error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,846)

Search Parameters:
Keywords = non metallic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1079 KB  
Article
Detection of Cadmium Content in Pak Choi Using Hyperspectral Imaging Combined with Feature Selection Algorithms and Multivariate Regression Models
by Yongkuai Chen, Tao Wang, Shanshan Lin, Shuilan Liao and Songliang Wang
Appl. Sci. 2026, 16(2), 670; https://doi.org/10.3390/app16020670 - 8 Jan 2026
Abstract
Pak choi (Brassica chinensis L.) has a strong adsorption capacity for the heavy metal cadmium (Cd), which is a big threat to human health. Traditional detection methods have drawbacks such as destructiveness, time-consuming processes, and low efficiency. Therefore, this study aimed to [...] Read more.
Pak choi (Brassica chinensis L.) has a strong adsorption capacity for the heavy metal cadmium (Cd), which is a big threat to human health. Traditional detection methods have drawbacks such as destructiveness, time-consuming processes, and low efficiency. Therefore, this study aimed to construct a non-destructive prediction model for Cd content in pak choi leaves using hyperspectral technology combined with feature selection algorithms and multivariate regression models. Four different cadmium concentration treatments (0 (CK), 25, 50, and 100 mg/L) were established to monitor the apparent characteristics, chlorophyll content, cadmium content, chlorophyll fluorescence parameters, and spectral features of pak choi. Competitive adaptive reweighted sampling (CARS), the successive projections algorithm (SPA), and random frog (RF) were used for feature wavelength selection. Partial least squares regression (PLSR), random forest regression (RFR), the Elman neural network, and bidirectional long short-term memory (BiLSTM) models were established using both full spectra and feature wavelengths. The results showed that high-concentration Cd (100 mg/L) significantly inhibited pak choi growth, leaf Cd content was significantly higher than that in the control group, chlorophyll content decreased by 16.6%, and damage to the PSII reaction centre was aggravated. Among the models, the FD–RF–BiLSTM model demonstrated the best prediction performance, with a determination coefficient of the prediction set (Rp2) of 0.913 and a root mean square error of the prediction set (RMSEP) of 0.032. This study revealed the physiological, ecological, and spectral response characteristics of pak choi under Cd stress. It is feasible to detect leaf Cd content in pak choi using hyperspectral imaging technology, and non-destructive, high-precision detection was achieved by combining chemometric methods. This provides an efficient technical means for the rapid screening of Cd pollution in vegetables and holds important practical significance for ensuring the quality and safety of agricultural products. Full article
(This article belongs to the Section Agricultural Science and Technology)
26 pages, 1259 KB  
Article
A Novel Online Real-Time Prediction Method for Copper Particle Content in the Oil of Mining Equipment Based on Neural Networks
by Long Yuan, Zibin Du, Xun Gao, Yukang Zhang, Liusong Yang, Yuehui Wang and Junzhe Lin
Machines 2026, 14(1), 76; https://doi.org/10.3390/machines14010076 - 8 Jan 2026
Abstract
For the problem of online real-time prediction of copper particle content in the lubricating oil of the main spindle-bearing system of mining equipment, the traditional direct detection method is costly and has insufficient real-time performance. To this end, this paper proposes an indirect [...] Read more.
For the problem of online real-time prediction of copper particle content in the lubricating oil of the main spindle-bearing system of mining equipment, the traditional direct detection method is costly and has insufficient real-time performance. To this end, this paper proposes an indirect prediction method based on data-driven neural networks. The proposal of this method is based on a core assumption: during the stable wear stage of the equipment, there exists a modelable statistical correlation between the copper particle content in the oil and the total amount of non-ferromagnetic particles that are easy to measure online. Based on this, a neural network prediction model was constructed, with the online metal abrasive particle sensor signal (non-ferromagnetic particle content) as the input and the copper particle content as the output. The experimental data are derived from 100 real oil samples collected on-site from the lubrication system of the main shaft bearing of a certain mine mill. To enhance the model’s performance in the case of small samples, data augmentation techniques were adopted in the study. The verification results show that the average prediction accuracy of the proposed neural network model reaches 95.66%, the coefficient of determination (R2) is 0.91, and the average absolute error (MAE) is 0.3398. Its performance is significantly superior to that of the linear regression model used as the benchmark (with an average accuracy of approximately 80%, R2 = 0.71, and the mean absolute error (MAE) = 1.5628). This comparison result not only preliminarily verified the validity of the relevant hypotheses of non-ferromagnetic particles and copper particles in specific scenarios, but also revealed the nonlinear nature of the relationship between them. This research explores and preliminarily validates a low-cost technical path for the online prediction of copper particle content in the stable wear stage of the main shaft bearing system, suggesting its potential for engineering application within specific, well-defined scenarios. Full article
22 pages, 1726 KB  
Article
Artisanal Mining Contamination of Metal(Loid)s in Madre De Dios River Sediments (Amazon) and Ecological Risk Assessment
by Anthony Silvera, Norvin Requena and Frederico Fábio Mauad
Water 2026, 18(2), 162; https://doi.org/10.3390/w18020162 - 8 Jan 2026
Abstract
This study evaluated the geochemical contamination and ecological risk of metal(oid)s (As, Cd, Cr, Cu, Pb, Hg, and Zn) in sediments from four sites within a section of the Madre de Dios River, Peru—an area affected by artisanal alluvial gold mining and with [...] Read more.
This study evaluated the geochemical contamination and ecological risk of metal(oid)s (As, Cd, Cr, Cu, Pb, Hg, and Zn) in sediments from four sites within a section of the Madre de Dios River, Peru—an area affected by artisanal alluvial gold mining and with limited prior research that considers its local geochemical complexity. Sediment samples were collected between 2013 and 2020, spanning seven river flood seasons and four low river flow seasons. Background values were estimated using ProUCL 5.2, considering local climatic and geological conditions. Environmental quality indices revealed that sediments in the studied river section were mainly contaminated and exhibited high ecological risk due to Hg, used in gold amalgamation, which showed peak values in 2013 and subsequently declined to moderate levels. Cd exhibited contamination and ecological risk until 2016, with non-detectable values thereafter, while As, Cu, Cr, Pb, and Zn showed low environmental alteration. Factor analysis and principal component analysis indicated a natural origin for Cu, Cr, Pb, and Zn, whereas Hg showed an anthropogenic source linked to mining. Elevated concentrations of Hg, Cr, and Zn during the river flood season highlight the influence of hydrological dynamics on contaminant mobilization within these sites of the river section. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

