Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (544)

Search Parameters:
Keywords = nitrogen-heterocycles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4721 KB  
Review
Benzimidazole-Quinoline Hybrids: Synthesis and Antimicrobial Properties
by Maria Marinescu
Pharmaceuticals 2026, 19(1), 180; https://doi.org/10.3390/ph19010180 - 20 Jan 2026
Abstract
Background: Heterocyclic compounds are particularly important in medicinal chemistry. With a range of therapeutic uses, benzimidazoles and quinolines are both key heterocycles in medicinal chemistry. A number of hybrid heterocyclic compounds have been reported in recent years because they typically have better [...] Read more.
Background: Heterocyclic compounds are particularly important in medicinal chemistry. With a range of therapeutic uses, benzimidazoles and quinolines are both key heterocycles in medicinal chemistry. A number of hybrid heterocyclic compounds have been reported in recent years because they typically have better therapeutic properties than single heterocyclic rings. Methods: A literature search was conducted across relevant scientific literature from peer-reviewed sources, using keywords, including “benzimidazole”, “quinoline”, “benzimidazole-quinoline hybrids”, “antibacterial”, “antifungal”, “antimalarial” and “hybrid complexes”. Results: This review summarizes the synthetic methodologies for benzimidazole–quinoline hybrids, benzimidazole– quinolinones, and benzimidazole–quinoline metal complexes, along with their antimicrobial and antimalarial activities and the reported structure–activity relationship (SAR) studies. The importance of halogen substitution, particularly with chlorine and fluorine atoms, as well as the structure of the linker between the benzimidazole and quinoline rings—specifically chain length, the presence of oxygen, sulfur, or nitrogen atoms, and heterocyclic moieties—is highlighted. A series of benzimidazole–quinoline hybrids exhibit antimalarial and antitrypanosomal activities or show enhanced antimicrobial properties due to the incorporation of a five-membered heterocycle in addition to the two existing heterocyclic rings. Notably, several hybrids from different compound series exhibit very low minimum inhibitory concentrations (MICs) in the range of 1–8 µg/mL, along with low cytotoxicity, supporting their potential for further investigation as antimicrobial agents. Conclusions: This review summarizes the synthetic methods, medicinal properties, and structure–activity relationship (SAR) studies of benzimidazole–quinoline hybrids reported between 2002 and 2026. Full article
(This article belongs to the Special Issue Advances in the Synthesis and Application of Heterocyclic Compounds)
Show Figures

Graphical abstract

28 pages, 697 KB  
Review
Triazole and Pyrazole Hybrids of Electrophilic Natural Products as Promising Anticancer Agents
by Alessia Da Fermo, Alessandra Bisi, Rebecca Orioli, Silvia Gobbi and Federica Belluti
Molecules 2026, 31(2), 355; https://doi.org/10.3390/molecules31020355 - 19 Jan 2026
Viewed by 37
Abstract
Naturally inspired electrophilic scaffolds, such as chalcone, curcumin, aurone, C-5-monocarbonyl-curcumin, and bis-(arylidene)piperidone, are considered privileged structures because of their ability to interact with a variety of biological macromolecules, including receptors and enzymes. They thus serve as versatile platforms for drug discovery efforts aimed [...] Read more.
Naturally inspired electrophilic scaffolds, such as chalcone, curcumin, aurone, C-5-monocarbonyl-curcumin, and bis-(arylidene)piperidone, are considered privileged structures because of their ability to interact with a variety of biological macromolecules, including receptors and enzymes. They thus serve as versatile platforms for drug discovery efforts aimed at developing structurally related analogues endowed with improved bioactivity. Five-membered nitrogen-based heterocycles, such as triazole and pyrazole, have been widely used in medicinal chemistry both as templates and spacers for the design of bioactive compounds; they indeed provide the advantage of enhancing favourable interactions with the target, while also improving solubility and bioavailability, along with reducing toxicity. This review reports the latest advances in the development of hybrids incorporating the above classes of synthons acting as potential anticancer chemotherapeutics and provides a critical summary of the design strategies that have guided the development of antitumor agents. Full article
(This article belongs to the Special Issue Heterocycles in Medicinal Chemistry III)
Show Figures

