Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,291)

Search Parameters:
Keywords = nickel additions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 51475 KiB  
Article
Mechanism-Driven Strength–Conductivity Synergy in Hypereutectic Al-Si Alloys Reinforced with Interface-Engineered Ni-Coated CNTs
by Xuexuan Yang, Yulong Ren, Peng Tang and Jun Tan
Materials 2025, 18(15), 3647; https://doi.org/10.3390/ma18153647 - 3 Aug 2025
Viewed by 198
Abstract
Secondary hypereutectic Al-Si alloys are attractive for sustainable manufacturing, yet their application is often limited by low strength and electrical conductivity due to impurity-induced microstructural defects. Achieving a balance between mechanical and conductive performance remains a significant challenge. In this work, nickel-coated carbon [...] Read more.
Secondary hypereutectic Al-Si alloys are attractive for sustainable manufacturing, yet their application is often limited by low strength and electrical conductivity due to impurity-induced microstructural defects. Achieving a balance between mechanical and conductive performance remains a significant challenge. In this work, nickel-coated carbon nanotubes (Ni-CNTs) were introduced into secondary Al-20Si alloys to tailor the microstructure and enhance properties through interfacial engineering. Composites containing 0 to 0.4 wt.% Ni-CNTs were fabricated by conventional casting and systematically characterized. The addition of 0.1 wt.% Ni-CNTs resulted in the best combination of properties, with a tensile strength of 170.13 MPa and electrical conductivity of 27.60% IACS. These improvements stem from refined α-Al dendrites, uniform eutectic Si distribution, and strong interfacial bonding. Strengthening was achieved through grain refinement, Orowan looping, dislocation generation from thermal mismatch, and the formation of reinforcing interfacial phases such as AlNi3C0.9 and Al4SiC4. At higher Ni-CNT contents, property degradation occurred due to agglomeration and phase coarsening. This study presents an effective and scalable strategy for achieving strength–conductivity synergy in secondary aluminum alloys via nanoscale interfacial design, offering guidance for the development of multifunctional lightweight materials. Full article
Show Figures

Graphical abstract

35 pages, 3599 KiB  
Review
Recent Advances in Borylation and Suzuki-Type Cross-Coupling—One-Pot Miyaura-Type C–X and C–H Borylation–Suzuki Coupling Sequence
by Nouhaila Bahyoune, Mohammed Eddahmi, Perikleia Diamantopoulou, Ioannis D. Kostas and Latifa Bouissane
Catalysts 2025, 15(8), 738; https://doi.org/10.3390/catal15080738 - 1 Aug 2025
Viewed by 326
Abstract
In the last decades, numerous approaches have been explored for the cross-coupling of biaryl building blocks depending on the presence of boron sources. In fact, these changes have been catalyzed by transition metal complexes. This review focuses on the progress of the last [...] Read more.
In the last decades, numerous approaches have been explored for the cross-coupling of biaryl building blocks depending on the presence of boron sources. In fact, these changes have been catalyzed by transition metal complexes. This review focuses on the progress of the last decade in transition metal-catalyzed C–X borylation and direct C–H borylation, with emphasis on nickel-catalyzed C–H borylation, as effective and affordable protocols for the borylation of aryl substrates. In addition, Suzuki-type cross-coupling by activation of C–H, C–C, or C–N bonds is also reported. This study then offers an overview of recent advances for the synthesis of bi- and multi-aryls found in synthetic molecular complexes and natural products using the transition metal-catalyzed one-pot Miyaura-type C–X and C–H borylation–Suzuki coupling sequence. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

