2024, 14, 155. [Google Scholar] [CrossRef]
- Sratong-on, P.; Puttawongsakul, K.; Kantawee, N. Physical and Mechanical Properties of Indian Oyster Mushroom Mycelium/Sawdust Composites for Biodegradable Packaging Materials. Curr. Appl. Sci. Technol. 2023, 25, e0262650. [Google Scholar] [CrossRef]
- Jia, N.; Kagan, V.A. Mechanical performance of polyamides with influence of moisture and temperature–accurate evaluation and better understanding. Plast. Fail. Anal. Prev. 2001, 1, 95–104. [Google Scholar]
- Li, M.M.; Pan, H.C.; Huang, S.L.; Scholz, M. Controlled experimental study on removing diesel oil spillages using agricultural waste products. Chem. Eng. Technol. 2013, 36, 673–680. [Google Scholar] [CrossRef]
- Wei, L.; Liang, S.; McDonald, A.G. Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue. Ind. Crops Prod. 2015, 69, 91–103. [Google Scholar] [CrossRef]
- Zabihzadeh, S.M. Water uptake and flexural properties of natural filler/HDPE composites. BioResources 2010, 5, 316–323. [Google Scholar] [CrossRef]
- Mokhothu, T.H.; John, M.J. Bio-based coatings for reducing water sorption in natural fibre reinforced composites. Sci. Rep. 2017, 7, 13335. [Google Scholar] [CrossRef] [PubMed]
- Corazzari, I.; Nisticò, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnacca, G. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym. Degrad. Stab. 2015, 112, 1–9. [Google Scholar] [CrossRef]
- Pelletier, M.; Holt, G.; Wanjura, J.; Greetham, L.; McIntyre, G.; Bayer, E.; Kaplan-Bie, J. Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative. Ind. Crops Prod. 2019, 139, 111533. [Google Scholar] [CrossRef]
- Sun, W.; Tajvidi, M.; Howell, C.; Hunt, C.G. Insight into mycelium-lignocellulosic bio-composites: Essential factors and properties. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107125. [Google Scholar] [CrossRef]
- Castagnede, B.; Aknine, A.; Brouard, B.; Tarnow, V. Effects of compression on the sound absorption of fibrous materials. Appl. Acoust. 2000, 61, 173–182. [Google Scholar] [CrossRef]
- Collet, F.; Pretot, S. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Constr. Build. Mater. 2014, 65, 612–619. [Google Scholar] [CrossRef]
- Schnabel, T.; Huber, H.; Petutschnigg, A.; Jäger, A. Analysis of plant materials pre-treated by steam explosion technology for their usability as insulating materials. Agron. Res. 2019, 17, 1191–1198. [Google Scholar]
- Dias, P.P.; Jayasinghe, L.B.; Waldmann, D. Investigation of Mycelium-Miscanthus composites as building insulation material. Results Mater. 2021, 10, 100189. [Google Scholar] [CrossRef]
- Pruteanu, M. Investigations regarding the thermal conductivity of straw. Bul. Institutului Politeh. Iasi Sect. Constr. Arhit. 2010, 56, 9. [Google Scholar]
- Bergman, T.L. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Das, O.; Mensah, R.A.; Balasubramanian, K.B.N.; Shanmugam, V.; Försth, M.; Hedenqvist, M.S.; Rantuch, P.; Martinka, J.; Jiang, L.; Xu, Q. Functionalised biochar in biocomposites: The effect of fire retardants, bioplastics and processing methods. Compos. Part C Open Access 2023, 11, 100368. [Google Scholar] [CrossRef]
- Jones, M.; Bhat, T.; Kandare, E.; Thomas, A.; Joseph, P.; Dekiwadia, C.; Yuen, R.; John, S.; Ma, J.; Wang, C.-H. Thermal degradation and fire properties of fungal mycelium and mycelium-biomass composite materials. Sci. Rep. 2018, 8, 17583. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.L.; Matos, M.P.; Nascimento, B.L.; Griza, S.; Holanda, F.S.R.; Marino, R.H. Production and mechanical evaluation of biodegradable composites by white rot fungi. Ciência Agrotecnolog. 2018, 42, 676–684. [Google Scholar] [CrossRef]
- Rantuch, P.; Kvorková, V.; Wachter, I.; Martinka, J.; Štefko, T. Is biochar a suitable fire retardant for furfurylated wood? Compos. Part C Open Access 2024, 14, 100454. [Google Scholar] [CrossRef]