Graphical abstract

20 pages, 2665 KB  
Article
Novel Hit Compounds Against a Neglected Sexually Transmitted Infection: Synthesis and Trichomonacidal Activity of 1,3-Thiazolidin-4-One Derivatives
by Alexia Brauner de Mello, Melinda G. Victor, Wilson Cunico, Jorge Fernández-Villalba, Frederico Schmitt Kremer, Lucas Mocellin Goulart, Juan José García-Rodríguez, Camila Belmonte Oliveira and Alexandra Ibáñez-Escribano
Pharmaceutics 2026, 18(1), 110; https://doi.org/10.3390/pharmaceutics18010110 - 15 Jan 2026
Viewed by 142
Abstract
Background: Infections caused by the protozoan Trichomonas vaginalis affect millions of people worldwide and are responsible for one of the most common sexually transmitted diseases. Despite the efficacy of 5-nitroimidazoles like metronidazole, concerns regarding widespread resistance and the absence of viable alternatives [...] Read more.
Background: Infections caused by the protozoan Trichomonas vaginalis affect millions of people worldwide and are responsible for one of the most common sexually transmitted diseases. Despite the efficacy of 5-nitroimidazoles like metronidazole, concerns regarding widespread resistance and the absence of viable alternatives for specific patient populations necessitate the development of structurally diverse pharmacological agents. In this study, we investigated the antiparasitic activity of 1,3-thiazolidin-4-one derivatives against T. vaginalis. Methods: Thiazolidines were synthesized via multicomponent reaction (MCR) using one-pot methodology and tested in vitro against the parasite and mammalian cell lines. Results: Seventy percent of the compounds showed more than 80% antiparasitic activity at 100 μM, with compounds 4a, 4b, and 4f exhibiting IC50 ≤ 20 µM. None of the molecules exhibited cytotoxic against Vero CCL-81 and HeLa cells. Evaluation of the structure–activity relationship (SAR) indicates that the substituent at the nitrogen position of the heterocycle may be involved in the antiparasitic effect of these compounds. In silico studies also revealed that the three compounds possess adequate oral bioavailability and do not present mutagenic, tumorigenic or irritating risks. Finally, molecular docking predicted strong interactions of compounds 4a, 4b, and 4f with T. vaginalis enzymes lactate dehydrogenase and purine nucleoside phosphorylase; compound 4f also interacted with methionine Ƴ-lyase. Conclusions: These preliminary results suggest that 1,3-thiazolidin-4-ones are promising scaffolds for developing new trichomonacidal agents. Full article
(This article belongs to the Special Issue Advances in Antiparasitic Agents)
Show Figures

Graphical abstract

20 pages, 5660 KB  
Article
Synthesis and Tribological Properties of Multifunctional Nitrogen-Containing Heterocyclic Dialkyl Dithiocarbamate Derivatives
by Mengxuan Wang, Ting Li, Zhongxian Li, Wenjing Hu, Junwei Wang and Jiusheng Li
Lubricants 2026, 14(1), 35; https://doi.org/10.3390/lubricants14010035 - 14 Jan 2026
Viewed by 154
Abstract
Energy conservation and efficiency enhancement necessitate continuous advancement in the development and preparation of multifunctional, high-performance lubricant additives. This paper reports three novel ashless, phosphorus-free, multifunctional nitrogen-containing heterocyclic dialkyl dithiocarbamate derivative additives (Py-2-DBDTC, PDM-DBDTC, and BZT-DBDTC). Thermal stability, oxidation resistance, and tribological properties [...] Read more.
Energy conservation and efficiency enhancement necessitate continuous advancement in the development and preparation of multifunctional, high-performance lubricant additives. This paper reports three novel ashless, phosphorus-free, multifunctional nitrogen-containing heterocyclic dialkyl dithiocarbamate derivative additives (Py-2-DBDTC, PDM-DBDTC, and BZT-DBDTC). Thermal stability, oxidation resistance, and tribological properties were investigated for the synthesized additives. All three additives demonstrated excellent thermal stability and oxidation resistance. Furthermore, their extreme-pressure properties improved by 116.33% or more compared to the base oil, while wear reduction rates also exceeded 58.32%. Under both point-to-point and point-on-flat friction conditions, the friction-reducing performance of all three additives was equally outstanding. Across a broad temperature range (25 °C–150 °C), all additives maintained their friction-reducing properties. Analysis of the worn surface morphology reveals that all three additives undergo tribochemical reactions during the friction process, forming tribofilms containing sulfur elements. Research indicates that introducing different nitrogen-containing heterocyclic structures into dialkyl dithiocarbamates can effectively enhance the adsorption capacity of the additives on metal surfaces and promote the formation of tribofilms at the friction interface, thereby significantly improving tribological performance. These systematic investigations not only provide important guidance for the molecular design and industrial application of multifunctional lubricant additives but also further advance the development of sustainable lubrication technologies. Full article
Show Figures