37 pages, 7777 KiB  
Review
Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects
by Haifeng Huang, Shuhao Zhang, Yizhe Wang, Yipu Guo, Chao Zhang and Fulin Qu
Materials 2025, 18(15), 3601; https://doi.org/10.3390/ma18153601 - 31 Jul 2025
Viewed by 285
Abstract
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material [...] Read more.
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material strategies, and performance metrics remains insufficient. In this review, CBB systems are categorized into two representative configurations: probe-type galvanic cells and layered monolithic structures. Their structural characteristics and electrochemical behaviors are critically compared. Strategies to enhance performance include improving ionic conductivity through alkaline pore solutions, facilitating electron transport using carbon-based conductive networks, and incorporating redox-active materials such as zinc–manganese dioxide and nickel–iron couples. Early CBB prototypes demonstrated limited energy densities due to high internal resistance and inefficient utilization of active components. Recent advancements in electrode architecture, including nickel-coated carbon fiber meshes and three-dimensional nickel foam scaffolds, have achieved stable rechargeability across multiple cycles with energy densities surpassing 11 Wh/m2. These findings demonstrate the practical potential of CBBs for both energy storage and additional functionalities, such as strain sensing enabled by conductive cement matrices. This review establishes a critical basis for future development of CBBs as multifunctional structural components in infrastructure applications. Full article
Show Figures

Figure 1

36 pages, 10414 KiB  
Article
Forces During the Film Drainage and Detachment of NMC and Spherical Graphite in Particle–Bubble Interactions Quantified by CP-AFM and Modeling to Understand the Salt Flotation of Battery Black Mass
by Jan Nicklas, Claudia Heilmann, Lisa Ditscherlein and Urs A. Peuker
Minerals 2025, 15(8), 809; https://doi.org/10.3390/min15080809 - 30 Jul 2025
Viewed by 237
Abstract
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film [...] Read more.
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film drainage and detachment during particle–bubble interactions provides insight into the fundamental microprocesses during salt flotation, a special variant of froth flotation. The interfacial properties of particles and gas bubbles were tailored with salt solutions containing sodium chloride and sodium acetate buffer. Graphite particles can attach to gas bubbles under all tested conditions in the range pH 3 to pH 10. The attractive forces for spherical graphite are strongest at high salt concentrations and pH 3. The conditions for the attachment of NMC to gas bubbles were evaluated with simulations using the Stokes–Reynolds–Young–Laplace model for film drainage, under consideration of DLVO forces and a hydrodynamic slip to account for irregularities of the particle surface. CP-AFM measurements in the capillary force regime provide additional parameters for the modeling of salt flotation, such as the force and work of detachment. The contact angles of graphite and NMC particles during retraction and detachment from gas bubbles were obtained from a quasi-equilibrium model using CP-AFM data as input. All CP-AFM experiments and theoretical results suggest that pristine NMC particles do not attach to gas bubbles during flotation, which is confirmed by the low rate of NMC recovery in batch flotation tests. Full article
(This article belongs to the Special Issue Particle–Bubble Interactions in the Flotation Process)
Show Figures

Figure 1

8 pages, 1008 KiB  
Proceeding Paper
Adsorption of Nickel (II) from Aqueous Solution Using Recyclable Three-Dimensional Cellulose Nanocrystal Hydrogel: A Central Composite Design
by Leon Ngwenya, Musamba Banza and Tumisang Seodigeng
Eng. Proc. 2025, 87(1), 99; https://doi.org/10.3390/engproc2025087099 - 29 Jul 2025
Viewed by 116
Abstract
To remove nickel (II) from an aqueous solution, cellulose nanocrystals (CNCs) were modified as an adsorbent. The FTIR and SEM were used to characterise the properties of CNCs. In addition to how well they predicted reaction (adsorption capacity), the central composite design was [...] Read more.
To remove nickel (II) from an aqueous solution, cellulose nanocrystals (CNCs) were modified as an adsorbent. The FTIR and SEM were used to characterise the properties of CNCs. In addition to how well they predicted reaction (adsorption capacity), the central composite design was used. The response surface model method performs well, according to statistical data. Four operational variables were studied: The initial concentration of the nickel (II) solution in mg/L, the pH, the contact period in minutes, and the adsorbent dose in g/100 mL. The removal percentage (%) was the result. The percentage removal was 98% after 178 min of contact, a starting concentration of 110 mg/L, an adsorbent dosage of 9.3 g, and an initial pH of 3.5. The R2 was 0.996, the adjusted R2 was 0.921, and the predicted R2 was 0.945. The quadratic equation was determined using central composite design. The FTIR examination revealed that the functional groups, hydroxyl groups (OH), peaked around 3300–3500 cm−1, and carboxyl groups (COOH) peaked around 1700 cm−1. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

