Formal Synthesis of Ortho-Cyanated N-Heterocycles via Direct, Metal-Free Cyanation of N-Oxides Under Benign Conditions
Abstract
1. Introduction
2. Results
3. Materials and Methods
3.1. General
3.2. Cyanation of Quinoline and Isoquinoline N-Oxides: General Procedure A (GPA)
3.3. Cyanation of Quinoline and Isoquinoline N-Oxides: General Procedure B (GPB)
3.4. Cyanation of Pyridine N-Oxides: General Procedure C (GPC)
3.5. Cyanation of Pyridine N-Oxides: General Procedure D (GPD)
3.6. Characterization of Products
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| TMSCN | Trimethylsilyl cyanide |
| DCE | 1,2-Dichloroethane |
| Ms2O | Methanesulfonic anhydride |
| Ts2O | Trifluoromethanesulfonic anhydride |
| TsCl | Tosyl chloride |
| TsOH | p-Toluenesulfonic acid |
| TMG | Tetramethylguanidine |
| DIPEA | N,N-Diisopropylethylamine |
| DCM | Dichloromethane |
| DMAP | 4-Dimethylaminopyridine |
| DABCO | 1,4-Diazabicyclo[2.2.2]octane |
| DMF | N,N-Dimethylformamide |
| EA | Ethyl acetate |
| THF | Tetrahydrofuran |
References
- Garner, P.; Kaniskan, H.Ü.; Keyari, C.M.; Weerasinghe, L. Asymmetric [C + NC + CC] Coupling Entry to the Naphthyridinomycin Natural Product Family: Formal Total Synthesis of Cyanocycline A and Bioxalomycin β2. J. Org. Chem. 2011, 76, 5283–5294. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q. Recent Advances in the Pesticide Activities of 2-Cyanoacrylate Derivatives. J. Agric. Food. Chem. 2021, 69, 12933–12946. [Google Scholar] [CrossRef]
- Fleming, F.F.; Yao, L.; Ravikumar, P.C.; Funk, L.; Shook, B.C. Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore. J. Med. Chem. 2010, 53, 7902–7917. [Google Scholar] [CrossRef]
- Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P.K.; Bhutani, H.; Paul, A.T.; Kumar, R. U.S. FDA Approved Drugs from 2015–June 2020: A Perspective. J. Med. Chem. 2021, 64, 2339–2381. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.M.; Federice, J.G.; Bell, C.N.; Cox, P.B.; Njardarson, J.T. An Update on the Nitrogen Heterocycle Compositions and Properties of U.S. FDA-Approved Pharmaceuticals (2013–2023). J. Med. Chem. 2024, 67, 11622–11655. [Google Scholar] [CrossRef] [PubMed]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef] [PubMed]
- do Monte, Z.S.; Monteiro, M.R.L.; Borba, C.B.A.; de Gusmão, N.B.; Falcão, E.P.d.S.; Silva, R.O.; Srivastava, R.M.; de Melo, S.J. Synthesis of 4-amino-2,6-diaryl-5-cyanopyrimidines as antimicrobial agents. Synth. Commun. 2016, 46, 983–991. [Google Scholar] [CrossRef]
- Ismail, M.M.F.; Farrag, A.M.; El-Nasser, A.M. Synthesis, In Silico Study and Antibacterial Evaluation of New Cyanopyridine Based Scaffold. Polycyclic Aromat. Compd. 2023, 43, 630–646. [Google Scholar] [CrossRef]
- Li, S.-R.; Zeng, C.-M.; Huang, S.-Y.; Ahmad, N.; Peng, X.-M.; Meng, J.-P.; Zhou, C.-H. Heteroarylcyanovinyl Benzimidazoles as New Antibacterial Skeleton with Large Potential To Combat Bacterial Infections. J. Agric. Food. Chem. 2025, 73, 13985–13997. [Google Scholar] [CrossRef]
- Bailly, C.; Gao, J.-M. Erinacine A and related cyathane diterpenoids: Molecular diversity and mechanisms underlying their neuroprotection and anticancer activities. Pharmacol. Res. 2020, 159, 104953. [Google Scholar] [CrossRef]