Figure 1

25 pages, 975 KB  
Article
Formal Synthesis of Ortho-Cyanated N-Heterocycles via Direct, Metal-Free Cyanation of N-Oxides Under Benign Conditions
by Hua Xiao, Reziyamu Wufuer and Dong Wang
Molecules 2026, 31(2), 276; https://doi.org/10.3390/molecules31020276 - 13 Jan 2026
Viewed by 257
Abstract
The introduction of cyano groups into aza-heterocyclic compounds plays a pivotal role in accessing diverse derivatives that are essential for the development of natural products, pharmaceuticals, and agrochemicals. Herein, we report a unified strategy for the direct ortho-C-H cyanation of a broad [...] Read more.
The introduction of cyano groups into aza-heterocyclic compounds plays a pivotal role in accessing diverse derivatives that are essential for the development of natural products, pharmaceuticals, and agrochemicals. Herein, we report a unified strategy for the direct ortho-C-H cyanation of a broad range of heterocyclic N-oxides, including pyridine, quinoline, isoquinoline, and pyrimidine derivatives. This transformation proceeds under mild conditions without the need for external activating agents or catalysts, and has been successfully applied to structurally complex, biologically relevant molecules. Compared to existing methodologies, our approach offers several distinct advantages: the use of non-prefunctionalized heteroarene substrates, environmentally benign reaction solvents, operational simplicity, broad substrate scope, and high efficiency in generating diverse ortho-cyanated heterocyclic compounds. Moreover, the method demonstrates considerable potential for scalable synthesis. Full article
(This article belongs to the Special Issue C-H Bond Functionalization of Heterocyclic Compounds)
Show Figures

Graphical abstract

14 pages, 2145 KB  
Article
Complementary Techniques of Thermal Analysis as a Tool for Studying the Properties and Effectiveness of Intumescent Coatings Deposited on Wood
by Nataša Čelan Korošin and Romana Cerc Korošec
Polymers 2026, 18(2), 202; https://doi.org/10.3390/polym18020202 - 12 Jan 2026
Viewed by 250
Abstract
Fire-retardant intumescent coatings offer an effective means of enhancing the fire resistance of combustible substrates such as wood. These coatings have a complex chemical composition and, when exposed to temperatures above 200 °C, undergo an intumescent reaction accompanied by the release of non-flammable [...] Read more.
Fire-retardant intumescent coatings offer an effective means of enhancing the fire resistance of combustible substrates such as wood. These coatings have a complex chemical composition and, when exposed to temperatures above 200 °C, undergo an intumescent reaction accompanied by the release of non-flammable gases, forming an expanded, charred layer with low thermal conductivity. This provides thermal insulation and acts as a physical barrier against heat, oxygen, and flammable volatiles. In this study, the applicability of several thermoanalytical techniques for evaluating the performance of three different intumescent coatings applied to spruce wood was investigated. Simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) showed that coating No. 3 was the most efficient, initiating substrate protection at the lowest temperature and reducing the combustion enthalpy by approximately 50% compared to uncoated wood. DSC-microscopy visualization enabled direct observation of the intumescent expansion, degradation of the carbonized protective layer, and delayed thermal decomposition of coated wood. Furthermore, a comparison between TGA-MS and TGA-IST16-GC-MS demonstrated the superiority of chromatographic separation for identifying evolved gaseous products. While TGA-MS is effective for detecting small gaseous species (e.g., H2O, CO2, formaldehyde), TGA-IST16-GC-MS enables the deconvolution of many degradation products evolving simultaneously, allowing for distinction between flame-retardant-related species, polymer backbone fragments, nitrogen-rich heterocycles, and small oxygenated molecules in the most effective coating. Full article
Show Figures