15 pages, 4855 KiB  
Article
An Investigation of the Surface-Regulating Mechanism of Tungsten Alloys Using the Electrochemical Polishing Process
by Yachun Mao, Yanqiu Xu, Shiru Le, Maozhong An, Zhijiang Wang and Yuhan Zhang
Solids 2025, 6(3), 39; https://doi.org/10.3390/solids6030039 - 24 Jul 2025
Viewed by 258
Abstract
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic [...] Read more.
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic polishing offers high efficiency, low workpiece wear, and simple processing. In this study, an electrolytic polishing method is adopted and a novel trisodium phosphate–sodium hydroxide electrolytic polishing electrolyte is developed to study the effects of temperature, voltage, polishing time, and solution composition on the surface roughness of a tungsten–nickel–iron alloy. The optimal voltage, temperature, and polishing time are determined to be 15 V, 55 °C, and 35 s, respectively, when the concentrations of trisodium phosphate and sodium hydroxide are 100 g·L−1 and 6 g·L−1. In addition, glycerol is introduced into the electrolyte as an additive. The calculated LUMO value of glycerol is −5.90 eV and the HOMO value is 0.40 eV. Moreover, electron enrichment in the hydroxyl region of glycerol can form an adsorption layer on the surface of the tungsten alloy, inhibit the formation of micro-pits, balance ion diffusion, and thus promote the formation of a smooth surface. At 100 mL·L−1 of glycerol, the roughness of the tungsten–nickel–iron alloy decreases significantly from 1.134 μm to 0.582 μm. The electrochemical polishing mechanism of the tungsten alloy in a trisodium phosphate electrolyte is further investigated and explained according to viscous film theory. This study demonstrates that the trisodium phosphate–sodium hydroxide–glycerol electrolyte is suitable for electropolishing tungsten–nickel–iron alloys. Overall, the results support the application of tungsten–nickel–iron alloy in the electronics, medical, and atomic energy industries. Full article
Show Figures

Graphical abstract

14 pages, 3233 KiB  
Article
Influence of Printing Parameters on Microstructure and Mechanical Properties of EOS NickelAlloy HX Produced via Laser Powder Bed Fusion
by Piotr Maj, Konstanty Jonak, Rafał Molak, Ryszard Sitek and Jarosław Mizera
Appl. Sci. 2025, 15(14), 8011; https://doi.org/10.3390/app15148011 - 18 Jul 2025
Viewed by 280
Abstract
The research investigated the influence of laser powder bed fusion (LPBF) parameters for NickelAlloy HX, a nickel-based superalloy, to achieve high-density components with superior mechanical properties. A systematic approach was employed, involving printing 40 cylindrical specimens with varying energy densities (50–240 J/mm3 [...] Read more.
The research investigated the influence of laser powder bed fusion (LPBF) parameters for NickelAlloy HX, a nickel-based superalloy, to achieve high-density components with superior mechanical properties. A systematic approach was employed, involving printing 40 cylindrical specimens with varying energy densities (50–240 J/mm3) to evaluate porosity, hardness, and anisotropy. Results revealed that energy density significantly influences relative density, with optimal parameters identified at 111 J/mm3 (900 mm/s scan speed, 120 W laser power). Microstructural examination revealed columnar grains aligned with the build direction in as-printed samples. The findings highlight the trade-offs between density, hardness, and microstructure in the additive manufacturing of nickel-based superalloys, providing actionable insights for industrial applications requiring specific property profiles. Full article
(This article belongs to the Special Issue The Applications of Laser-Based Manufacturing for Material Science)
Show Figures