- Jin, X.; Cui, S.; Sun, S.; Gu, X.; Li, H.; Liu, X.; Tang, W.; Sun, J.; Bourbigot, S.; Zhang, S. The preparation of a bio-polyelectrolytes based core-shell structure and its application in flame retardant polylactic acid composites. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105485. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, S.; Pan, X.; Zhou, S.; Zhao, M. Foaming mechanism and optimal process conditions of foamed glass based on thermal analysis. J. Porous Mater. 2020, 27, 621–626. [Google Scholar] [CrossRef]
- Agarwal, G.; Liu, G.; Lattimer, B. Pyrolysis and oxidation of cardboard. Fire Saf. Sci. 2014, 11, 124–137. [Google Scholar] [CrossRef]
- Houette, T.; Maurer, C.; Niewiarowski, R.; Gruber, P. Growth and mechanical characterization of mycelium-based composites towards future bioremediation and food production in the material manufacturing cycle. Biomimetics 2022, 7, 103. [Google Scholar] [CrossRef] [PubMed]
- Aiduang, W.; Suwannarach, N.; Kumla, J.; Thamjaree, W.; Lumyong, S. Valorization of agricultural waste to produce myco-composite materials from mushroom mycelia and their physical properties. Agric. Nat. Resour. 2022, 56, 1083–1090. [Google Scholar] [CrossRef]
- Rigobello, A.; Ayres, P. Compressive behaviour of anisotropic mycelium-based composites. Sci. Rep. 2022, 12, 6846. [Google Scholar] [CrossRef] [PubMed]
- Dizon, J.R.C.; Valino, A.D.; Souza, L.R.; Espera, A.H.; Chen, Q.; Advincula, R.C. Three-dimensional-printed molds and materials for injection molding and rapid tooling applications. MRS Commun. 2019, 9, 1267–1283. [Google Scholar] [CrossRef]
- Forest Products Laboratory (US); University of Wisconsin. Manufacture and General Characteristics of Flat Plywood; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1961.
- Schroeder, H.A. Shrinking and Swelling Differences Between Hardwoods and Softwoods; Wood and Fiber Science: Monona, WI, USA, 1972; pp. 20–25. [Google Scholar]
- Rashidi, L. Magnetic nanoparticles: Synthesis and characterization. In Magnetic Nanoparticle-Based Hybrid Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–32. [Google Scholar]
- Hu, M.; Cao, X. Experimental Assessment of Multiple Properties of Mycelium-Based Composites with Sewage Sludge and Bagasse. Materials 2025, 18, 1225. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Gu, S.; Bridgwater, A.V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J. Anal. Appl. Pyrolysis 2010, 87, 199–206. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Chan, W.K. Cost modeling and optimization of a manufacturing system for mycelium-based biocomposite parts. J. Manuf. Syst. 2016, 41, 8–20. [Google Scholar] [CrossRef]
- Osman, E.Y. Economic Assessment of Mycelia-Based Composite in the Built Environment. Ph.D. Thesis, University of Cape Coast, Cape Coast, Ghana, 2023. [Google Scholar]
- Ghoshal, T.; Parmar, P.R.; Bhuyan, T.; Bandyopadhyay, D. Polystyrene foams: Materials, technology, and applications. In Polymeric Foams: Fundamentals and Types of Foams (Volume 1); ACS Publications: Washington, DC, USA, 2023; pp. 121–141. [Google Scholar]
- Barrera Castro, G.; Ocampo Carmona, L.; Olaya Florez, J. Production and characterization of the mechanical and thermal properties of expanded polystyrene with recycled material. Ing. Y Univ. 2017, 21, 177–194. [Google Scholar] [CrossRef]
- Monteiro, S.; de Assis, F.; Ferreira, C.; Simonassi, N.; Weber, R.; Oliveira, M.; Colorado, H.; Pereira, A. Fique fabric: A promising reinforcement for polymer composites. Polymers 2018, 10, 246. [Google Scholar] [CrossRef] [PubMed]
- Vandi, L.-J.; Chan, C.M.; Werker, A.; Richardson, D.; Laycock, B.; Pratt, S. Wood-PHA composites: Mapping opportunities. Polymers 2018, 10, 751. [Google Scholar] [CrossRef] [PubMed]
- Peeters, S.S. Assessing Modifications on Mycelium-Based Composites and the Effects on Fungal Degradation and Material Properties; Eindhoven University of Technology: Eindhoven, The Netherlands, 2023. [Google Scholar]
- Indexbox. Cement Price per kg. Available online: https://www.indexbox.io/search/cement-price-per-kg/ (accessed on 25 March 2024).