Graphical abstract

9 pages, 3343 KB  
Communication
Chemoselective Aza-Michael Addition of Enolizable Heterocyclic Imine-Thiols to Levoglucosenone
by Anastasia Mauger, Rubi Mahato, Zbigniew J. Witczak, Roman Bielski and Donald E. Mencer
Molecules 2026, 31(1), 164; https://doi.org/10.3390/molecules31010164 - 1 Jan 2026
Viewed by 295
Abstract
Heterocyclic sulfur and nitrogen containing compounds capable of forming an equilibrium: thiol/imine = thione/amine (N=C-S-H ⇌ H-N-C=S) were reacted with levoglucosenone (LG) in the presence of triethylamine. Unexpectedly, the only isolated products were the result of the aza-Michael addition. No S-adducts were [...] Read more.
Heterocyclic sulfur and nitrogen containing compounds capable of forming an equilibrium: thiol/imine = thione/amine (N=C-S-H ⇌ H-N-C=S) were reacted with levoglucosenone (LG) in the presence of triethylamine. Unexpectedly, the only isolated products were the result of the aza-Michael addition. No S-adducts were detected. All products were crystalline with good to excellent yields. The structure of products was determined using NMR, MS, and single-crystal X-ray analysis. Full article
Show Figures

Graphical abstract

33 pages, 4837 KB  
Article
Stability-Indicating Assay of Novel 5-(Hydroxamic acid)methyl Oxazolidinones with 5-Lipooxygenase Inhibitory Activity
by Hessa M. Al-Mutairi, Oludotun A. Phillips and Naser F. Al-Tannak
Pharmaceuticals 2026, 19(1), 69; https://doi.org/10.3390/ph19010069 - 29 Dec 2025
Viewed by 323
Abstract
Background: Oxazolidinone derivatives are a novel class of synthetic antibacterial agents, characterized by a five-membered heterocyclic ring containing oxygen and nitrogen and a carbonyl functionality at position 2. This pharmacophore is responsible not only for antibacterial activity but also for a variety [...] Read more.
Background: Oxazolidinone derivatives are a novel class of synthetic antibacterial agents, characterized by a five-membered heterocyclic ring containing oxygen and nitrogen and a carbonyl functionality at position 2. This pharmacophore is responsible not only for antibacterial activity but also for a variety of other biological activities, including anticancer activity, anticoagulant activity, and several others. A series of novel oxazolidinone derivatives containing a hydroxamic acid moiety were synthesized in our laboratories and identified as potent inhibitors of the enzyme 5-lipoxygenase (5-LO), a key enzyme involved in the biosynthesis of leukotrienes (LTs). LTs are proinflammatory mediators implicated in allergic and inflammatory diseases. Currently, zileuton is the only FDA-approved 5-LO inhibitor, emphasizing the need to develop new agents for the treatment of such diseases. This project aims to develop validated stability-indicating analytical methods for the four most potent novel 5-(hydroxamic acid)methyl oxazolidinone derivatives (PH-211, PH-247, PH-249, and PH-251). Methods: The compounds were analyzed using Waters Acquity Ultra-High-Performance Liquid Chromatography (UHPLC-UV) with an ultraviolet detector to determine their stability in human plasma and under various forced degradation conditions, including acidic, basic, oxidative, and thermal conditions. Liquid chromatography–quadrupole time-of-flight mass spectrometry (LC-QToF-MS) was used to identify possible degradation products. Results: The compounds were found to be stable in human plasma and under thermal degradation conditions with high extraction recoveries (82–90%) but unstable in acidic, basic, and oxidative conditions. Conclusions: The findings show that the compounds are stable in biological conditions; they hold promise for the treatment of inflammatory and allergic diseases. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

