Towards a Green and Sustainable Valorization of Salix amplexicaulis: Integrating Natural Deep Eutectic Solvents and Microwave-Assisted Extraction for Enhanced Recovery of Phenolic Compounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. NADES Preparation
2.4. Extract Preparation
2.5. HPLC Analysis
2.6. Principal Component Analysis (PCA)
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NSAIDs | Non-steroidal anti-inflammatory drugs |
MAE | Microwave-assisted extraction |
NADES | Natural deep eutectic solvents |
EtOH | Ethanol |
DM | Dry plant material |
PCA | Principal component analysis |
References
- Maistro, E.L.; Terrazzas, P.M.; Sawaya, A.C.H.F.; Rosa, P.C.P.; Perazzo, F.F.; de Mascarenhas Gaivão, I.O. In Vivo Toxicogenic Potential of Salix alba (Salicaceae) Bark Extract. J. Toxicol. Environ. Health A 2022, 85, 121–130. [Google Scholar] [CrossRef]
- Nahrstedt, A.; Schmidt, M.; Jäggi, R.; Metz, J.; Khayyal, M.T. Willow Bark Extract: The Contribution of Polyphenols to the Overall Effect. Wien Med. Wochenschr. 2007, 157, 348–351. [Google Scholar] [CrossRef]
- Schmid, B.; Kötter, I.; Heide, L. Pharmacokinetics of Salicin after Oral Administration of a Standardised Willow Bark Extract. Eur. J. Clin. Pharmacol. 2001, 57, 387–391. [Google Scholar] [CrossRef]
- Tawfeek, N.; Mahmoud, M.F.; Hamdan, D.I.; Sobeh, M.; Farrag, N.; Wink, M.; El-Shazly, A.M. Phytochemistry, Pharmacology and Medicinal Uses of Plants of the Genus Salix: An Updated Review. Front. Pharmacol. 2021, 12, 593856. [Google Scholar] [CrossRef]
- Maroon, A.; Bost, J.; Maroon, J. Natural Anti-Inflammatory Agents for Pain Relief. Surg. Neurol. Int. 2010, 1, 80. [Google Scholar] [CrossRef]
- Baker, P.; Charlton, A.; Johnston, C.; Leahy, J.J.; Lindegaard, K.; Pisano, I.; Prendergast, J.; Preskett, D.; Skinner, C. A Review of Willow (Salix spp.) as an Integrated Biorefinery Feedstock. Ind. Crops Prod. 2022, 189, 115823. [Google Scholar] [CrossRef]
- Aleman, R.S.; Marcia, J.; Duque-Soto, C.; Lozano-Sánchez, J.; Montero-Fernández, I.; Ruano, J.A.; Hoskin, R.T.; Moncada, M. Effect of Microwave and Ultrasound-Assisted Extraction on the Phytochemical and In Vitro Biological Properties of Willow (Salix alba) Bark Aqueous and Ethanolic Extracts. Plants 2023, 12, 2533. [Google Scholar] [CrossRef]
- European Medicines Agency. Assessment Report on Salix [Various Species Including S. purpurea L., S. daphnoides Vill., S. fragilis L.], Cortex; EMA: London, UK, 2017. [Google Scholar]
- Gligorić, E.; Igić, R.; Srđenović Čonić, B.; Kladar, N.; Teofilović, B.; Grujić, N. Chemical Profiling and Biological Activities of “Green” Extracts of Willow Species (Salix L., Salicaceae): Experimental and Chemometric Approaches. Sustain. Chem. Pharm. 2023, 32, 100981. [Google Scholar] [CrossRef]
- Gligorić, E.; Igić, R.; Teofilović, B.; Grujić-Letić, N. Phytochemical Screening of Ultrasonic Extracts of Salix Species and Molecular Docking Study of Salix-Derived Bioactive Compounds Targeting Pro-Inflammatory Cytokines. Int. J. Mol. Sci. 2023, 24, 11848. [Google Scholar] [CrossRef]