- Logan, J.; Buckley, D. Subterranean termite control in buildings. In The Chemistry of Wood Preservation; Woodhead Publishing: Sawston, UK, 1991; pp. 294–305. [Google Scholar]
- Guillebeau, L.P.; Hinkle, N.; Roberts, P. Summary of Losses from Insect Damage and Cost of Control in Georgia 2006; The University of Georgia: Athens, GA, USA, 2008. [Google Scholar]
- Bajwa, D.S.; Holt, G.A.; Bajwa, S.G.; Duke, S.E.; McIntyre, G. Enhancement of termite (Reticulitermes flavipes L.) resistance in mycelium reinforced biofiber-composites. Ind. Crops Prod. 2017, 107, 420–426. [Google Scholar] [CrossRef]
- Vachon, J.; Assad-Alkhateb, D.; Baumberger, S.; Van Haveren, J.; Gosselink, R.J.; Monedero, M.; Bermudez, J.M. Use of lignin as additive in polyethylene for food protection: Insect repelling effect of an ethyl acetate phenolic extract. Compos. Part C Open Access 2020, 2, 100044. [Google Scholar] [CrossRef]
- Bultman, J.; Chen, S.-L.; Schloman, W., Jr. Anti-termitic efficacy of the resin and rubber in fractionator overheads from a guayule extraction process. Ind. Crops Prod. 1998, 8, 133–143. [Google Scholar] [CrossRef]
- Zhu, B.C.; Henderson, G.; Chen, F.; Fei, H.; Laine, R.A. Evaluation of vetiver oil and seven insect-active essential oils against the Formosan subterranean termite. J. Chem. Ecol. 2001, 27, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Abrams, M. Construction Materials Made from ‘Shrooms; The American Society of Mechanical Engineers: New York, NY, USA, 2014. [Google Scholar]
- Volk, R.; Schröter, M.; Saeidi, N.; Steffl, S.; Javadian, A.; Hebel, D.E.; Schultmann, F. Life cycle assessment of mycelium-based composite materials. Resour. Conserv. Recycl. 2024, 205, 107579. [Google Scholar] [CrossRef]
- Guinée, J.B. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002; Volume 7. [Google Scholar]
- Stelzer, L.; Hoberg, F.; Bach, V.; Schmidt, B.; Pfeiffer, S.; Meyer, V.; Finkbeiner, M. Life cycle assessment of fungal-based composite bricks. Sustainability 2021, 13, 11573. [Google Scholar] [CrossRef]
- Ravichandran, B.; Balasubramanian, M. Joining methods for Fiber Reinforced Polymer (FRP) composites—A critical review. Compos. Part A Appl. Sci. Manuf. 2024, 186, 108394. [Google Scholar] [CrossRef]
- Alaux, N.; Vašatko, H.; Maierhofer, D.; Saade, M.R.M.; Stavric, M.; Passer, A. Environmental potential of fungal insulation: A prospective life cycle assessment of mycelium-based composites. Int. J. Life Cycle Assess. 2024, 29, 255–272. [Google Scholar] [CrossRef]
- Potrč Obrecht, T.; Jordan, S.; Legat, A.; Passer, A. The role of electricity mix and production efficiency improvements on greenhouse gas (GHG) emissions of building components and future refurbishment measures. Int. J. Life Cycle Assess. 2021, 26, 839–851. [Google Scholar] [CrossRef]
- Zhang, X. The influence of future electricity supplies in life cycle assessment (LCA) of buildings. IEA EBC Annex 2022, 72. [Google Scholar]
- McNeill, D.C.; Pal, A.K.; Nath, D.; Rodriguez-Uribe, A.; Mohanty, A.K.; Pilla, S.; Gregori, S.; Dick, P.; Misra, M. Upcycling of Ligno-Cellulosic Nutshells Waste Biomass in Biodegradable Plastic-based Biocomposites Uses—A Comprehensive Review. Compos. Part C Open Access 2024, 14, 100478. [Google Scholar] [CrossRef]
- Gosden, E. Ikea Plans Mushroom-Based Packaging as Eco-Friendly Replacement for Polystyrene. The Telegraph. 24 February 2016. Available online: https://www.telegraph.co.uk/news/earth/businessandecology/recycling/12172439/Ikea-plans-mushroom-based-packaging-as-eco-friendly-replacement-for-polystyrene.html (accessed on 21 March 2025).