16 pages, 897 KB  
Article
Micronuclei and Nuclear Abnormalities in Oral Mucosa as Indicators of Genotoxicity in Healthcare Professionals
by Juana Sánchez-Alarcón, Stefano Bonassi, Mirta Milić, Ninfa Ramírez-Durán, Keila Isaac-Olivé and Rafael Valencia-Quintana
Toxics 2026, 14(1), 61; https://doi.org/10.3390/toxics14010061 - 8 Jan 2026
Abstract
The buccal micronucleus cytome assay (BMCyt) is a validated, non-invasive biomonitoring method used to detect early genotoxic and cytotoxic changes linked to environmental and occupational exposures. Healthcare workers, especially nurses and dentists, are routinely exposed to genotoxic agents such as anesthetic gases, cytotoxic [...] Read more.
The buccal micronucleus cytome assay (BMCyt) is a validated, non-invasive biomonitoring method used to detect early genotoxic and cytotoxic changes linked to environmental and occupational exposures. Healthcare workers, especially nurses and dentists, are routinely exposed to genotoxic agents such as anesthetic gases, cytotoxic drugs, ionizing radiation, and heavy metals. This study compared seven cytological biomarkers in exfoliated buccal cells from female nurses, dentists, and teachers to assess multivariate cytogenetic differences and potential occupational influences. Samples were collected from 32 nurses, 41 dentists, and 47 teachers, and 3000 cells per participant were evaluated for micronuclei (MN) and six additional nuclear abnormalities. Group differences were examined using MANOVA and permutation MANOVA, followed by pairwise tests, and visualized with Principal Component Analysis (PCA). Significant multivariate differences were found between nurses and both dentists and teachers (p = 0.003), supported by permutation tests, while dentists and teachers did not differ. PCA explained 56% of the variance and showed apparent clustering of nurses. Chromatin condensation and MN were the main contributors to group separation. Nurses had significantly higher MN (p ≤ 0.001) and karyorrhexis (p ≤ 0.0004) than dentist and teachers. Overall, nurses showed a distinct cytogenetic profile consistent with greater genotoxic susceptibility. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