- Sanal, D.; Sunil, R.D.; Bijo, M. Virtual Combinatorial Library Design, Synthesis and In vitro Anticancer Assessment of -2-Amino-3-Cyanopyridine Derivatives. Comb. Chem. High. T. Scr. 2018, 21, 138–148. [Google Scholar]
- Shaldam, M.A.; Khalil, A.F.; Almahli, H.; Jaballah, M.Y.; Angeli, A.; Khaleel, E.F.; Badi, R.M.; Elkaeed, E.B.; Supuran, C.T.; Eldehna, W.M.; et al. Identification of 3-(5-cyano-6-oxo-pyridin-2-yl)benzenesulfonamides as novel anticancer agents endowed with EGFR inhibitory activity. Arch. Pharm. 2024, 357, 2300449. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.S.; Youns, M.M.; Ahmed, N.M. Synthesis, antimicrobial, antioxidant activities of novel 6-aryl-5-cyano thiouracil derivatives. Eur. J. Med. Chem. 2013, 69, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Zebbiche, Z.; Şekerci, G.; Houssem, B.; Küçükbay, F.; Tekin, S.; Küçükbay, H.; Boumoud, B. Synthesis and Biological Assessment of Cyanopyridine-Based 1,3,4-Oxadiazole Derivatives: Anticancer Potential, Antioxidant Activity, Molecular Docking, and DFT Calculations. J. Biochem. Mol. Toxicol. 2025, 39, e70346. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, S.; Zhao, Z.; You, L.; Harrison, M.D.; Zhang, Z. Enzymatic acylation of cyanidin-3-glucoside with fatty acid methyl esters improves stability and antioxidant activity. Food Chem. 2021, 343, 128482. [Google Scholar] [CrossRef]
- Buskes, M.J.; Harvey, K.L.; Richards, B.J.; Kalhor, R.; Christoff, R.M.; Gardhi, C.K.; Littler, D.R.; Cope, E.D.; Prinz, B.; Weiss, G.E.; et al. Antimalarial activity of novel 4-cyano-3-methylisoquinoline inhibitors against Plasmodium falciparum: Design, synthesis and biological evaluation. Org. Biomol. Chem. 2016, 14, 4617–4639. [Google Scholar] [CrossRef]
- Charushin, V.N.; Varaksin, M.V.; Verbitskiy, E.V.; Chupakhin, O.N. Chapter One—Metal free C(sp2)H functionalization of nitrogen heterocycles. Adv. Heterocycl. Chem. 2024, 144, 1–47. [Google Scholar]
- Sandmeyer, T. Ueber die Ersetzung der Amidgruppe durch Chlor in den aromatischen Substanzen. Ber. Dtsch. Chem. Ges. 1884, 17, 1633–1635. [Google Scholar] [CrossRef]
- Sandmeyer, T. Ueber die Ersetzung der Amid-gruppe durch Chlor, Brom und Cyan in den aromatischen Substanzen. Ber. Dtsch. Chem. Ges. 1884, 17, 2650–2653. [Google Scholar] [CrossRef]
- Rosenmund, K.W.; Struck, E. Das am Ringkohlenstoff gebundene Halogen und sein Ersatz durch andere Substituenten. I. Mitteilung: Ersatz des Halogens durch die Carboxylgruppe. Ber. Dtsch. Chem. Ges. 1919, 52, 1749–1756. [Google Scholar] [CrossRef]
- Tagawa, Y.; Higuchi, Y.; Yamagata, K.; Shibata, K.; Teshima, D. Palladium(II)-Mediated Nucleophilic Cyanation of 4-Substituted Quinoline 1-Oxide in the Presence of Trimethylsilyl Cyanide and an Oxidant. Heterocycles 2004, 63, 2859–2862. [Google Scholar] [CrossRef]
- Fier, P.S.; Hartwig, J.F. Synthesis and Late-Stage Functionalization of Complex Molecules through C–H Fluorination and Nucleophilic Aromatic Substitution. J. Am. Chem. Soc. 2014, 136, 10139–10147. [Google Scholar] [CrossRef] [PubMed]
- Katritzky, A.R.; Scriven, E.F.V.; Majumder, S.; Tu, H.; Vakulenko, A.V.; Akhmedov, N.G.; Murugan, R. Preparation of Cyanopyridines by Direct Cyanation. Synthesis 2005, 2005, 993–997. [Google Scholar] [CrossRef]