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Dicker, M.P.; Duckworth, P.F.; Baker, A.B.; Francois, G.; Hazzard, M.K.; Weaver, P.M. Green composites: A review of material attributes and complementary applications. Compos. Part A Appl. Sci. Manuf. 2014, 56, 280–289. [Google Scholar] [CrossRef]
- Jones, M.; Bhat, T.; Wang, C.H.; Moinuddin, K.; John, S. Thermal degradation and fire reaction properties of mycelium composites. In Proceedings of the 21st International Conference on Composite Materials, Xi’an, China, 20–25 August 2017; pp. 20–25. [Google Scholar]
- Ecovative Design, L. Mycocomposite—Mycelium-Bound Agricultural Byproducts. 2019. Available online: http://ecovativedesign.com/mycocomposite (accessed on 17 January 2025).
- Sydor, M.; Bonenberg, A.; Doczekalska, B.; Cofta, G. Mycelium-based composites in art, architecture, and interior design: A review. Polymers 2021, 14, 145. [Google Scholar] [CrossRef] [PubMed]
- Design, K. Beautiful Products with Fungus and Biomass. 2021. Available online: https://www.mycote.ch/mycotree (accessed on 20 January 2025).
- Zamani, A. Superabsorbent Polymers from the Cell Wall of Zygomycetes Fungi; Chalmers University of Technology: Gothenburg, Sweden, 2010. [Google Scholar]
- Vasquez, E.S.L.; Vega, K. Myco-accessories: Sustainable wearables with biodegradable materials. In Proceedings of the 2019 ACM International Symposium on Wearable Computers, London, UK, 9–13 September 2019; pp. 306–311. [Google Scholar]
- Edebo, L. Porous Structure Comprising Fungi Cell Walls. U.S. Patent 6,423,337, 23 July 2002. [Google Scholar]
- Saini, R.; Kaur, G.; Brar, S.K. Textile residue-based mycelium biocomposites from Pleurotus ostreatus. Mycology 2023, 15, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Janesch, J.; Jones, M.; Bacher, M.; Kontturi, E.; Bismarck, A.; Mautner, A. Mushroom-derived chitosan-glucan nanopaper filters for the treatment of water. React. Funct. Polym. 2020, 146, 104428. [Google Scholar] [CrossRef]
- Zhao, A.; Berglund, L.; Rosenstock Völtz, L.; Swamy, R.; Antonopoulou, I.; Xiong, S.; Mouzon, J.; Bismarck, A.; Oksman, K. Fungal Innovation: Harnessing Mushrooms for Production of Sustainable Functional Materials. Adv. Funct. Mater. 2025, 35, 2412753. [Google Scholar] [CrossRef]
- Oksman, K.; Aitomäki, Y.; Mathew, A.P.; Siqueira, G.; Zhou, Q.; Butylina, S.; Tanpichai, S.; Zhou, X.; Hooshmand, S. Review of the recent developments in cellulose nanocomposite processing. Compos. Part A Appl. Sci. Manuf. 2016, 83, 2–18. [Google Scholar] [CrossRef]
- Zhan, M.; Wool, R.P. Design and evaluation of bio-based composites for printed circuit board application. Compos. Part A Appl. Sci. Manuf. 2013, 47, 22–30. [Google Scholar] [CrossRef]
- Vasquez, E.S.L.; Vega, K. From plastic to biomaterials: Prototyping DIY electronics with mycelium. In Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, London, UK, 9–13 September 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 308–311. [Google Scholar]
- Heide, A.; Wiebe, P.; Sabantina, L.; Ehrmann, A. Suitability of Mycelium-Reinforced Nanofiber Mats for Filtration of Different Dyes. Polymers 2023, 15, 3951. [Google Scholar] [CrossRef] [PubMed]
- Soon, C.F.; Yee, S.K.; Nordin, A.N.; Rahim, R.A.; Ma, N.L.; Hamed, I.S.L.A.; Tee, K.S.; Azmi, N.H.; Sunar, N.M.; Heng, C. Advancements in Biodegradable Printed Circuit Boards: Review of Material Properties, Fabrication Methods, Applications and Challenges. Int. J. Precis. Eng. Manuf. 2024, 25, 1925–1954. [Google Scholar] [CrossRef]