26 pages, 4979 KB  
Article
Chloride-Induced Corrosion Performance of ASR-Contaminated Concrete: Coupled Analysis Using Resistance Variation and NT Build 492 Method
by Tianxing Shi, Shami Nejadi and Harry Far
Materials 2026, 19(2), 247; https://doi.org/10.3390/ma19020247 - 8 Jan 2026
Abstract
This study examines how the Alkali–Silica Reaction (ASR) modifies chloride transport and chloride-induced corrosion (CIC) in reinforced concrete beams. Non-reactive and reactive concrete beams were cast with blue metal and dacite aggregates and subjected to a two-stage exposure: (i) alkali-rich immersion at 38 [...] Read more.
This study examines how the Alkali–Silica Reaction (ASR) modifies chloride transport and chloride-induced corrosion (CIC) in reinforced concrete beams. Non-reactive and reactive concrete beams were cast with blue metal and dacite aggregates and subjected to a two-stage exposure: (i) alkali-rich immersion at 38 °C to induce ASR, and (ii) impressed-current CIC and NT BUILD 492 chloride migration testing. Microstructural changes were characterized using SEM–EDS and TGA. The reactive specimens developed extensive surface cracking, but after one year of ASR exposure, exhibited 47–53% lower non-steady-state migration coefficients (Dnssm: 7.03–8.02 × 10−12 m2/s) than the non-reactive beam (15.09 × 10−12 m2/s). After two years, Dnssm was reduced by approximately 37–56% (4.78–6.93 vs. 10.92 × 10−12 m2/s). Crack mapping confirmed higher crack density and width in reactive beams, while SEM–EDS and TGA evidenced Ca depletion and the formation of C–(N,K)–S–H gels, which fill cracks and refine the pore structure. Electrical resistance monitoring showed earlier corrosion initiation in ASR-damaged beams but less pronounced resistance loss during the propagation phase. Overall, the results indicate that ASR can initially accelerate corrosion initiation through microcracking and reduced resistivity, but long-term gel deposition can partially seal transport paths and lower chloride migration under the specific conditions of this study. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

15 pages, 848 KB  
Article
Removal of Phenolic Compounds from Wastewater Through an Alternative Process with Zero-Valent Magnesium as Reactive Material
by Giulia Maria Curcio, Jose Luis Cayambe Guaman, Elvis Gribaldo Aucancela Rivera, Tiziana Andreoli, Rosaria Bruno, Carlo Limonti and Alessio Siciliano
Sustainability 2026, 18(2), 631; https://doi.org/10.3390/su18020631 - 8 Jan 2026
Abstract
Phenolic compounds are widespread environmental contaminants whose removal from water and wastewater is essential for ecosystem protection. Among the several purification technologies, the use of zero-valent metals has gained increasing interest in recent years. The identification of effective and environmentally friendly materials is [...] Read more.
Phenolic compounds are widespread environmental contaminants whose removal from water and wastewater is essential for ecosystem protection. Among the several purification technologies, the use of zero-valent metals has gained increasing interest in recent years. The identification of effective and environmentally friendly materials is a key issue for the development of this technology. In this study, zero-valent magnesium (ZVMg), a highly reactive non-toxic material, was used for the first time for the degradation of gallic acid (GA), chosen as a model phenolic compound, in an aqueous system. Several tests were conducted in order to identify the effect of pH, ZVMg amount, and temperature on the process performance. Moreover, the reusability of the reactive material in subsequent treatment cycles was assessed. Optimal operational conditions were achieved with a ZVMg amount of 0.3 g, corresponding to a ratio of 0.33 gGA/gMg, reaching a removal efficiency of almost 90% in about 180 min. The performance was clearly favored by an alkaline environment, and yields close to the maximum values were reached under uncontrolled pH conditions. The increase in temperature significantly accelerated the reaction rate, which followed pseudo-first-order kinetic law, achieving high abatement percentages with a reduced quantity of ZVMg. Finally, Mg0 demonstrated good reusability, maintaining high efficiency, close to 78%, for up to four cycles, with the possibility of restoring the material’s activity through acid washing. The detected results confirm that ZVMg is a promising and sustainable reactive material for environmental remediation processes, offering an effective alternative for the treatment of water contaminated by phenolic compounds. Full article
(This article belongs to the Special Issue Sustainable Solutions for Wastewater Treatment and Recycling)
Show Figures