Figure 1

33 pages, 20199 KiB  
Review
Composition Optimization in Alloy Design for Nickel-Based Single Crystal Superalloy: A Review
by Yu Zhou, Xinbao Zhao, Yunpeng Fan, Quanzhao Yue, Wanshun Xia, Qinghai Pan, Yuan Cheng, Weiqi Li, Yuefeng Gu and Ze Zhang
Metals 2025, 15(7), 793; https://doi.org/10.3390/met15070793 - 13 Jul 2025
Viewed by 403
Abstract
This article presents a review of the composition optimization progress of nickel-based single crystal (SC) superalloy design in recent years in order to obtain better high-temperature performance for the development of the aviation industry. The influence of alloying elements on the creep resistance, [...] Read more.
This article presents a review of the composition optimization progress of nickel-based single crystal (SC) superalloy design in recent years in order to obtain better high-temperature performance for the development of the aviation industry. The influence of alloying elements on the creep resistance, microstructure characteristics, oxidation resistance, castability, density, and cost of superalloys is analyzed and discussed. In order to obtain better high-temperature performance, the content of refractory elements (Ta + Re + W + Mo) and Co was increased gradually. The addition of Ru was added in the fourth-generation nickel-based SC superalloy to stabilize the microstructures and suppress the precipitation of the topologically close-packed (TCP) phase. However, the content of the antioxidant element Cr significantly decreased, while the synergistic effect of Al, Cr, and Ta received more attention. Therefore, synergistic effects should also receive more attention to meet the practical needs of reducing the content of refractory elements to reduce costs and density in future single crystal alloy designs without compromising critical performance. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys, 2nd Edition)
Show Figures

Graphical abstract

12 pages, 2466 KiB  
Article
ROMP and Vinyl Polynorbornenes with Vanadium(III) and Nickel(II) diNHC Complexes
by Katarzyna Halikowska-Tarasek, Elwira Bisz, Dawid Siodłak, Błażej Dziuk and Wioletta Ochędzan-Siodłak
Int. J. Mol. Sci. 2025, 26(14), 6691; https://doi.org/10.3390/ijms26146691 - 12 Jul 2025
Viewed by 317
Abstract
The polymerization of norbornene can occur via ring-opening metathesis polymerization (ROMP) or vinyl-addition pathways, each yielding polynorbornene with distinct structures and properties. This study reports on the synthesis and catalytic application of a new class of vanadium(III) and nickel(II) complexes bearing N-heterocyclic [...] Read more.
The polymerization of norbornene can occur via ring-opening metathesis polymerization (ROMP) or vinyl-addition pathways, each yielding polynorbornene with distinct structures and properties. This study reports on the synthesis and catalytic application of a new class of vanadium(III) and nickel(II) complexes bearing N-heterocyclic carbene ligands, based on the IPr* framework, for the polymerization of norbornene. The vanadium(III) complexes, activated by diethylaluminum chloride and in the presence of ethyl trichloroacetate, showed activity in ROMP. In contrast, the nickel(II) complexes, activated by methylaluminoxane, exhibited catalytic activity toward vinyl-addition polymerization. Characterization by GPC, NMR, and FTIR confirmed the formation of both ring-opening metathesis polymerization and vinyl-type-derived polynorbornenes, with vinyl-type polymers showing significantly higher molecular weights. Structural variations in the N-heterocyclic carbene ligands, particularly the linker length between imidazole donors, were found to strongly influence polymer molecular weight and the morphology of polynorbornenes. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