- Elbert, B.L.; Farley, A.J.M.; Gorman, T.W.; Johnson, T.C.; Genicot, C.; Lallemand, B.; Pasau, P.; Flasz, J.; Castro, J.L.; MacCoss, M.; et al. C−H Cyanation of 6-Ring N-Containing Heteroaromatics. Chem. Eur. J. 2017, 23, 14733–14737. [Google Scholar] [CrossRef]
- Fier, P.S. A Bifunctional Reagent Designed for the Mild, Nucleophilic Functionalization of Pyridines. J. Am. Chem. Soc. 2017, 139, 9499–9502. [Google Scholar] [CrossRef]
- Wang, D.; Désaubry, L.; Li, G.; Huang, M.; Zheng, S. Recent Advances in the Synthesis of C2-Functionalized Pyridines and Quinolines Using N-Oxide Chemistry. Adv. Synth. Catal. 2021, 363, 2–39. [Google Scholar] [CrossRef]
- Puthanveedu, M.; Polychronidou, V.; Antonchick, A.P. Catalytic Selective Metal-Free Cross-Coupling of Heteroaromatic N-Oxides with Organosilanes. Org. Lett. 2019, 21, 3407–3411. [Google Scholar] [CrossRef]
- Kaijuan, W.; Liqing, X.; Dong, W. Recent progress in C2–H functionalization of pyridine and quinoline N-oxides. Sci. Sin. Chim. 2023, 53, 1369–1376. [Google Scholar] [CrossRef]
- Malykhin, R.S.; Sukhorukov, A.Y. Nucleophilic Halogenation of Heterocyclic N-Oxides: Recent Progress and a Practical Guide. Adv. Synth. Catal. 2021, 363, 3170–3188. [Google Scholar] [CrossRef]
- Singh, J.; Patel, R.I.; Sharma, A. Visible-Light-Mediated C-2 Functionalization and Deoxygenative Strategies in Heterocyclic N-Oxides. Adv. Synth. Catal. 2022, 364, 2289–2306. [Google Scholar] [CrossRef]
- Aithagani, S.K.; Kumar, M.; Yadav, M.; Vishwakarma, R.A.; Singh, P.P. Metal-Free, Phosphonium Salt-Mediated Sulfoximination of Azine N-Oxides: Approach for the Synthesis of N-Azine Sulfoximines. J. Org. Chem. 2016, 81, 5886–5894. [Google Scholar] [CrossRef]
- Bull, J.A.; Mousseau, J.J.; Pelletier, G.; Charette, A.B. Synthesis of Pyridine and Dihydropyridine Derivatives by Regio- and Stereoselective Addition to N-Activated Pyridines. Chem. Rev. 2012, 112, 2642–2713. [Google Scholar] [CrossRef] [PubMed]
- Farrell, R.P.; Silva Elipe, M.V.; Bartberger, M.D.; Tedrow, J.S.; Vounatsos, F. An Efficient, Regioselective Amination of 3,5-Disubstituted Pyridine N-Oxides Using Saccharin as an Ammonium Surrogate. Org. Lett. 2013, 15, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Londregan, A.T.; Farley, K.A.; Limberakis, C.; Mullins, P.B.; Piotrowski, D.W. A New and Useful Method for the Macrocyclization of Linear Peptides. Org. Lett. 2012, 14, 2890–2893. [Google Scholar] [CrossRef] [PubMed]
- Wengryniuk, S.E.; Weickgenannt, A.; Reiher, C.; Strotman, N.A.; Chen, K.; Eastgate, M.D.; Baran, P.S. Regioselective Bromination of Fused Heterocyclic N-Oxides. Org. Lett. 2013, 15, 792–795. [Google Scholar] [CrossRef]
- Muta, R.; Torigoe, T.; Kuninobu, Y. 2-Position-Selective Trifluoromethylthiolation of Six-Membered Heteroaromatic Compounds. Org. Lett. 2019, 21, 4289–4292. [Google Scholar] [CrossRef]
- Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. A base-free, ultrasound accelerated one-pot synthesis of 2-sulfonylquinolines in water. Green Chem. 2017, 19, 5642–5646. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Huang, X.; Fang, X.; Li, Z.; Jiang, H.; Qiao, J.; Chu, W.; Sun, Z. Hypervalent Iodine(III)-Mediated Regioselective Cyanation of Quinoline N-Oxides with Trimethylsilyl Cyanide. Adv. Synth. Catal. 2019, 361, 520–525. [Google Scholar] [CrossRef]