- Rapagnani, N.; van Bezooijen, A.; Borruso, L.; Mimmo, T.; Bouaicha, O. Bio Design for Footwear Innovation: Growing Sneaker Components with Composite Mycelium-Based Materials; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar]
- Oliver-Ortega, H.; Geng, S.; Espinach, F.X.; Oksman, K.; Vilaseca, F. Bacterial cellulose network from kombucha fermentation impregnated with emulsion-polymerized poly (methyl methacrylate) to form nanocomposite. Polymers 2021, 13, 664. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-Y.; Aitomäki, Y.; Berglund, L.A.; Oksman, K.; Bismarck, A. On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 2014, 105, 15–27. [Google Scholar] [CrossRef]
- Bakare, F.O.; Ramamoorthy, S.K.; Åkesson, D.; Skrifvars, M. Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax and flax/basalt fibre reinforcements. Compos. Part A Appl. Sci. Manuf. 2016, 83, 176–184. [Google Scholar] [CrossRef]
- Hietala, M.; Mathew, A.P.; Oksman, K. Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur. Polym. J. 2013, 49, 950–956. [Google Scholar] [CrossRef]
- Früchtl, M.; Senz, A.; Sydow, S.; Frank, J.B.; Hohmann, A.; Albrecht, S.; Fischer, M.; Holland, M.; Wilhelm, F.; Christ, H.-A. Sustainable pultruded sandwich profiles with mycelium core. Polymers 2023, 15, 3205. [Google Scholar] [CrossRef] [PubMed]
- Jonoobi, M.; Harun, J.; Mathew, A.P.; Oksman, K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Technol. 2010, 70, 1742–1747. [Google Scholar] [CrossRef]
- Simard, S.W.; Beiler, K.J.; Bingham, M.A.; Deslippe, J.R.; Philip, L.J.; Teste, F.P. Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biol. Rev. 2012, 26, 39–60. [Google Scholar] [CrossRef]
- Gorzelak, M.A.; Asay, A.K.; Pickles, B.J.; Simard, S.W. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB Plants 2015, 7, plv050. [Google Scholar] [CrossRef] [PubMed]
- Fricker, M.D.; Heaton, L.L.; Jones, N.S.; Boddy, L. The mycelium as a network. Fungal Kingd. 2017, 5, 335–367. [Google Scholar]
- Al-Taweil, H.I.; Osman, M.B.; Abdulhamid, A.; Mohammad, N.; Wan Yussof, W.M. Microbial inoculants for enhancing rice growth and sheath spots disease suppression. Arch. Agron. Soil Sci. 2010, 56, 623–632. [Google Scholar] [CrossRef]
- Elnahal, A.S.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.-S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur. J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- Vassilev, N.; Mendes, G.d.O. Soil Fungi in Sustainable Agriculture. Microorganisms 2024, 12, 163. [Google Scholar] [CrossRef] [PubMed]
- Gianinazzi, S.; Gollotte, A.; Binet, M.-N.; van Tuinen, D.; Redecker, D.; Wipf, D. Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 2010, 20, 519–530. [Google Scholar] [CrossRef] [PubMed]
Fungal Species | Substrate Type | Application | Year | Reference |
---|---|---|---|---|
N/A | woven textile and natural glue (water, starch, maltodextrin), kenaf pith | shoe sole | 2014 | [70] |
N/A | core: kenaf and hemp. Textile skins: Biotex jute, flax, Biomid cellulose fibre | structure, construction | 2014 | [71] |
Oyster mushroom | cotton seed hulls, carboxylated styrene butadiene rubber (sbr) latex, Silane coupling agent | structure, construction | 2014 | [72] |
G. lucidum | N/A | sandwich composites | 2014 | [73] |
N/A | ground corn stover, reinforcement layers: jute textile, kenaf mat, glue: G242 industrial corn starch, maltodextrin glue | shoe sole, integral tooling | 2014 | [70] |