Figure 1

14 pages, 3186 KB  
Article
Synergistic Induction by Deep Eutectic Solvent and Carbon Dots for Rapid Construction of FeOOH Electrocatalysts Toward Efficient Oxygen Evolution Reaction
by Weijuan Xu, Hui Wang, Xuan Han, Shuzheng Qu, Yue Yan, Bingxian Zhu, Haipeng Zhang and Qingshan Zhao
Catalysts 2026, 16(1), 73; https://doi.org/10.3390/catal16010073 - 8 Jan 2026
Abstract
The development of efficient and stable oxygen evolution reaction (OER) electrocatalysts based on non-precious metals is pivotal for advancing sustainable energy conversion technologies. We present a facile and green strategy for synthesizing a high-performance HO-CDs-FeOOH/NF(D) composite catalyst by leveraging a synergistic system of [...] Read more.
The development of efficient and stable oxygen evolution reaction (OER) electrocatalysts based on non-precious metals is pivotal for advancing sustainable energy conversion technologies. We present a facile and green strategy for synthesizing a high-performance HO-CDs-FeOOH/NF(D) composite catalyst by leveraging a synergistic system of FeCl3/urea deep eutectic solvent (DES) and hydroxyl-functionalized carbon dots (HO-CDs). This system orchestrates the rapid, in situ growth of FeOOH on nickel foam (NF) via simple immersion, wherein the DES acts as both an etchant and an iron source, while the HO-CDs induce a morphological transformation from sheet-like to granular stacking, thereby constructing highly active interfaces and increasing the density of accessible catalytic sites. The optimized catalyst exhibits exceptional OER performance, requiring an overpotential of only 251 mV to achieve 50 mA cm−2, with a Tafel slope of 55.4 mV dec−1. Moreover, it demonstrates outstanding stability, maintaining 98% of its initial current density after 24 h of continuous operation and showing negligible performance decay after 3000 cycles. This work presents a straightforward approach for designing high-performance Fe-based electrocatalysts through carbon dot-mediated morphology control via a facile DES-based impregnation strategy. Full article
Show Figures

Figure 1

21 pages, 7832 KB  
Article
Application of Ground Penetrating Radar (GPR) in the Survey of Historical Metal Ore Mining Sites in Lower Silesia (Poland)
by Maciej Madziarz and Danuta Szyszka
Appl. Sci. 2026, 16(2), 638; https://doi.org/10.3390/app16020638 - 7 Jan 2026
Abstract
This study presents the application of ground-penetrating radar (GPR) in the investigation of historical metal ore mining sites in the Lower Silesia region of Poland. The paper outlines the principles of the GPR method and details the measurement procedures used during fieldwork. GPR [...] Read more.
This study presents the application of ground-penetrating radar (GPR) in the investigation of historical metal ore mining sites in the Lower Silesia region of Poland. The paper outlines the principles of the GPR method and details the measurement procedures used during fieldwork. GPR has proven to be an effective, non-invasive tool for identifying inaccessible or previously unknown underground mining structures, such as shafts, tunnels, and remnants of mining infrastructure. This capability is particularly valuable in the context of extensive and complex post-mining landscapes characteristic of Lower Silesia. The research presents findings from selected sites, demonstrating how GPR surveys facilitated the detection and subsequent archaeological exploration of historical workings. In several cases, the method enabled the recovery of access to underground features, which were then subjected to detailed documentation and preservation efforts. Following necessary safety and adaptation measures, some of these sites have been successfully opened to the public as part of regional tourism initiatives. The study confirms the utility of GPR as a key instrument in post-mining archaeology and mining heritage conservation, offering a rapid and reliable means of mapping subsurface structures without disturbing the terrain. Full article
(This article belongs to the Special Issue Surface and Underground Mining Technology and Sustainability)
Show Figures