- Sarmah, B.K.; Konwar, M.; Bhattacharyya, D.; Adhikari, P.; Das, A. Regioselective Cyanation of Six-Membered N-Heteroaromatic Compounds Under Metal-, Activator-, Base- and Solvent-Free Conditions. Adv. Synth. Catal. 2019, 361, 5616–5625. [Google Scholar] [CrossRef]
- Ma, Q.; Shi, Y.; Wang, D. Phosphonium Salt-Promoted C2–H Functionalization of Heterocyclic N-Oxides. Org. Lett. 2023, 25, 9181–9185. [Google Scholar] [CrossRef]
- Bu, C.; Wang, K.; Gong, C.; Wang, D. Green and fast 2-aryloxylation/amination of quinolines. Green Chem. 2024, 26, 4659–4664. [Google Scholar] [CrossRef]
- Liu, D.; Xu, F.; Han, T.; Ablajan, K.; Wang, D. Sustainable synthesis of heteroaryl ethers from azine N-oxides via phosphoramide catalysis. Green Chem. 2025, 27, 7788–7794. [Google Scholar] [CrossRef]
- Wang, X.; Yan, A.; Xiao, H.; Xiao, W.; Xu, L.; Wang, D. C3–H Trifluoroacetylation of Quinolines and Pyridines: Access to Heteroaryl Ketones, Carboxylic Acids, and Amides. Org. Lett. 2025, 27, 5625–5631. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, X.; Yang, D.; Yang, X.; Wang, D. Direct C3−H Alkylation and Alkenylation of Quinolines with Enones. Angew. Chem. Int. 2025, 64, e202416451. [Google Scholar]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2016, 18, 288–296. [Google Scholar] [CrossRef]
- Bering, L.; Antonchick, A.P. Regioselective Metal-Free Cross-Coupling of Quinoline N-Oxides with Boronic Acids. Org. Lett. 2015, 17, 3134–3137. [Google Scholar] [CrossRef]
- Gan, X.; Showalter, H.D. A concise synthesis of 3-substituted-7-amino-6-carboxyl-8-azachromones. Tetrahedron Lett. 2019, 60, 2035–2037. [Google Scholar] [CrossRef]
- Malets, Y.S.; Vashchenko, B.V.; Moskvina, V.S.; Golovchenko, O.V.; Brovarets, V.S.; Grygorenko, O.O. Parent 5(7)-azachromones and their partially hydrogenated derivatives: Synthesis and physicochemical properties. Chem. Heterocycl. Compd. 2023, 59, 494–499. [Google Scholar] [CrossRef]
- Wang, D.; Feng, H.; Li, L.; Liu, Z.; Yan, Z.; Yu, P. Access to 8-Azachromones via Activation of C–H in N-Oxides. J. Org. Chem. 2017, 82, 11275–11287. [Google Scholar] [CrossRef]
- Van Aken, K.; Strekowski, L.; Patiny, L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J. Org. Chem. 2006, 2, 3. [Google Scholar] [CrossRef]
- Roschangar, F.; Sheldon, R.A.; Senanayake, C.H. Overcoming barriers to green chemistry in the pharmaceutical industry—The Green Aspiration Level concept. Green Chem. 2015, 17, 752–768. [Google Scholar] [CrossRef]
- Jiang, J.; Xiao, F.; He, W.-M.; Wang, L. The application of clean production in organic synthesis. Chin. Chem. Lett. 2021, 32, 1637–1644. [Google Scholar] [CrossRef]
- Ferlin, F.; Brufani, G.; Rossini, G.; Vaccaro, L. Classic vs. C–H functionalization strategies in the synthesis of APIs: A sustainability comparison. Green Chem. 2023, 25, 7916–7933. [Google Scholar] [CrossRef]