18 pages, 639 KB  
Article
Synthesis, Characterization, Antimicrobial and Anticancer Evaluation of Novel Heterocyclic Diazene Compounds Derived from 8-Quinolinol
by Ion Burcă, Alexandra-Mihaela Diaconescu, Valentin Badea and Francisc Péter
Pharmaceuticals 2026, 19(1), 4; https://doi.org/10.3390/ph19010004 - 19 Dec 2025
Viewed by 385
Abstract
Background: 8-Quinolinol and its derivatives are drawing significant attention across various disciplines due to their remarkable versatility. These compounds are well-known for their exceptional chelating ability, forming stable metal complexes via their nitrogen and oxygen electron donor atoms. This main characteristic determines [...] Read more.
Background: 8-Quinolinol and its derivatives are drawing significant attention across various disciplines due to their remarkable versatility. These compounds are well-known for their exceptional chelating ability, forming stable metal complexes via their nitrogen and oxygen electron donor atoms. This main characteristic determines their broad utility. Biological activity can also be explained by the chelating capacity, which allows 8-quinolinol to bind to essential metal ions such as Fe, Zn, Cu, and others. This chelation disrupts metal-dependent biological processes in target cells or organisms, leading to a range of effects, including antimicrobial, anticancer, antifungal, and neuroprotective activities. On the other hand, the biological activity of pyrazole derivatives is attributed to their heterocyclic structure, which allows for interactions with biological targets that can lead to enzyme inhibition, receptor antagonism, radical scavenging, and other effects. Objective: This work aimed to synthesize and characterize novel diazene compounds derived from 8-quinolinol or 2-methyl-8-quinolinol and pyrazole amines, and to evaluate their antimicrobial and anticancer activities. Methods: The compounds have been synthesized by coupling diazonium salts obtained from the diazotization of heterocyclic amines with 8-quinolinol and its derivative, 2-methyl-8-quinolinol. The careful selection of reaction conditions enabled the synthesis of high-purity products. The compounds were characterized by 1D and 2D NMR, FT-IR spectroscopy, UV-Vis spectroscopy, and LC-HRMS analysis. The biological activity of the newly synthesized compounds was evaluated following the protocols of EU-OPENSCREEN, a European Research Infrastructure Consortium (ERIC) initiative dedicated to supporting early drug discovery. Results: By combining diazonium salts obtained from 3-methyl-1H-pyrazol-5-amine and ethyl 5-amino-3-methyl-1H-pyrazole-4-carboxylate with the aforementioned coupling agents, four novel 8-quinolinol derivatives were synthesized. The further hydrolysis of the ethoxy carbonyl functional group allowed its conversion to a carboxylic functional group, thus expanding the series of new compounds to six members. Several compounds from the series have proven to be biologically active against several human pathogenic microorganisms and the Hep-G2 cancer cell line. Conclusions: The combination of two well-known biologically active scaffolds through a classic diazo coupling reaction allowed the synthesis of novel biologically active compounds, which showed promising results as possible antifungal and anticancer agents. These results represent a foundation for future studies, which will include a broader biological screening and in vivo studies. Full article
(This article belongs to the Special Issue Advances in the Synthesis and Application of Heterocyclic Compounds)
Show Figures

Graphical abstract

23 pages, 11065 KB  
Article
Eco-Friendly Coordination Polymers with Incorporated Nitrogen-Rich Heterocyclic Ligand and Their Hybrids with Gold Nanostructures for Catalytic Conversion of Carbon Dioxide
by Kinga Wasiluk, Gabriela Kopacka, Michał Kopyt, Piotr Kwiatkowski, Pawel W. Majewski and Elżbieta Megiel
Molecules 2025, 30(24), 4777; https://doi.org/10.3390/molecules30244777 - 15 Dec 2025
Viewed by 423
Abstract
This paper demonstrates the successful synthesis of novel hybrid heterogeneous catalysts for the sustainable conversion of CO2 into cyclic organic carbonates (COCs). The nanocat-alysts have been fabricated by encapsulating pre-formed ultra-small gold nanostructures into a nascent zinc-coordination polymer (ZnCP) framework formed from [...] Read more.
This paper demonstrates the successful synthesis of novel hybrid heterogeneous catalysts for the sustainable conversion of CO2 into cyclic organic carbonates (COCs). The nanocat-alysts have been fabricated by encapsulating pre-formed ultra-small gold nanostructures into a nascent zinc-coordination polymer (ZnCP) framework formed from two organic building blocks, 2,4-naphthalenedicarboxylic acid (1,4-NDC) and 5-amino-1H-tetrazole (5-Atz), which serves as a nitrogen-rich ligand. Applying the fabricated catalysts in the synthesis of COCs yields high yields (up to 97%) and high selectivity (up to 100%), with exceptionally high turnover frequencies (TOFs) (up to 408 h−1). The catalytic process can be carried out under mild conditions (80 °C, 1.5 MPa CO2) and without the use of solvents. Nitrogen-rich ligand molecules in the structure of ZnCPs enhance catalytic performance thanks to additional nucleophilic centres, which are effective in the epoxides’ ring-opening process. The hybrid catalysts with encapsulated gold nanostructures, which modify the liquid–gas interface between epoxide and CO2, give significantly higher yields and TOFs for less active epoxides. The designed hybrid nanocatalysts exhibit superior stability under the studied reaction conditions and can be reused without loss of activity. The developed coordination polymers are constructed from green components, and green chemistry principles are applied to prepare these catalytic materials. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