Figure 1

13 pages, 3195 KB  
Article
Atomic Bond Strain: A New Strain Measure Displaying Nearly Perfect Linear Correlation with Stress Throughout Plastic Deformation of Single-Crystal FCC Metals
by Donghua Xu, Tittaya Thaiyanurak and Noushin Salsabil
Solids 2026, 7(1), 5; https://doi.org/10.3390/solids7010005 - 6 Jan 2026
Abstract
Atomic-scale strain is the basis of a material’s macroscopic deformation behavior. The current measure of atomic-scale strain in the form of the Green–Lagrange tensor loses its physical meaning beyond the yield point, as atomic neighborhoods undergo significant reconstructions. We have recently introduced a [...] Read more.
Atomic-scale strain is the basis of a material’s macroscopic deformation behavior. The current measure of atomic-scale strain in the form of the Green–Lagrange tensor loses its physical meaning beyond the yield point, as atomic neighborhoods undergo significant reconstructions. We have recently introduced a new atomic-scale strain measure, namely, atomic bond strain, through our study of bond behavior in multicomponent metallic glasses. Here, we apply this new strain measure to uniaxial tensile tests (simulated using molecular dynamics) of several representative single-crystal FCC (face-centered cubic) metals under varied strain rates. We show that this new strain measure displays remarkable near-linear correlation with stress, not only in the elastic regime, but also in the plastic regime where complex dislocation dynamics (nucleation, bursting, motion, annihilation, regeneration) and stress fluctuations take place. This suggests that the overall stress of the materials even in the plastic regime is predominantly determined by the degree of bond stretching among all atoms. This appears to contradict the common conceptions that the plastic flow stress of a crystalline material is governed by dislocation events involving only a small fraction of atoms around dislocations, and that the stress–strain relationship is highly non-linear for plastic deformation. The contradictions can be reconciled by considering the causal sequence: dislocation events alter bond stretching, and bond stretching directly determines the stress. This brings a novel insight into the nature of plastic deformation, owing to the newly introduced atomic bond strain. How well the near-linear correlation between the stress and the atomic bond strain holds in other materials (e.g., non-FCC single crystals, polycrystals, quasicrystals, elements, alloys, and compounds) is an intriguing and important topic for future investigation, following the example of this work. Full article
Show Figures

Figure 1

16 pages, 1233 KB  
Article
Organ-Based Accumulation, Translocation, and Associated Health Risk of Al, Ni, and Zn in Tomatoes, Peppers, Eggplants, Cucumbers, and Corn from an Industrial Zone in Düzce, Türkiye
by Harun Demirci, Hakan Sevik, Ismail Koc, Handan Ucun Ozel, Ramazan Erdem, Fatih Adiguzel, Erol Imren and Halil Baris Ozel
Foods 2026, 15(2), 196; https://doi.org/10.3390/foods15020196 - 6 Jan 2026
Abstract
Heavy metals are among the most hazardous pollutants to human health and can be particularly harmful when inhaled or ingested. Therefore, the concentrations of heavy metals in fruits and vegetables grown in regions with high levels of heavy metal pollution should be carefully [...] Read more.
Heavy metals are among the most hazardous pollutants to human health and can be particularly harmful when inhaled or ingested. Therefore, the concentrations of heavy metals in fruits and vegetables grown in regions with high levels of heavy metal pollution should be carefully examined. This study investigated the variation in aluminum (Al), nickel (Ni), and zinc (Zn) concentrations by species and organ in tomatoes, peppers, eggplants, cucumbers, and corn grown near the industrial zone in Düzce, a heavily polluted city in Europe. We determined bioconcentration factors (BCFs) and translocation factors (TFs) in plant organs and assessed the health risk through the Target Hazard Quotient (THQ) and Hazard Index (HI). The results show that Al pollution in the region significantly exceeded the World Health Organization (WHO) and European Union (EU) limit values, and accumulated in all plant organs, including fruits. Furthermore, high levels of metals were translocated from the soil into the organs of peppers and tomatoes. The HI indicated a potential non-carcinogenic health risk (HI > 1) from the consumption of tomatoes, cucumbers, and peppers, primarily driven by Ni. Based on these results, it is recommended that local authorities address Al pollution in the region, avoiding the cultivation of tomatoes and peppers and instead cultivating corn and eggplant. We also observed that Zn levels were very high in the aerial parts of the plants, reaching up to 90% compared to Ni and Al. This study underscores the need to reduce Zn absorption rates, as dietary intake can pose a significant threat to human health. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