- Spadoni, G.; Bedini, A.; Lucarini, S.; Mari, M.; Caignard, D.-H.; Boutin, J.A.; Delagrange, P.; Lucini, V.; Scaglione, F.; Lodola, A.; et al. Highly Potent and Selective MT2 Melatonin Receptor Full Agonists from Conformational Analysis of 1-Benzyl-2-acylaminomethyl-tetrahydroquinolines. J. Med. Chem. 2015, 58, 7512–7525. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, Y.; Gao, P.; Zhang, S.; Jia, X.; Yuan, Y. Direct Transformation of Nitrogen-Containing Methylheteroarenes to Heteroaryl Nitrile by Sodium Nitrite. Org. Lett. 2022, 24, 6341–6345. [Google Scholar] [CrossRef]
- Everaert, J.; Debruyne, M.; Vanden Bussche, F.; Van Hecke, K.; Heugebaert, T.S.A.; Van Der Voort, P.; Van Speybroeck, V.; Stevens, C.V. Synthesis of Nitrile-Functionalized Polydentate N-Heterocycles as Building Blocks for Covalent Triazine Frameworks. Synthesis 2021, 55, 333–340. [Google Scholar]
- Zhang, X.; Kumata, K.; Yamasaki, T.; Cheng, R.; Hatori, A.; Ma, L.; Zhang, Y.; Xie, L.; Wang, L.; Kang, H.J.; et al. Synthesis and Preliminary Studies of a Novel Negative Allosteric Modulator, 7-((2,5-Dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-[11C]methoxyphenyl) quinoline-2-carboxamide, for Imaging of Metabotropic Glutamate Receptor 2. ACS Chem. Neurosci. 2017, 8, 1937–1948. [Google Scholar] [CrossRef]
- Pradhan, S.; Maiti, S.; Dutta, S.; Adam Russell, C.; Tyagi, S.; Maiti, D. A Modular Approach for Accessing 3D Heterocycles via 1,2-Dicyanation of Planar N-Heteroarenes. Angew. Chem. Int. Ed. 2025, 64, e202412979. [Google Scholar] [CrossRef]
- St. Laurent, D.R.; Serrano-Wu, M.H.; Belema, M.; Ding, M.; Fang, H.; Gao, M.; Goodrich, J.T.; Krause, R.G.; Lemm, J.A.; Liu, M.; et al. HCV NS5A Replication Complex Inhibitors. Part 4.1 Optimization for Genotype 1a Replicon Inhibitory Activity. J. Med. Chem. 2014, 57, 1976–1994. [Google Scholar] [CrossRef]
- Higashino, T.; Sato, S.; Suge, H.; Tanji, K.-I.; Miyashita, A.; Katori, T. Reactions of 3-Benzoyl-3, 4-dihydro-2-methyl-4-quinazolinecarbonitrile (2-Methylquinazoline Reissert Compound) with Acid, Base, Sodium Hydride, and Electrophiles. Chem. Pharm. Bull. 1988, 36, 930–939. [Google Scholar] [CrossRef][Green Version]
- Pochobradský, J.; Bartáček, J.; Váňa, J.; Svoboda, J.; Svobodová, M.; Drabina, P.; Patočka, J.; Sedlák, M. Addressing polar solvent challenges in the heterogenization of palladium catalysed Hayashi-Miyaura reaction on polymer support. React. Funct. Polym. 2023, 193, 105747. [Google Scholar] [CrossRef]
- Chekler, E.L.P.; Gilbert, A.M.; Unwalla, R.J.; Verhoest, P.R.; Anderson, J.T. Carbonitrile Derivatives as Selective Androgen Receptor Modulators. WO2015181676, 3 December 2015. [Google Scholar]
- Rachii, D.; Caldwell, D.J.; Kosukegawa, Y.; Sexton, M.; Rablen, P.R.; Malachowski, W.P. Ni-Catalyzed Enantioselective Intramolecular Mizoroki–Heck Reaction for the Synthesis of Phenanthridinone Derivatives. J. Org. Chem. 2023, 88, 8203–8226. [Google Scholar] [CrossRef] [PubMed]
- Littke, A.; Soumeillant, M.; Kaltenbach, R.F.; Cherney, R.J.; Tarby, C.M.; Kiau, S. Mild and General Methods for the Palladium-Catalyzed Cyanation of Aryl and Heteroaryl Chlorides. Org. Lett. 2007, 9, 1711–1714. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; An, J.H.; Lee, J.H. Highly chemoselective deoxygenation of N-heterocyclic N-oxides under transition metal-free conditions. Org. Biomol. Chem. 2021, 19, 3735–3742. [Google Scholar] [CrossRef] [PubMed]