- Kailis, N.; Eleftheriadou, E. Contribution to the description and distribution of Salix × velchevii (Salicaceae). Phytol. Balcan. 2011, 17, 279–282. [Google Scholar]
- Cronk, Q.; Ruzzier, E.; Belyaeva, I.; Percy, D. Salix Transect of Europe: Latitudinal Patterns in Willow Diversity from Greece to Arctic Norway. Biodivers. Data J. 2015, 3, e6258. [Google Scholar] [CrossRef]
- Cikoš, A.-M.; Jokić, S.; Šubarić, D.; Jerković, I. Overview on the Application of Modern Methods for the Extraction of Bioactive Compounds from Marine Macroalgae. Mar. Drugs 2018, 16, 348. [Google Scholar] [CrossRef]
- Quitério, E.; Grosso, C.; Ferraz, R.; Delerue-Matos, C.; Soares, C. A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds. Mar. Drugs 2022, 20, 677. [Google Scholar] [CrossRef]
- Verdum, M.; Jové, P. Novel Sustainable Alternatives for the Study of the Chemical Composition of Cork. Sustainability 2024, 16, 575. [Google Scholar] [CrossRef]
- Li, J. Evaluation of Fatty Tissue Representative Solvents in Extraction of Medical Devices for Chromatographic Analysis of Devices’ Extractables and Leachables Based on Abraham General Solvation Model. J. Chromatogr. A 2022, 1676, 463240. [Google Scholar] [CrossRef]
- Mišan, A.; Nađpal, J.; Stupar, A.; Pojić, M.; Mandić, A.; Verpoorte, R.; Choi, Y.H. The Perspectives of Natural Deep Eutectic Solvents in Agri-Food Sector. Crit. Rev. Food Sci. Nutr. 2020, 60, 2564–2592. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Fu, R.; Zhang, L.; Wang, D.; Wang, S. Enhanced Extraction of Natural Pigments from Curcuma longa L. Using Natural Deep Eutectic Solvents. Ind. Crops Prod. 2019, 140, 111620. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.-J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- de los Ángeles Fernández, M.; Boiteux, J.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Natural Deep Eutectic Solvents-Mediated Extractions: The Way Forward for Sustainable Analytical Developments. Anal. Chim. Acta 2018, 1038, 1–10. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.; Liu, Y.; Wu, K.; Zhu, Y.; Lu, H.; Liang, B. Insights into the Relationships between Physicochemical Properties, Solvent Performance, and Applications of Deep Eutectic Solvents. Environ. Sci. Pollut. Res. 2021, 28, 35537–35563. [Google Scholar] [CrossRef]
- Alsaidi, R.; Thiemann, T. Use of Natural Deep Eutectic Solvents (NADES) in Food Science and Food Processing. Sustainability 2025, 17, 2293. [Google Scholar] [CrossRef]
- Milovanovic, B.; Ducic, V.; Radovanovic, M.; Milivojevic, M. Climate Regionalization of Serbia According to Köppen Climate Classification. J. Geogr. Inst. Jovan Cvijic SASA 2017, 67, 103–114. [Google Scholar] [CrossRef]
- Horejs, B.; Bulatović, A.; Meyer, C.; Milić, B.; Schneider, S.; Schlöffel, M.; Stevanović, V. Prehistoric Landscapes of the Pusta Reka Region (Leskovac). New Investigations along the Southern Morava River. J. Serb. Archaeol. Soc. 2018, 34, 23–51. [Google Scholar]