21 pages, 7853 KB  
Article
Monocular Near-Infrared Optical Tracking with Retroreflective Fiducial Markers for High-Accuracy Image-Guided Surgery
by Javier Hernán Moviglia and Jan Stallkamp
Sensors 2026, 26(2), 357; https://doi.org/10.3390/s26020357 - 6 Jan 2026
Abstract
Image-guided surgical procedures demand tracking systems that combine high accuracy, low latency, and minimal footprint to ensure safe and precise navigation in the operating room. To address these requirements, we developed a monocular optical tracking system based on a single near-infrared camera with [...] Read more.
Image-guided surgical procedures demand tracking systems that combine high accuracy, low latency, and minimal footprint to ensure safe and precise navigation in the operating room. To address these requirements, we developed a monocular optical tracking system based on a single near-infrared camera with directional illumination and compact retroreflective markers designed for short-range measurement. Small dodecahedral markers carrying fiducial patterns on each face were fabricated to enable robust detection in confined and variably illuminated surgical environments. Their non-metallic construction ensures compatibility with CT and MRI, and they can be sterilized using standard autoclave procedures. Multiple fiducial families, detection strategies, and optical hardware configurations were systematically assessed to optimize accuracy, depth of field, and latency. Among the evaluated options, the ArUco MIP_36h12 family provided the best overall performance, yielding a translational error of 0.44 ± 0.20 mm and a rotational error of 0.35 ± 0.16° across a working distance of 30–70 cm, based on static position estimates, with a total system latency of 32 ± 8 ms. These results indicate that the proposed system offers a compact, versatile, and precise solution suitable for high-accuracy navigated and image-guided surgery. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

18 pages, 1268 KB  
Review
Gamma-Aminobutyric Acid Application Methods for Sustainable Improvement of Plant Performance Under Abiotic Stress: A Review
by Shara Salih Ali and Nawroz Abdul-razzak Tahir
Crops 2026, 6(1), 10; https://doi.org/10.3390/crops6010010 - 6 Jan 2026
Viewed by 20
Abstract
Drought, high temperature, salinity, waterlogging, and nutrient deficiency, along with metal toxicity, are among the environmental factors that have resulted in much alteration of many ecosystems by climate change. Such stresses have dramatically lowered the global average human harvest of core crops, which, [...] Read more.
Drought, high temperature, salinity, waterlogging, and nutrient deficiency, along with metal toxicity, are among the environmental factors that have resulted in much alteration of many ecosystems by climate change. Such stresses have dramatically lowered the global average human harvest of core crops, which, in turn, has driven an overall decrease in worldwide agricultural productivity. Plants have developed a variety of defense strategies against biotic and abiotic stress. Evidence of the successful roles of phytohormone-like neurotransmitters in ameliorating the response to stress has already been established. One neurotransmitter accumulated by the plants is gamma-aminobutyric acid (GABA), a non-protein amino acid that is essential for signaling in plant growth regulation and development via the control of physiological and biochemical processes. Plant tissues demonstrate rapid accumulation of GABA when exposed to various abiotic stresses. Consequently, it is imperative to understand how this accumulation affects the resistance and productivity of crops in challenging environmental conditions. Previously, different application methods and doses of GABA on different plant species were used under various abiotic stress conditions. The research findings exhibited that the method and concentration of GABA depend on the type of crop. Furthermore, the GABA dose depends on the methods of GABA application. The present review summarizes the potential doses and methods of applications of GABA under different abiotic stress conditions to ameliorate deficiencies in plant growth, yield, and stress tolerance through the avoidance of oxidative damage and maintenance of cell organelle structures. This review will also describe the complex mechanism by which GABA contributes to the attenuation of the effects of abiotic stresses by regulating some important physiological, molecular, and biochemical processes in crops. Full article
Show Figures