N/A | N/A | insulation panels | 2015 | [74] |
C. versicolor, P. ostreatus | wood chips, hemp hurd, loose hemp fibre and nonwoven, mats of hemp fibre | insulating foam | 2015 | [75] |
N/A | core: cotton (ginning waste), hemp shell: woven or nonwoven mat | packaging | 2016 | [53] |
P. ostreatus | wood sawdust | Structure, construction | 2016 | [53] |
N/A | Ecovative DIY and psyllium, chia and linum seeds | N/A | 2016 | [52] |
G. lucidum | wood, additives | subtractive manufacture | 2016 | [76] |
L. edodes, P. ostreatus, G. lucidum | wood shavings, straw, corn stalk and rice husks | Structural furniture | 2016 | [77] |
Pleurotus sp. | wheat residues (Triticum sp.) | food & packaging | 2016 | [77] |
N/A | core: corn stover, hemp; Shell: (a) Biotex Jute, (b) Biotex flax, and (c) BioMid fibre | sandwich core | 2016 | [30] |
N/A | core: kenaf, hemp shell: jute/flax (Biotex) | preform Shell | 2017 | [78] |
Alaska white rot | Alaska birch (Betula neoalaskana), millet grain, wheat bran, natural fibre, calcium sulfate | backfill/structure | 2017 | [23] |
Basidiomycetes | agricultural byproducts: cotton (leaves, sticks, burs); switchgrass, rice straw, sorghum stalks, cotton burs, kenaf and corn stalks | acoustic insulation | 2017 | [79] |
G. lucidum, P. ostreatus | cellulose, cellulose & potato-dextrose (PDB) | mycelium films | 2017 | [13] |
N/A | sawdust or agricultural waste, nutrients (not specified) | furniture | 2017 | [54] |
T. versicolor | rice hulls, wheat grain inoculum | insulating foams | 2017 | [10] |
P. pulmonarius, P. ostreatus, P. salmoneo, A. agrocibe | agricultural byproducts: woodchips of eucalyptus, oak, pine and apple | composite & biopolymer | 2017 | [27] |
N/A | skin: natural fibre textile (jute, hemp and cellulose). core: pre-grown kenaf–hemp mixtures | laminated bio-composite | 2017 | [55] |
Basidiomycetes | agricultural waste: Corn stover particles; Calcium and carbohydrate (not specified) | composite & biopolymer | 2017 | [80] |
(Ecovative) | calcium and carbohydrate (not specified) | synthetic polymer alternatives | 2017 | [12] |
P. ostreatus | seeds (not specified) mixed with hydrogel | architectural assembly units | 2017 | [81] |
S. commune | broth culture, agar minimal medium | thermoplastic alternative | 2018 | [17] |
T. versicolor | rice hulls, glass fines, wheat grains | insulation, furniture, building | 2018 | [82] |
O. latermarginatus, M. minor, G. resinaceum | wheat straw | insulation materials | 2018 | [83] |
P. ostreatus, T. multicolor | rapeseed straw, beech sawdust, non-woven cotton fibres | product design | 2018 | [42] |
N/A | N/A | laminated bio-composite | 2018 | [84] |
Trametes sp. S. Commune | bread particles, banana peel, coffee residue, Styrofoam pellets, flower, orange peel, carrot leaves, cardboard, sawdust, straw | product design | 2018 | [35] |
(Ecovative) | calcium and carbohydrate (not specified) | N/A | 2018 | [85] |
T. versicolor | hemp, flax, flax waste, softwood, straw, varied processing: loose, chopped, dust, pre-compressed and tow | building materials | 2019 | [20] |
(Ecovative) | a mixture of spruce, pine, and fir (SPF) particleboard particles | packaging and furniture | 2019 | [86] |
L. edodes isolates | coconut powder-based supplemented with wheat bran | packaging | 2019 | [87] |