- Kuzovkina, Y.A.; Quigley, M.F. Willows Beyond Wetlands: Uses of Salix L. Species for Environmental Projects. Water Air Soil Pollut. 2005, 162, 183–204. [Google Scholar] [CrossRef]
- Florindo, C.; Oliveira, F.S.; Rebelo, L.P.N.; Fernandes, A.M.; Marrucho, I.M. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2, 2416–2425. [Google Scholar] [CrossRef]
- Lanjekar, K.J.; Gokhale, S.; Rathod, V.K. Utilization of Waste Mango Peels for Extraction of Polyphenolic Antioxidants by Ultrasound-Assisted Natural Deep Eutectic Solvent. Bioresour. Technol. Rep. 2022, 18, 101074. [Google Scholar] [CrossRef]
- Popovic, B.M.; Micic, N.; Potkonjak, A.; Blagojevic, B.; Pavlovic, K.; Milanov, D.; Juric, T. Novel Extraction of Polyphenols from Sour Cherry Pomace Using Natural Deep Eutectic Solvents–Ultrafast Microwave-Assisted NADES Preparation and Extraction. Food Chem. 2022, 366, 130562. [Google Scholar] [CrossRef]
- Miljić, U.; Puškaš, V.; Cvejić Hogervorst, J.; Torović, L. Phenolic Compounds, Chromatic Characteristics and Antiradical Activity of Plum Wines. Int. J. Food Prop. 2017, 20, 2022–2033. [Google Scholar] [CrossRef]
- de los Ángeles Fernández, M.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Novel Approaches Mediated by Tailor-Made Green Solvents for the Extraction of Phenolic Compounds from Agro-Food Industrial by-Products. Food Chem. 2018, 239, 671–678. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Enayat, S.; Banerjee, S. Comparative antioxidant activity of extracts from leaves, bark and catkins of Salix aegyptiaca sp. Food Chem. 2009, 116, 23–28. [Google Scholar] [CrossRef]
- Gligorić, E.; Igić, R.; Suvajdžić, L.; Grujić-Letić, N. Species of the Genus Salix L.: Biochemical Screening and Molecular Docking Approach to Potential Acetylcholinesterase Inhibitors. Appl. Sci. 2019, 9, 1842. [Google Scholar] [CrossRef]
- Gligorić, E.; Igić, R.; Suvajdžić, L.; Teofilović, B.; Turk-Sekulić, M.; Grujić-Letić, N. Methodological Aspects of Extraction, Phytochemical Characterization and Molecular Docking Studies of Salix caprea L. Bark and Leaves. Acta. Chim. Slov. 2019, 66, 821–830. [Google Scholar] [CrossRef]
- Piątczak, E.; Dybowska, M.; Płuciennik, E.; Kośla, K.; Kolniak-Ostek, J.; Kalinowska-Lis, U. Identification and Accumulation of Phenolic Compounds in the Leaves and Bark of Salix alba (L.) and Their Biological Potential. Biomolecules 2020, 10, 1391. [Google Scholar] [CrossRef]
- Saracila, M.; Panaite, T.D.; Papuc, C.P.; Criste, R.D. Heat Stress in Broiler Chickens and the Effect of Dietary Polyphenols, with Special Reference to Willow (Salix spp.) Bark Supplements—A Review. Antioxidants 2021, 10, 686. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Hikmawanti, N.P.E.; Ramadon, D.; Jantan, I.; Mun’im, A. Natural Deep Eutectic Solvents (NADES): Phytochemical Extraction Performance Enhancer for Pharmaceutical and Nutraceutical Product Development. Plants 2021, 10, 2091. [Google Scholar] [CrossRef]