Figure 1

23 pages, 6651 KB  
Article
Multielectrode Advanced Oxidation Treatment of Tannery Wastewater: Mass Transfer Characterization, Process Performance, Kinetic Modeling, and Energetic Analysis
by Niswah Nafiat, Mohd Usman Mohd Junaidi, Mohd Azlan Hussain, Mohamad Fairus Rabuni, Adeline Seak May Chua and Faidzul Hakim Adnan
Processes 2026, 14(2), 184; https://doi.org/10.3390/pr14020184 - 6 Jan 2026
Viewed by 39
Abstract
Tannery wastewater from textile-related industries poses treatment challenges due to its high load of recalcitrant pollutants. Various advanced hybrid treatments, such as electro-oxidation (EO), have been proposed but mainly focus on electrode material development. Several studies on EO using multiple electrode pairs with [...] Read more.
Tannery wastewater from textile-related industries poses treatment challenges due to its high load of recalcitrant pollutants. Various advanced hybrid treatments, such as electro-oxidation (EO), have been proposed but mainly focus on electrode material development. Several studies on EO using multiple electrode pairs with large electroactive surface areas exist, however, none have reported on mass transfer characterization. This study addresses these gaps by investigating the electro-degradation performance of active (mixed-metal oxide, MMO) and non-active (boron-doped diamond, BDD) anodes paired with carbonaceous (graphite) and non-carbonaceous (stainless steel, SS) cathodes under applied current densities of 2 to 6 mA/cm2. A 2 L volume of simulated tannery wastewater containing recalcitrant tannic acid was treated using three electrode pairs with a total surface area of 500 cm2. Results showed optimal condition was identified at 4 mA/cm2 across all electrode combinations and better degradation using BDD anodes and SS cathodes, with total organic carbon (TOC) removed up to 500 mg/L (98% removal). Adopting the 3-electrode configuration, mass transfer coefficients ranged from 4.15 to 5.18 × 10−6 m/s. Energy consumption evaluation suggested MMO as a more cost-effective option, while BDD remained preferable for highly recalcitrant waste. Higher currents show diminishing returns due to mass transfer and parasitic reactions. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