26 pages, 1676 KB  
Article
Synthesis of Substituted 1H-Phenalen-1-ones and Nitrogen-Containing Heterocyclic Analogues as Potential Anti-Plasmodial Agents
by Teresa Abad-Grillo, Grant McNaughton-Smith, Mónica Blanco Freijo, David Gutiérrez and Ninoska Flores
Molecules 2025, 30(24), 4667; https://doi.org/10.3390/molecules30244667 - 5 Dec 2025
Viewed by 411
Abstract
Given the known biological activity of both natural and synthetic substituted 1H-phenalen-1-ones, the generation of a small chemically and structurally diverse 1H-phenalen-1-one-based library of compounds was warranted. Herein, we have synthesized several groups of compounds to broaden and improve [...] Read more.
Given the known biological activity of both natural and synthetic substituted 1H-phenalen-1-ones, the generation of a small chemically and structurally diverse 1H-phenalen-1-one-based library of compounds was warranted. Herein, we have synthesized several groups of compounds to broaden and improve the chemical diversity of our 1H-phenalen-1-one collection. Additionally, we have also introduced hydroxyl, amides or carboxylic groups onto the core, or nitrogen atoms into the core, to increase the chemical diversity while also lowering the ClogP values to aid their water solubility. Notably, we have also improved the synthetic routes to several compounds of interest and have observed the unexpected formation of phenoxazine and acridin-7-one systems during cross-coupling reactions with polyfunctional anilines. Combining the compounds generated in this work with previous ones has enabled us to create a library of chemically diverse 1H-phenalen-1-one available for screening assays. Evaluation of anti-plasmodial activity against the chloroquine-resistant Plasmodium falciparum strain FCR3 revealed four compounds with notable activity, three of which exhibited IC50 values below 1 µM, while none displayed significant cytotoxicity at 10 µM. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

18 pages, 1504 KB  
Article
Chemical Transformations of Lignin Under the Action of 1-Butyl-3-Methylimidazolium Ionic Liquids: Covalent Bonding and the Role of Anion
by Artyom V. Belesov, Ilya I. Pikovskoi, Anna V. Faleva and Dmitry S. Kosyakov
Int. J. Mol. Sci. 2025, 26(23), 11627; https://doi.org/10.3390/ijms262311627 - 30 Nov 2025
Viewed by 292
Abstract
1-Butyl-3-methylimidazolium (bmim) ionic liquids (ILs) are widely used for lignocellulose fractionation, yet their role extends beyond mere solvents. This study revealed that bmim-based ILs act as active chemical reagents, modifying the lignin structure in an anion-dependent manner. Thermal treatment (80–150 °C) of spruce [...] Read more.
1-Butyl-3-methylimidazolium (bmim) ionic liquids (ILs) are widely used for lignocellulose fractionation, yet their role extends beyond mere solvents. This study revealed that bmim-based ILs act as active chemical reagents, modifying the lignin structure in an anion-dependent manner. Thermal treatment (80–150 °C) of spruce dioxane lignin with [bmim]OAc, [bmim]Cl, and [bmim]MeSO4 resulted in two distinct transformation pathways. In [bmim]MeSO4, acidic catalysis dominates, leading to lignin condensation (increase in weight-average molecular weight, Mw, to 15.2 kDa at 150 °C) and intense sulfur incorporation (up to 9.9%) via anion-derived methylation/sulfation. Conversely, [bmim]OAc promotes depolymerization (decrease in Mw to 3.6 kDa) and efficient covalent bonding of the bmim cation to lignin (up to 10.8 cations per 100 aromatic units and a 6.5% nitrogen content at 150 °C), preventing condensation. Two-dimensional NMR and HPLC-HRMS analyses revealed the formation of a C–C bond between the C2 atom of the imidazole ring and the α-carbon of the phenylpropane lignin fragments and allowed for the identification of a number of individual nitrogen-containing lignin oligomers in the [bmim]OAc-treated samples. Their formation likely proceeds via nucleophilic addition of the N-heterocyclic carbene (NHC), derived from the bmim cation by deprotonation with the highly basic acetate anion, to aldehyde groups. The action of [bmim]Cl primarily induces acid-catalyzed transformations of lignin with minimal covalent modification. These findings redefine imidazolium ILs as reactive media in biorefining, where their covalent interactions can influence the properties of lignin but complicate its native structure and the recyclability of the IL. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