F. pinicola, G. sepiarium, L. sulphureus, P. schweinitzii, P. betulinus, P. ostreatus, P. arcularius, T. pubescens, T. suaveolens, T. abietinum | wood shavings of Betula papyrifera (Birch), Populus tremuloides (Aspen), Picea glauca (Spruce), Pinus contorta (Pine), Abies lasiocarpa (Fir). Addition of nutrient solution: peptone, malt extract, and yeast | thermal insulation boards | 2019 | [88] |
C.versicolor T. multicolor G. sesille | vine and apple tree-pruning woodchips mixed with mixed with 1% flour and 3% wheat straw | thermal insulation water container | 2019 | [24] |
P. sanguineus, P. albidus, L. velutinus | wood sawdust, wheat bran and calcium carbonate | EPS alternative | 2019 | [89] |
Lentinula edodes | peach-palm residues, ammonium sulphate, potassium nitrate, and cooked soy flour | evaluation of MBC physico-chemical, enzymatic activities, thermal and mechanical properties | 2020 | [90] |
Pleurotus ostreatus | wheat bran, sugarcane, sawdust | bio-blocks, sustainable applications | 2020 | [91] |
Ganoderma lucidum | bamboo fibre | development of an extrudable and buildable composite | 2020 | [92] |
Ganoderma lucidum | cotton stalk | property improvement of MBC | 2020 | [93] |
Aurantiporus, Ganoderma, Lentinus, Pleurotus ostreatus and Panus sp. | cultivated on PDA, PDB | biotechnological applications | 2021 | [94] |
Trametes versicolor, Ganoderma resinaceum | hemp hurds, beechwood sawdust | formwork application | 2021 | [95] |
Wood decay basidiomycete | hemp shive, cotton | enhancement of MBC | 2021 | [96] |
Pleurotus Ostreatus | saw dust-coir pith | packaging | 2021 | [97] |
N/A | silica compounds | glass microchannels fabrication | 2021 | [98] |
P. ostreatus | rice husk | Bio-foam | 2021 | [99] |
Pleurotus ostreatus | polyacrylonitrile (PAN) nano-fibre mats | reinforced nanocomposites | 2021 | [100] |
Abortiporus biennis, Bjerkandera adusta, Coriolopsis gallica, Coriolopsis gallica, Coriolopsis trogii, Daedaleopsis confragosa, Daedaleopsis tricolor, Fomes fomentarius, Fomitiporia mediterranea, Fomitopsis iberica, Fomitopsis pinicola, Ganoderma carnosum, Ganoderma lucidum, Irpex lacteus, Irpiciporus pachyodon, Lenzites betulinus, Neofavolus alveolaris, Stereum hirsutum, erana caerulea, Trametes hirsuta, Trametes suaveolens | millet grains | MBC development | 2021 | [101] |
Ganoderma resinaceum | waste Rose flower and Lavender straw | MBC development | 2021 | [102] |
Pleurotus ostreatus | sawdust, bagasse, and coffee husk | construction | 2022 | [103] |
N/A | strawbale, wood shavings, coffee grounds | muti-organism composite | 2022 | [104] |
Aspergillus flavus | N/A | visual lateral flow immunoassays/bioanalysis | 2022 | [105] |
Ganoderma lucidum | hemp fibres, hemp hurds, pine wood sawdust and shavings, and silvergrass (Miscanthus) shavings | building materials | 2022 | [106] |
Pleurotus ostreatus | waste cardboard, paper, and newsprint substrates | sound absorption properties study | 2022 | [107] |
Ganoderma lucidum | beechwood sawdust | robotic manufacturing | 2022 | [108] |
Pleurotus ostreatus | wood plugs, hemp fibres, wood chips | fibre-reinforced composite fabrication | 2022 | [109] |
Lentinus crinitus | barley straw | fabrication of insulation panels | 2022 | [110] |
Ganoderma fornicatum, Ganoderma williamsianum, Lentinus sajor-caju, Schizophyllum commune | sawdust, corn husk, and rice straw | chemical, physical and mechanical properties investigation | 2022 | [111] |
Trametes versicolor | hemp fibres | evaluation of nano-clay effect on MBC properties | 2022 | [112] |
Aspergillus terreus | silver salt solution, PDA, PDB | silver nanoparticles fabrication | 2022 | [113] |