- Boeing, J.S.; Barizão, É.O.; e Silva, B.C.; Montanher, P.F.; de Cinque Almeida, V.; Visentainer, J.V. Evaluation of Solvent Effect on the Extraction of Phenolic Compounds and Antioxidant Capacities from the Berries: Application of Principal Component Analysis. Chem. Cent. J. 2014, 8, 48. [Google Scholar] [CrossRef]
- Nam, Y.H.; Ahn, S.M.; Seo, G.J.; Kim, N.W.; Shin, S.W.; Nuankaew, W.; Murughanantham, N.; Pandian, S.; Hwang, J.S.; Hong, B.N.; et al. Optimization of NADES-Based Green Extraction of Ellagitannins from Rambutan Peel with Enhanced Antioxidant Activity. Food Chem. 2025, 475, 143308. [Google Scholar] [CrossRef]
- Köhler, A.; Förster, N.; Zander, M.; Ulrichs, C. Inter- and Intraspecific Diversity of Salix Bark Phenolic Profiles—A Resource for the Pharmaceutical Industry. Fitoterapia 2023, 170, 105660. [Google Scholar] [CrossRef]
- González Moreno, A.; de Cózar, A.; Prieto, P.; Domínguez, E.; Heredia, A. Radiationless Mechanism of UV Deactivation by Cuticle Phenolics in Plants. Nat. Commun. 2022, 13, 1786. [Google Scholar] [CrossRef]
- Lazović, M.; Cvijetić, I.; Jankov, M.; Milojković-Opsenica, D.; Trifković, J.; Ristivojević, P. Efficiency of Natural Deep Eutectic Solvents to Extract Phenolic Compounds from Agrimonia eupatoria: Experimental Study and In Silico Modelling. Plants 2022, 11, 2346. [Google Scholar] [CrossRef]
- Jurić, T.; Mićić, N.; Potkonjak, A.; Milanov, D.; Dodić, J.; Trivunović, Z.; Popović, B.M. The Evaluation of Phenolic Content, in Vitro Antioxidant and Antibacterial Activity of Mentha Piperita Extracts Obtained by Natural Deep Eutectic Solvents. Food Chem. 2021, 362, 130226. [Google Scholar] [CrossRef]
- Ben Ahmed, Z.; Yousfi, M.; Viaene, J.; Dejaegher, B.; Demeyer, K.; Mangelings, D.; Vander Heyden, Y. Seasonal, Gender and Regional Variations in Total Phenolic, Flavonoid, and Condensed Tannins Contents and in Antioxidant Properties from Pistacia atlantica ssp. Leaves. Pharm. Biol. 2017, 55, 1185–1194. [Google Scholar] [CrossRef]
- El Kantar, S.; Rajha, H.N.; Boussetta, N.; Vorobiev, E.; Maroun, R.G.; Louka, N. Green Extraction of Polyphenols from Grapefruit Peels Using High Voltage Electrical Discharges, Deep Eutectic Solvents and Aqueous Glycerol. Food Chem. 2019, 295, 165–171. [Google Scholar] [CrossRef]
- Dai, Y.; Rozema, E.; Verpoorte, R.; Choi, Y.H. Application of Natural Deep Eutectic Solvents to the Extraction of Anthocyanins from Catharanthus roseus with High Extractability and Stability Replacing Conventional Organic Solvents. J. Chromatogr. A 2016, 1434, 50–56. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. Microwave-Assisted Extraction of Pectin from Grape Pomace. Sci. Rep. 2022, 12, 12722. [Google Scholar] [CrossRef]
- Ivanović, M.; Islamčević Razboršek, M.; Kolar, M. Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef]
- Cao, J.; Cao, J.; Wang, H.; Chen, L.; Cao, F.; Su, E. Solubility Improvement of Phytochemicals Using (Natural) Deep Eutectic Solvents and Their Bioactivity Evaluation. J. Mol. Liq. 2020, 318, 113997. [Google Scholar] [CrossRef]