22 pages, 5839 KB  
Article
Novel Nitrogen Heterocycle–Hydroxamic Acid Conjugates Demonstrating Potent Anti-Acute Lymphoblastic Leukemia Activity: Induction of Endogenous Apoptosis and G0/G1 Arrest via Regulation of Histone H3 Acetylation and AKT Phosphorylation in Jurkat Cells
by Lingjie Wu, Li Zhao, Liping Wang, Yi Lu, Gaojie Lou, Bin Zhang and Ning Wang
Cells 2025, 14(22), 1822; https://doi.org/10.3390/cells14221822 - 20 Nov 2025
Viewed by 664
Abstract
Epigenetics garnered significant scientific interest in recent decades, with histone acetylation emerging as the most prevalent epigenetic deregulation process observed in malignancies. The clinical application of histone deacetylase (HDAC) inhibitors faced challenges, including complex therapeutic mechanisms and inconsistent treatment outcomes. In Acute Lymphoblastic [...] Read more.
Epigenetics garnered significant scientific interest in recent decades, with histone acetylation emerging as the most prevalent epigenetic deregulation process observed in malignancies. The clinical application of histone deacetylase (HDAC) inhibitors faced challenges, including complex therapeutic mechanisms and inconsistent treatment outcomes. In Acute Lymphoblastic Leukemia (ALL), the dysregulation of HDAC activity presents a promising therapeutic target. To investigate cellular-level tumor suppression by HDAC inhibitors possessing potent target engagement, we developed two novel azetidine-hydroxamic acid conjugates. Compared to N-hydroxy-4-((quinolin-4-ylamino)methyl)benzamide (NBU-1), N-hydroxy-6-((5-methyl-4-nitro-9-oxo-9,10-dihydroacridin-1-yl)amino)hexanamide (NBU-2) demonstrated enhanced inhibitory activity against HDAC1 (class I) and HDAC6 (class II) with IC50 values of 7.75 nM and 7.34 nM, respectively, consistent with binding mode analysis and docking energy calculations. In vitro evaluation across 12 tumor cell lines revealed NBU-2’s potent antiproliferative effects, particularly against the ALL-derived Jurkat cells (IC50 = 0.86 μM). Subsequent mechanistic studies were therefore conducted in this ALL model. Proteomic profiling indicated its potential involvement in modulating AKT signaling and histone modification pathways in Jurkat cells. Mechanistic investigations demonstrated that NBU-2 elevated histone acetylation while suppressing AKT phosphorylation. This compound altered apoptotic regulators by downregulating Bcl-2 and Bcl-XL expression while upregulating BAX, ultimately activating Caspase-9 and Caspase-3 to induce apoptosis. Cell cycle analysis revealed NBU-2-mediated G0/G1 arrest through reduced expression of Cyclin D1 and CDK4, diminished Rb protein phosphorylation, and increased p21 expression. These findings propose a strategic framework for developing next-generation HDAC inhibitors for ALL treatment and elucidating their mechanism-specific anti-cancer actions. Full article
Show Figures