14 pages, 6398 KiB  
Article
Corrosion Behavior of Additively Manufactured GRX-810 Alloy in 3.5 wt.% NaCl
by Peter Omoniyi, Samuel Alfred, Kenneth Looby, Olu Bamiduro, Mehdi Amiri and Gbadebo Owolabi
Materials 2025, 18(14), 3252; https://doi.org/10.3390/ma18143252 - 10 Jul 2025
Viewed by 321
Abstract
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. [...] Read more.
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. Electrochemical characterization was performed using potentiodynamic polarization to determine critical corrosion parameters, including corrosion potential and current density, along with electrochemical impedance spectroscopy to assess the stability and protective qualities of the oxide film. Surface analytical techniques provided detailed microstructural and compositional insights, with scanning electron microscopy revealing the morphology of corrosion products, energy-dispersive X-ray spectroscopy identifying elemental distribution in the passive layer, and X-ray diffraction confirming the chemical composition and crystalline structure of surface oxide. The results demonstrated distinct corrosion resistance behavior between the different processing conditions of the alloy. The laser powder bed fused (LPBF) specimens in the as-built condition exhibited superior corrosion resistance compared to their hot isostatically pressed (HIPed) counterparts, as evidenced by higher corrosion potentials and lower current densities. Microscopic examination revealed the formation of a dense, continuous layer of corrosion products on the alloy surface, indicating effective barrier protection against chloride ion penetration. A compositional analysis of all samples identified oxide film enriched with chromium, nickel, cobalt, aluminum, titanium, and silicon. XRD characterization confirmed the presence of chromium oxide (Cr2O3) as the primary protective phase, with additional oxides contributing to the stability of the film. This oxide mixture demonstrated the alloy’s ability to maintain passivity and effective repassivation following film breakdown. Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Figure 1

12 pages, 24352 KiB  
Article
Improving the Wear Properties of Ni Matrix Composites Containing High-Speed Steel Particles
by Marek Konieczny
Metals 2025, 15(7), 772; https://doi.org/10.3390/met15070772 - 8 Jul 2025
Viewed by 231
Abstract
Nickel matrix composites reinforced with T15 high-speed steel (HSS) were prepared using powder metallurgy techniques. A systematic investigation was conducted into the effect of CeO2, MoS2, and graphite additives on the tribological properties of the composites. The results show [...] Read more.
Nickel matrix composites reinforced with T15 high-speed steel (HSS) were prepared using powder metallurgy techniques. A systematic investigation was conducted into the effect of CeO2, MoS2, and graphite additives on the tribological properties of the composites. The results show that when T15 HSS particles are added, nickel grains do not grow as much as they do in pure sintered nickel. It was also observed that the T15 HSS particles were diffusion-bonded to the nickel matrix after sintering. The highest relative density after sintering is obtained for composites containing graphite, but the maximum hardness of 243 HV can be achieved for composites containing 2% of CeO2, which is about 16% higher than that of the Ni-T15 HSS composite. The wear rate of Ni-T15 HSS composites reduces from 3.4782 × 10−7 cm3/N∙m to 2.0222 × 10−7 cm3/N∙m as the content of CeO2 rises from 0 wt.% to 2 wt.%. The wear mechanisms of composites with MoS2 or graphite are abrasive wear and adhesive wear. The introduction of CeO2 enhances the hardness of the investigated composites to the highest degree, leading to a change in the wear mechanism of the composites to slight abrasive wear. The addition of CeO2 can effectively optimize the tribological properties of Ni-T15 HSS composites. Full article
(This article belongs to the Section Metal Matrix Composites)
Show Figures