- Mišan, A.; Pojić, M. Applications of NADES in Stabilizing Food and Protecting Food Compounds against Oxidation. Adv. Bot. Res. 2021, 97, 333–359. [Google Scholar] [CrossRef]
- González-Laredo, R.F.; Sayago-Monreal, V.I.; Moreno-Jiménez, M.R.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Landeros-Macías, L.F.; Rosales-Castro, M. Natural Deep Eutectic Solvents (NaDES) as an Emerging Technology for the Valorisation of Natural Products and Agro-food Residues: A Review. Int. J. Food Sci. Technol. 2023, 58, 6660–6673. [Google Scholar] [CrossRef]
- Liu, Y.; Garzon, J.; Friesen, J.B.; Zhang, Y.; McAlpine, J.B.; Lankin, D.C.; Chen, S.-N.; Pauli, G.F. Countercurrent Assisted Quantitative Recovery of Metabolites from Plant-Associated Natural Deep Eutectic Solvents. Fitoterapia 2016, 112, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.-Z.; Cui, Q.; Wang, L.-T.; Meng, Y.; Yu, L.; Li, Y.-Y.; Fu, Y.-J. A Green and Integrated Strategy for Enhanced Phenolic Compounds Extraction from Mulberry (Morus alba L.) Leaves by Deep Eutectic Solvent. Microchem. J. 2020, 154, 104598. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Radojčić Redovniković, I. Enabling Technologies for the Extraction of Grape-Pomace Anthocyanins Using Natural Deep Eutectic Solvents in up-to-Half-Litre Batches Extraction of Grape-Pomace Anthocyanins Using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef] [PubMed]
Designation | Component 1 | Component 2 | Molar Ratio | Water Content (%) |
---|---|---|---|---|
NADES1 | Lactic acid | Glycerol | 1:1 | 20 |
NADES2 | Lactic acid | Glucose | 5:1 | 20 |
NADES 3 | Glycerol | Glucose | 2:1 | 20 |
NADES 4 | Glycerol | Urea | 1:1 | 20 |
Designation | Plant Material | Type of NADES | NADES (mL) | Water (mL) | 70% EtOH (mL) | Extraction Method |
---|---|---|---|---|---|---|
S1 | Bark | NADES 1 | 4 | 1 | / | MAE |
S2 | Bark | NADES 2 | 4 | 1 | / | MAE |
S3 | Bark | NADES 3 | 4 | 1 | / | MAE |
S4 | Bark | NADES 4 | 4 | 1 | / | MAE |
S5 | Bark | / | / | 5 | / | MAE |
S6 | Bark | / | / | / | 5 | M |
S7 | Leaves | NADES 1 | 4 | 1 | / | MAE |
S8 | Leaves | NADES 2 | 4 | 1 | / | MAE |
S9 | Leaves | NADES 3 | 4 | 1 | / | MAE |
S10 | Leaves | NADES 4 | 4 | 1 | / | MAE |
S11 | Leaves | / | / | 5 | / | MAE |
S12 | Leaves | / | / | / | 5 | M |
Active Principles | PM | Extract | |||||
---|---|---|---|---|---|---|---|
NADES 1 | NADES 2 | NADES 3 | NADES 4 | H2O | 70% EtOH | ||
Gallic acid | b | 2.39 ± 0.0001 a | 2.39 ± 0.0026 a | n.d. | n.d. | 0.26 ± 0.0029 b | n.d. |
l | 2.35 ± 0.0014 c | 2.38 ± 0.0007 d | n.d. | n.d. | 0.24 ± 0.0004 e | n.d. | |
Chlorogenic acid | l | 1.43 ± 0.0004 a | 1.62 ± 0.0039 b | 0.98 ± 0.0015 c | 2.30 ± 0.0018 d | 0.38 ± 0.0001 e | 0.82 ± 0.0005 f |
l | 1.27 ± 0.0021 g | 1.27 ± 0.0005 g | 1.14 ± 0.0006 h | 1.11 ± 0.0013 i | 1.90 ± 0.004 j | 0.08 ± 0.0033 k | |
Vanillic acid | b | 0.06 ± 0.0006 a | 0.35 ± 0.0040 b | n.d. | n.d. | 0.04 ± 0.0005 c | n.d. |
l | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
Syringic acid | b | n.d. | 0.18 ± 0.0004 a | n.d. | 0.10 ± 0.0001 b | 0.13 ± 0.0002 c | 0.13 ± 0.0008 c |
l | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
P-coumaric acid | b | 0.25 ± 0.0001 a | 0.51 ± 0.0002 b | n.d. | 0.48 ± 0.0001 c | 0.37 ± 0.0000 d | 0.05 ± 0.0004 e |
l | 0.87 ± 0.0004 f | 0.82 ± 0.0003 g | 1.58 ± 0.0001 h | 1.10 ± 0.0002 i | 0.30 ± 0.0003 j | 1.40 ± 0.0001 k | |
Sinapic acid | b | 3.68 ± 0.0011 a | 6.21 ± 0.0106 b | 7.31 ± 0.0328 c | 9.90 ± 0.0057 d | 4.13 ± 0.0187 e | 6.34 ± 0.0392 f |
l | 4.99 ± 0.0001 g | 4.80 ± 0.0003 h | 4.92 ± 0.0028 g | 5.91 ± 0.0001 i | 2.50 ± 0.0004 j | 4.10 ± 0.0046 e | |
Trans-cinnamic acid | b | 0.036 ± 0.0001 a | 0.080 ± 0.0006 b | 0.012 ± 0.0002 c | 0.013 ± 0.0003 d | 0.006 ± 0.0001 e | 0.012 ± 0.0001 c |
l | 0.023 ± 0.0002 f | 0.041 ± 0.0001 g | 0.034 ± 0.0002 h | 0.011 ± 0.0002 i | 0.004 ± 0.0004 j | 0.006 ± 0.0001 e | |
Epicatechin | b | 0.27 ± 0.0002 | 0.41 ± 0.0001 | n.d. | 0.28 ± 0.0001 | 0.45 ± 0.0014 | 1.78 ± 0.0001 |
l | 0.33 ± 0.0001 | 0.19 ± 0.0001 | n.d. | n.d. | 0.12 ± 0.0002 | n.d. | |
Rutin | b | 17.31 ± 0.0011 | 23.03 ± 0.0035 | 29.55 ± 0.0044 | 28.16 ± 0.0001 | 10.96 ± 0.0025 | 20.92 ± 0.0002 |
l | 16.82 ± 0.0014 | 16.36 ± 0.0009 | 12.82 ± 0.0013 | 16.06 ± 0.0006 | 5.61 ± 0.0017 | 9.62 ± 0.0033 | |
Quercetin | b | 1.27 ± 0.0001 | 1.56 ± 0.0004 | 1.32 ± 0.0028 | 1.44 ± 0.0003 | 0.31 ± 0.0012 | 0.51 ± 0.0022 |
l | 1.35 ± 0.0001 | 1.45 ± 0.0001 | 1.38 ± 0.0026 | 2.04 ± 0.0003 | 0.30 ± 0.0004 | 0.37 ± 0.0003 | |
Naringenin | b | 3.58 ± 0.0013 a | 4.63 ± 0.0001 b | 3.03 ± 0.0086 c | 2.96 ± 0.0126 d | 0.35 ± 0.0023 e | 0.39 ± 0.0016 f |
l | 3.27 ± 0.0016 g | 3.40 ± 0.0088 h | 3.34 ± 0.0019 i | 2.96 ± 0.0001 d | 0.47 ± 0.0008 j | 0.70 ± 0.0004 k |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidić, M.; Grujić-Letić, N.; Teofilović, B.; Gligorić, E. Towards a Green and Sustainable Valorization of Salix amplexicaulis: Integrating Natural Deep Eutectic Solvents and Microwave-Assisted Extraction for Enhanced Recovery of Phenolic Compounds. Sustainability 2025, 17, 6347. https://doi.org/10.3390/su17146347
Vidić M, Grujić-Letić N, Teofilović B, Gligorić E. Towards a Green and Sustainable Valorization of Salix amplexicaulis: Integrating Natural Deep Eutectic Solvents and Microwave-Assisted Extraction for Enhanced Recovery of Phenolic Compounds. Sustainability. 2025; 17(14):6347. https://doi.org/10.3390/su17146347
Chicago/Turabian StyleVidić, Milica, Nevena Grujić-Letić, Branislava Teofilović, and Emilia Gligorić. 2025. "Towards a Green and Sustainable Valorization of Salix amplexicaulis: Integrating Natural Deep Eutectic Solvents and Microwave-Assisted Extraction for Enhanced Recovery of Phenolic Compounds" Sustainability 17, no. 14: 6347. https://doi.org/10.3390/su17146347
APA StyleVidić, M., Grujić-Letić, N., Teofilović, B., & Gligorić, E. (2025). Towards a Green and Sustainable Valorization of Salix amplexicaulis: Integrating Natural Deep Eutectic Solvents and Microwave-Assisted Extraction for Enhanced Recovery of Phenolic Compounds. Sustainability, 17(14), 6347. https://doi.org/10.3390/su17146347