- Monge, A.; Palop, J.A.; Piñol, A.; Martínez-Crespo, F.J.; Narro, S.; González, M.; Sáinz, Y.; De Ceráin, A.L.; Hamilton, E.; Barker, A.J. 3-Amino-2-quinoxalinecarbonitrile. New fused quinoxalines with potential cytotoxic activity. J. Heterocycl. Chem. 1994, 31, 1135–1139. [Google Scholar] [CrossRef]
- O’Duill, M.L.; Matsuura, R.; Wang, Y.; Turnbull, J.L.; Gurak, J.A., Jr.; Gao, D.-W.; Lu, G.; Liu, P.; Engle, K.M. Tridentate Directing Groups Stabilize 6-Membered Palladacycles in Catalytic Alkene Hydrofunctionalization. J. Am. Chem. Soc. 2017, 139, 15576–15579. [Google Scholar] [CrossRef]
- Yu, G.; Gao, D.; Chen, Z.; Zhang, W. Preparation and Characterization of Pyridinothiene Containing Polymer Compounds as Semiconductor Materials. CN106632410, 10 May 2017. [Google Scholar]
- Payne, A.; Castro Pineiro, J.L.; Birch, L.M.; Khan, A.; Braunton, A.J.; Kitulagoda, J.E.; Soejima, M. Preparation of 4-Azaindole Derivatives as Muscarinic M1 Receptor Modulators for Treatment of Cognitive Deficits. US20150094328, 2 April 2015. [Google Scholar]
- Li, Z.-l.; Sun, K.-k.; Cai, C. Copper-catalyzed cyanation of heterocycle C–H bonds with ethyl(ethoxymethylene)cyanoacetate as a cyanating agent and its mechanism. Org. Chem. Front. 2018, 5, 1848–1853. [Google Scholar] [CrossRef]
- Mudshinge, S.R.; Potnis, C.S.; Xu, B.; Hammond, G.B. HCl·DMPU-assisted one-pot and metal-free conversion of aldehydes to nitriles. Green Chem. 2020, 22, 4161–4164. [Google Scholar] [CrossRef]
- Brown, R.E.; Burkamp, F.; Doughty, V.A.; Fletcher, S.R.; Hollingworth, G.J.; Jones, B.A.; Sparey, T.J. Preparation of Amino Heterocycles as Vanilloid Receptor (VR1) Modulators, in Particular Antagonists, for Treating Pain and/or Inflammation. WO2004074290, 2 September 2004. [Google Scholar]
- Zhao, X.; Deng, C.; Meng, D.; Ji, H.; Chen, C.; Song, W.; Zhao, J. Nickel-Coordinated Carbon Nitride as a Metallaphotoredox Platform for the Cross-Coupling of Aryl Halides with Alcohols. ACS Catal. 2020, 10, 15178–15185. [Google Scholar] [CrossRef]
- Tsukamoto, I.; Koshio, H.; Kuramochi, T.; Saitoh, C.; Yanai-Inamura, H.; Kitada-Nozawa, C.; Yamamoto, E.; Yatsu, T.; Shimada, Y.; Sakamoto, S.; et al. Synthesis and structure–activity relationships of amide derivatives of (4,4-difluoro-1,2,3,4-tetrahydro-5H-1-benzazepin-5-ylidene) acetic acid as selective arginine vasopressin V2 receptor agonists. Bioorgan. Med. Chem. 2009, 17, 3130–3141. [Google Scholar] [CrossRef]
- Cushman, M.S.; Kiselev, E.A.; Morrell, A.E. Azaindenoisoquinoline Topoisomerase I Inhibitors Useful in the Treatment of Cancer and Preparation Thereof. US20140187547, 3 July 2014. [Google Scholar]
- Shin, S.; Byeon, S.; Kim, H. Preparation of Pyridine N-Oxide Compounds as Enhancer of Zeste Homolog 2 Inhibitors. WO2016140501, 9 September 2016. [Google Scholar]
- Ando, M.; Sato, N.; Nagase, T.; Nagai, K.; Ishikawa, S.; Takahashi, H.; Ohtake, N.; Ito, J.; Hirayama, M.; Mitobe, Y.; et al. Discovery of pyridone-containing imidazolines as potent and selective inhibitors of neuropeptide Y Y5 receptor. Bioorgan. Med. Chem. 2009, 17, 6106–6122. [Google Scholar] [CrossRef]