24 pages, 2852 KB  
Article
Valorizing Rice Husk Waste as a Biosorbent with Gamma-Induced Surface Modification for Enhanced Heavy-Metal Adsorption
by Kulthida Saemood, Siriphon Samutsan, Kasinee Hemvichian, Pattra Lertsarawut, Saowaluck Thong-In, Harinate Mungpayaban, Shinji Tokonami, Ryoma Tokonami, Tatsuhiro Takahashi and Kiadtisak Saenboonruang
Sustainability 2026, 18(1), 549; https://doi.org/10.3390/su18010549 - 5 Jan 2026
Viewed by 125
Abstract
This work investigated the effects of gamma irradiation on the adsorption capacities of rice husk (RH) for the removal of Cu2+, Cr3+, and Zn2+ ions from aqueous solutions, with potential applications in wastewater remediation. RH samples were gamma-irradiated [...] Read more.
This work investigated the effects of gamma irradiation on the adsorption capacities of rice husk (RH) for the removal of Cu2+, Cr3+, and Zn2+ ions from aqueous solutions, with potential applications in wastewater remediation. RH samples were gamma-irradiated at doses up to 40 kGy and characterized using SEM-EDS, XRF, FTIR, XRD, and BET analyses. While morphological and textural changes remained subtle, FTIR and SEM-EDS confirmed the formation and intensification of oxygen-containing functional groups, including –OH, –COOH, and C=O, as well as increased exposure of silica (Si–O) on the surfaces, which substantially enhanced surface reactivity of RH toward metal ions. Batch adsorption experiments revealed that 40-kGy irradiated RH samples (RH-40) exhibited the highest removal efficiencies compared to non-irradiated and lower-dose samples (RH-0, RH-10, RH-20, and RH-30), specifically with improvements of 415% for Cu2+, 502% for Cr3+, and 663% for Zn2+ compared to RH-0, determined at the initial concentration of 10 mg/L. Kinetic studies also showed rapid adsorption within the first 10–15 min, dominated initially by boundary-layer diffusion, followed by chemisorption-driven equilibrium behavior. The pseudo-second-order (PSO) model provided an excellent fit for all metals (R2 = 0.999), indicating maximum model-predicted kinetic capacities of 555.56 mg/g (Cu2+), 769.23 mg/g (Cr3+), and 434.78 mg/g (Zn2+). Langmuir isotherms also fitted well (R2 = 0.941–0.995), with predicted monolayer capacities of 535.33 mg/g (Cu2+), 491.64 mg/g (Cr3+), and 318.88 mg/g (Zn2+). Freundlich modeling further indicated favorable heterogeneous adsorption, with KF values of 42.614 (Zn2+), 20.443 (Cr3+), and 16.524 (Cu2+) and heterogeneity factors (n) greater than 1 for all metals. These overall results suggested that gamma irradiation substantially enhanced RH functionality that enabled fast and high-capacity heavy-metal adsorption through surface oxidation and carbon valorization. Gamma-irradiated RH, therefore, represented a promising, low-cost, and environmentally friendly biosorbent for wastewater treatment applications. Full article
(This article belongs to the Special Issue Sustainable Materials, Waste Management, and Recycling)
Show Figures

Graphical abstract

15 pages, 3013 KB  
Article
Numerical Simulation and Process Optimization of Sn-0.3Ag-0.7Cu Alloy Casting
by Hao Zhou, Yingwu Wang, Jianghua He, Chengchen Jin, Ayiqujin, Desheng Lei, Hui Fang and Kai Xiong
Materials 2026, 19(1), 198; https://doi.org/10.3390/ma19010198 - 5 Jan 2026
Viewed by 120
Abstract
Porosity formation due to solidification shrinkage and inadequate liquid metal feeding during the casting of Sn-0.3Ag-0.7Cu (SAC0307) is a critical issue that impairs quality and subsequent processing. However, the opacity of the casting process often obscures the quantitative relationships between process parameters and [...] Read more.
Porosity formation due to solidification shrinkage and inadequate liquid metal feeding during the casting of Sn-0.3Ag-0.7Cu (SAC0307) is a critical issue that impairs quality and subsequent processing. However, the opacity of the casting process often obscures the quantitative relationships between process parameters and defect formation, creating a significant barrier to science-based optimization. To address this, the present study utilizes finite element method (FEM) analysis to systematically investigate the influence of pouring temperature (PCT, 290–390 °C) and interfacial heat transfer coefficient (HTC, 900–5000 W/(m2·K)) on this phenomenon. The results reveal that PCT exerts a non-monotonic effect on porosity by modulating the solidification mode, which governs the accumulation of dispersed microporosity. In contrast, HTC plays a critical role in determining porosity morphology by controlling both the solidification rate and mode. Consequently, an optimal processing window was identified at 350 °C PCT and 3000 W/(m2·K) HTC, which significantly enhances interdendritic feeding and improves the ingot’s internal soundness. The efficacy of these optimized parameters was experimentally validated through macro- and microstructural characterization. This work not only elucidates the governing mechanisms of solidification quality but also demonstrates the value of numerical simulation for process optimization, offering a reliable scientific basis for the industrial production of high-quality SAC0307 alloys. Full article
(This article belongs to the Topic Numerical Modelling on Metallic Materials, 2nd Edition)
Show Figures

Figure 1

Back to TopTop