Figure 1

14 pages, 777 KB  
Article
Physicochemical Properties and Aroma Compounds Analysis in Watermelon Soy Sauce
by Si-Rui Xiong, Chang-Cheng Zhao, Patrick Brice Defo Deeh, Myeong-Hyeon Wang and Tie-Yan Jin
Gastronomy 2025, 3(4), 20; https://doi.org/10.3390/gastronomy3040020 - 20 Nov 2025
Viewed by 469
Abstract
Watermelon soy sauce (WSS) is a liquid condiment usually prepared using watermelon juice, soybeans, and wheat flour through the process of making koji and natural fermentation. It is widely used in Chinese culinary art, despite the lack of knowledge about its aromatic compound [...] Read more.
Watermelon soy sauce (WSS) is a liquid condiment usually prepared using watermelon juice, soybeans, and wheat flour through the process of making koji and natural fermentation. It is widely used in Chinese culinary art, despite the lack of knowledge about its aromatic compound content. Here, we characterized the physicochemical properties, free amino acid composition, and volatile compounds of WSS using SPME-GC/MS and E-nose. We noticed that WSS had the highest total acid content but the lowest amino nitrogen and reducing sugar contents compared with commercial soy sauce. Moreover, the highest amounts of Glu and Pro were observed in WSS. A total of 173 volatile compounds were identified in WSS, including alcohols, hydrocarbons, esters, ketones and aldehydes. The E-nose analysis showed a good capacity of differentiating braised samples mainly through W5S, W1S, W1W, W2W, and W3S sensors. The analysis of relationships between flavor components and free amino acids in soy sauce samples showed that Ser, Gly, Val, Ile, Leu, Ph,e and Lys had a strong positive correlation with alcohol and acidic compounds. Moreover, Pro was found to be correlated with aldehyde, ketone, heterocyclic compounds, sulfur compounds, and benzene, while Glu was correlated with hydrocarbons, aldehyde, and benzene. This study could provide important information regarding WSS quality control, characterization, and aroma improvement. Full article
Show Figures

Figure 1

16 pages, 3941 KB  
Article
Bis-Oxadiazole Assemblies as NO-Releasing Anticancer Agents
by Egor M. Matnurov, Irina A. Stebletsova, Alexander A. Larin, Jemma Arakelyan, Ivan V. Ananyev, Artem L. Gushchin, Leonid L. Fershtat and Maria V. Babak
Pharmaceutics 2025, 17(11), 1494; https://doi.org/10.3390/pharmaceutics17111494 - 19 Nov 2025
Viewed by 929
Abstract
Background: Malignant pleural mesothelioma (MPM) is an aggressive, asbestos-associated cancer characterized by dysregulated nitric oxide (NO) signaling and increased NO levels that facilitate tumor progression. Paradoxically, this aberrant NO environment creates a therapeutic vulnerability that can be exploited by NO-donor prodrugs, which [...] Read more.
Background: Malignant pleural mesothelioma (MPM) is an aggressive, asbestos-associated cancer characterized by dysregulated nitric oxide (NO) signaling and increased NO levels that facilitate tumor progression. Paradoxically, this aberrant NO environment creates a therapeutic vulnerability that can be exploited by NO-donor prodrugs, which overwhelm cellular defenses with cytotoxic concentrations of NO, inducing nitrosative stress and apoptosis. Within this framework, oxadiazole-based scaffolds have emerged as a promising platform for prodrug development owing to their versatile chemistry and potential as novel NO donors or synergistic agents. In our previous studies, we developed several series of hybrid architectures incorporating 1,2,5-oxadiazole 2-oxide (furoxan) and 1,2,4-oxadiazole scaffolds, producing compounds with diverse and tunable NO-donor activities. We further observed that the cytotoxicity of these hybrids was significantly influenced by the substituents introduced at position 3 of the furoxan ring. Methods: We designed and synthesized a series of bis(1,2,4-oxadiazolyl)furoxans to systematically investigate their NO-donating capacity, cytotoxicity against MPM cell lines, selectivity over healthy lung fibroblasts, and underlying anticancer mechanisms. Results: The bis(1,2,4-oxadiazolyl)furoxans exhibited lower overall cytotoxicity but significantly higher selectivity compared with previously studied 3-cyano-4-(1,2,4-oxadiazolyl)furoxans. Their NO-releasing properties showed a strong correlation with their ability to induce mitochondrial damage, as evidenced by membrane depolarization. Moreover, the incorporation of specific substituents, such as a furan ring, on the 1,2,4-oxadiazole moiety introduced an additional mechanism of action through the induction of reactive oxygen species. Conclusions: Analysis of cancer cell death confirmed that these compounds acted through a multimodal mechanism dependent on both NO release and the specific substituents on the 1,2,4-oxadiazole moiety. Full article
(This article belongs to the Special Issue Prodrug Applications for Targeted Cancer Therapy)
Show Figures

Graphical abstract

Back to TopTop