- Johns, B.A.; Spaltenstein, A. 2-oxonaphthyridine-3-carboxamides as HIV Integrase Inhibitors and Their Preparation and Use in the Prevention and Treatment of HIV Infection, AIDS and ARC. WO2007019101, 15 February 2007. [Google Scholar]
- Sakamoto, T.; Kaneda, S.; Nishimura, S.; Yamanaka, H. Site-Selectivity in the Cyanation of 3-Substituted Pyridine 1-Oxides with Trimethylsilanecarbonitrile. Chem. Pharm. Bull. 1985, 33, 565–571. [Google Scholar] [CrossRef][Green Version]
- Cerrada, V.; Matía-Martín, M.P.; Novella, J.L.; Alvarez-Builla, J. Synthesis of 2- and 4-hydroxymethyl Loratadine, usual impurities in Loratadine syrup formulations. Arkivoc 2005, 2005, 200–206. [Google Scholar] [CrossRef]





![]() | ||||
|---|---|---|---|---|
| Entry | Solvent (M) | A-Y (eq) | Base (eq) | Yield (%) |
| 1 a,b | DCE (0.25) | Ms2O (2) | TMG (4) | 86 |
| 2 a | DCE (0.25) | Ms2O (2) | TMG (4) | 80 |
| 3 | DCE (0.25) | Ts2O (2) | TMG (4) | 62 |
| 4 | DCE (0.25) | TsCl (2) | TMG (4) | 70 |
| 5 | DCE (0.25) | TsOH (2) | TMG (4) | <20 |
| 6 c | DCE (0.25) | Ms2O (2) | N/A | 86 |
| 7 | DCE (0.25) | N/A | N/A | 0 |
| 8 | DCE (0.25) | N/A | TMG (4) | 75 |
| 9 | DCE (0.25) | N/A | DIEA (4) | 96 |
| 10 | DCE (0.25) | N/A | DMAP (4) | 88 |
| 11 | DCE (0.25) | N/A | DABCO (4) | 66 |
| 12 | DCE (0.25) | N/A | K2CO3 (4) | 59 |
| 13 | EA (0.25) | N/A | DIEA (4) | 77 |
| 14 | DCM (0.25) | N/A | DIEA (4) | 94 |
| 15 | THF (0.25) | N/A | DIEA (4) | 89 |
| 16 | DMF (0.25) | N/A | DIEA (4) | 96 |
| 17 | EtOH (0.25) | N/A | DIEA (4) | 0 |
| 18 | DCM (0.25) | N/A | DIEA (2) | 92 |
| 19 | DCM (0.5) | N/A | DIEA (2) | 87 |
| 20 | DCM (1) | N/A | DIEA (2) | 91 |
| 21 | DCM (2) | N/A | DIEA (2) | 91 |
| 22 | EA:DCM = 20:1 (2) | N/A | DIEA (2) | 85 |
| 23 | EA:DCM = 10:1 (2) | N/A | DIEA (2) | 84 |
| 24 | EA:DCM = 5:1 (2) | N/A | DIEA (2) | 79 |
| 25 d | EA (1) | N/A | DIEA (2) | 93 |
| Cpd | Process a | Yield (%) | AE (%) | AEf (%) | CE (%) | EcoScale b |
|---|---|---|---|---|---|---|
| 2a | A | 93 | 63 | 59 | 45 | 77.5 |
| B | 73 | 27 | 20 | 13 | 60.5 | |
| 2d | A | 94 | 65 | 61 | 47 | 78 |
| B | 82 | 29 | 24 | 17 | 65 | |
| 2p | A | 92 | 72 | 66 | 58 | 77 |
| B | 70 | 36 | 25 | 19 | 59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xiao, H.; Wufuer, R.; Wang, D. Formal Synthesis of Ortho-Cyanated N-Heterocycles via Direct, Metal-Free Cyanation of N-Oxides Under Benign Conditions. Molecules 2026, 31, 276. https://doi.org/10.3390/molecules31020276
Xiao H, Wufuer R, Wang D. Formal Synthesis of Ortho-Cyanated N-Heterocycles via Direct, Metal-Free Cyanation of N-Oxides Under Benign Conditions. Molecules. 2026; 31(2):276. https://doi.org/10.3390/molecules31020276
Chicago/Turabian StyleXiao, Hua, Reziyamu Wufuer, and Dong Wang. 2026. "Formal Synthesis of Ortho-Cyanated N-Heterocycles via Direct, Metal-Free Cyanation of N-Oxides Under Benign Conditions" Molecules 31, no. 2: 276. https://doi.org/10.3390/molecules31020276
APA StyleXiao, H., Wufuer, R., & Wang, D. (2026). Formal Synthesis of Ortho-Cyanated N-Heterocycles via Direct, Metal-Free Cyanation of N-Oxides Under Benign Conditions. Molecules, 31(2), 276. https://doi.org/10.3390/molecules31020276