Graphical abstract

14 pages, 3884 KiB  
Article
Self-Supported Tailoring of Nickel Sulfide/CuCo Nanosheets into Hierarchical Heterostructures for Boosting Urea Oxidation Reaction
by Prince J. J. Sagayaraj, Aravind Senthilkumar, Juwon Lee, Eun-Kyeong Byeon, Hyoung-il Kim, Sulakshana Shenoy and Karthikeyan Sekar
Catalysts 2025, 15(7), 664; https://doi.org/10.3390/catal15070664 - 7 Jul 2025
Viewed by 635
Abstract
Electro-oxidation of urea (UOR) in alkaline medium is one of the most effective alternative ways of producing green hydrogen, as the oxidation potential in UOR is less and thermodynamically more favorable than conventional water oxidation. The development of cost-effective materials in catalyzing UOR [...] Read more.
Electro-oxidation of urea (UOR) in alkaline medium is one of the most effective alternative ways of producing green hydrogen, as the oxidation potential in UOR is less and thermodynamically more favorable than conventional water oxidation. The development of cost-effective materials in catalyzing UOR is recently seeking more attention in the research hotspot. Suitably modifying the Ni-based catalysts towards active site creation and preventing surface passivation is much important in this context, following which we reported the synthesis of Ni3S2 (NS) supported with CuCo (CC) bimetallic (NSCC). A simple hydrothermal route for NS synthesis and the electrodeposition method for CuCo (CC) deposition is adapted in a self-supported manner. The NS and CC catalysts exhibited sheet-like morphology, as confirmed by SEM and TEM analysis. The bimetallic CC deposition prevented the surface passivation of nickel sulfide (NS) over oxygen evolution reaction (OER) and improved the charge-transfer kinetics. The NSCC catalyst catalyzed UOR in an alkaline medium, which required a lower potential of 1.335 V vs. RHE to attain the current density of 10 mAcm−2, with a lower Tafel slope value of 131 mVdec−1. In addition, a two-electrode cell setup is constructed with an operating cell voltage of 1.512 V for delivering 10 mAcm−2 current density. This study illustrates the new strategy of designing heterostructure catalysts for electrocatalytic UOR. Full article
(This article belongs to the Special Issue Homogeneous and Heterogeneous Catalytic Oxidation and Reduction)
Show Figures

Figure 1

21 pages, 4094 KiB  
Article
Strategies for Nickel and Cobalt Mobilisation from Ni-Based Superalloy Residue Powders Using a Sustainable and Cost-Effective Bioleaching Method
by Andra D. Constantin, Stephen Hall, Fatemeh Pourhossein and Sebastien Farnaud
Processes 2025, 13(7), 2157; https://doi.org/10.3390/pr13072157 - 7 Jul 2025
Viewed by 363
Abstract
The demand for strategic elements, including nickel and cobalt, increases each year due to rapid technological advancements. However, due to their scarcity and environmental concerns, the development of sustainable recycling processes supported by green-energy technologies is becoming essential. In this study, a process [...] Read more.
The demand for strategic elements, including nickel and cobalt, increases each year due to rapid technological advancements. However, due to their scarcity and environmental concerns, the development of sustainable recycling processes supported by green-energy technologies is becoming essential. In this study, a process relying on indirect bioleaching was used to recover nickel and cobalt from three different superalloy residue powders as a second source of metals, as part of a wider study to recycle superalloys within a waste process. A comparison between the three methods was carried out to analyse the bioleaching mechanisms of the target metals. Acidolysis was selected for further study due to its set-up simplicity and superior recovery rates. Variations in agitation speed of the lixiviant processing the Ni 30167 superalloy revealed that 270 rpm achieved the optimal active metal surface–oxidising agent interaction, with 60% and 70% dissolution rates after 24 h for nickel and cobalt, respectively. For the Re 30168 superalloy, extraction rates of 60% and 50% were obtained in 48 h for nickel and cobalt, respectively. The effect of hydrogen peroxide as an additive to improve metal solubilisation and overcome passivation, are discussed together with the challenges posed by the presence of iron, the materials’ elemental complexity, and its interaction with different oxidising agents. Full article
(This article belongs to the Special Issue Advances in Wastewater and Solid Waste Treatment Processes)
Show Figures