Streptomyces | calcium alginate, YGM medium | polymeric encapsulation | 2023 | [114] |
Trametes versicolor, Pleurotus ostreatus, P. eryngii, Ganoderma carnosum and Fomitopsis pinicola | millet, wheat and a 1:1 mix of millet and wheat grains | insulation panels | 2023 | [115] |
Pleurotus ostreatus | malt extract agar & activated charcoal | single-layer masks | 2023 | [116] |
N/A | N/A | generating Gradient porous structures (GPS) | 2023 | [117] |
Pleurotus ostreatus | spent coffee grounds, natural pineapple fibres (NPFs) | MBC fabrication | 2023 | [118] |
Ganoderma lucidum (Reishi), Oyster mushrooms | N/A | tool design | 2023 | [119] |
N/A | N/A | environmental evaluation | 2024 | [120] |
Ganoderma fornicatum, Ganoderma williamsianum, Lentinus sajor-caju, Trametes coccinea | bamboo sawdust & corn pericarp | modern interior material | 2024 | [121] |
Lentinus sajor-caju | corn husk and sawdust | MBC development | 2024 | [122] |
Aspergillus niger | coating agents: Au nanoparticles, borohydride, glucose, citrate, and an antibiotic | biosensing and environmental applications | 2024 | [123] |
Ganoderma lucidum | sawdust | MBC fabrication | 2024 | [124] |
Lentinus sajor-caju | various ratios of corn husk and sawdust | MBC development | 2024 | [125] |
Material | Density (kg/m3) | Water Absorption (%) | Dimensional Stability (%) | Thermal Resistance (K·m2/W) |
---|---|---|---|---|
Mycelium-based composites | 59–318 [10] | 300 [141] | 0.64–2.4 [141] | 0.82–1.5 [141] |
BC-mycelium composite [151] | 1208–2857 | - | - | - |
Plywood | 512–596 [152] | 5–49 [26] | - | 0.084–0.1 [152] |
Standard EPS board [153] | 12–48 | 0.3–4 | <2 | 0.55–0.88 |
Polystyrene foams | 22–30 [154] | 0.03–9 [26] | - | 0.32–0.35 [155] |
Variables | Base Values (USD) |
---|---|
Price of mycelium/ft3 | $0.83 |
Plexiglass | $190.53 |
Strip plexiglass | $25.81 |
Plywood | $40.00 |
Strip plywood | $1.25 |
Interest rate | 7.75% |
CPI (inflation rate) | 6.50% |
Concrete house | $61,873.00 |
Lumber house | $61,200.00 |
Mycelium-Plywood house | $17,263.75 |
Mycelium-Plexiglass house | $59,810.62 |
Material | Lifespan (Year) | Eco-Costs (Euro) | Eco-Costs in 500 Years (Euro) | Fossil Energy Demand (MJ) | Climate Change (kg CO2) |
---|---|---|---|---|---|
Concrete | 80–150 | 792 | 2640 | 7.47 | 0.5425 |
Mycelium | <50 | 16 | 160 | 7.26 | 0.6417 |
CoRncrete | 50 | 168 | 1680 | - | - |
Hempcrete | >500 | 78 | 78 | 7.71 | 0.6933 |
Bio-Bricks | 200 | 245 | 612.5 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parhizi, Z.; Dearnaley, J.; Kauter, K.; Mikkelsen, D.; Pal, P.; Shelley, T.; Burey, P. The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites. J. Fungi 2025, 11, 549. https://doi.org/10.3390/jof11080549
Parhizi Z, Dearnaley J, Kauter K, Mikkelsen D, Pal P, Shelley T, Burey P. The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites. Journal of Fungi. 2025; 11(8):549. https://doi.org/10.3390/jof11080549
Chicago/Turabian StyleParhizi, Zahra, John Dearnaley, Kate Kauter, Deirdre Mikkelsen, Priya Pal, Tristan Shelley, and Paulomi (Polly) Burey. 2025. "The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites" Journal of Fungi 11, no. 8: 549. https://doi.org/10.3390/jof11080549
APA StyleParhizi, Z., Dearnaley, J., Kauter, K., Mikkelsen, D., Pal, P., Shelley, T., & Burey, P. (2025). The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites. Journal of Fungi, 11(8), 549. https://doi.org/10.3390/jof11080549