Graphical abstract

15 pages, 3237 KiB  
Article
A Simple Fabrication of Tourmaline-Supported Ni-NiAl2O4 Nanocomposites for Enhanced Methane Dry Reforming Activity
by Jin Wang, Xianku Wang, Pengfei Zhou, Liang Bian and Fei Wang
Catalysts 2025, 15(7), 658; https://doi.org/10.3390/catal15070658 - 6 Jul 2025
Viewed by 381
Abstract
Ni-based catalysts have been widely used in catalytic reactions by researchers due to their advantages such as abundant resources, high catalytic activity and lower prices than precious metals. However, the problems of easy agglomeration and poor dispersion of Ni-based catalysts have hindered their [...] Read more.
Ni-based catalysts have been widely used in catalytic reactions by researchers due to their advantages such as abundant resources, high catalytic activity and lower prices than precious metals. However, the problems of easy agglomeration and poor dispersion of Ni-based catalysts have hindered their large-scale application. Therefore, it is necessary to select a suitable preparation method to reduce the agglomeration of the catalyst and improve its dispersion. In this paper, the Ni-NiAl2O4/tourmaline composite material was prepared by using the microwave hydrothermal reduction method. The most favorable conditions for preparing NiAl2O4/tourmaline are as follows: using TEOA as the additive, the microwave hydrothermal temperature is 220 °C, the calcination temperature is 800 °C, and the addition amount of tourmaline is 7.4 wt.%. NiAl2O4 has a good dispersion over the surface of tourmaline support and the optimal NiAl2O4/tourmaline catalyst exhibits a specific surface area of 106.5 m2/g. Metallic nickel was reduced at 650 °C to further obtain Ni-NiAl2O4/tourmaline composites. Finally, the Ni-NiAl2O4/tourmaline composites showed significantly improved catalytic dry reforming of methane (DRM) activity compared to Ni-NiAl2O4 sample under low-temperature conditions (500–600 °C), meaning that the tourmaline carrier could effectively optimize the low-temperature catalytic performance of Ni-NiAl2O4. Full article
Show Figures

Graphical abstract

24 pages, 7448 KiB  
Article
A Novel Approach to Quantitatively Account on Deposition Efficiency by Direct Energy Deposition: Case of Hardfacing-Coated AISI 304 SS
by Gabriele Grima, Kamal Sleem, Alberto Santoni, Gianni Virgili, Vincenzo Foti, Marcello Cabibbo and Eleonora Santecchia
Crystals 2025, 15(7), 626; https://doi.org/10.3390/cryst15070626 - 5 Jul 2025
Viewed by 344
Abstract
Nickel-based coatings have been demonstrated to effectively enhance the surface performance of stainless-steel components. The present study investigates the deposition efficiency and quality of Colmonoy 227-F nickel alloy coatings on AISI 304 stainless steel using direct energy deposition (DED). The work focuses on [...] Read more.
Nickel-based coatings have been demonstrated to effectively enhance the surface performance of stainless-steel components. The present study investigates the deposition efficiency and quality of Colmonoy 227-F nickel alloy coatings on AISI 304 stainless steel using direct energy deposition (DED). The work focuses on the relationships between process parameters, microstructural features, and mechanical properties. A total of sixteen process parameter combinations were studied, varying laser power and scanning speed to establish optimal deposition conditions and to evaluate coating morphology, surface topology, dilution behavior, and mechanical performance. The surface geometry was analyzed using three-dimensional digital confocal microscopy. New material distribution (MD) indices were developed to quantify spatial uniformity and integrity of single coating scan tracks (CSTs) across the XY, XZ, and YZ planes. The optimal process was identified around 900 W laser power, balancing deposition efficiency and structural integrity. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) reveal a gradual compositional transition between coating and substrate. The results of the microhardness test demonstrate a consistent gradient in mechanical properties, extending from the coating to the substrate. Coatings were found to achieve a hardness level of up to 600 HK. These findings establish a new benchmark for evaluating DED high-performance coatings and offer a scalable methodology for optimizing additive manufacturing processes in surface engineering applications. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

Back to TopTop