Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects
Abstract
1. Introduction
2. Classification of Cement-Based Battery Systems
2.1. Design Configurations
2.2. Layered Systems
2.3. Probe-Style Systems
2.4. Rechargeable CBB Developments
2.5. Summary of Cement-Based Battery Systems
3. Material Strategies for Cement-Based Batteries
3.1. Cementitious Matrix as Electrolyte
3.1.1. Increasing Pore Solution Ionic Concentration
3.1.2. Admixtures to Retain Moisture
3.1.3. Optimizing Pore Structure
3.1.4. Ion Exchange Resins
3.2. Conductive Additives for Electron Transport
3.2.1. Carbon-Based Materials
3.2.2. Metallic Additives
3.2.3. Conductive Polymers
3.3. Electroactive Fillers (Anode/Cathode Materials)
3.3.1. Zinc (Anode) and Manganese Dioxide (Cathode)
3.3.2. Carbon-Based Materials Magnesium and Aluminum (Anodes)
3.3.3. Nickel–Iron (Ni–Fe) System
3.3.4. Lead Dioxide and Lead (PbO2/Pb)
3.3.5. Lithium-Ion Materials
3.3.6. Redox Additives
3.4. Summary of Material Strategies
4. Electrochemical Performance Evaluation
4.1. Capacity (Ah) and Discharge Behavior
4.2. Energy Density
4.3. Power Density and Internal Resistance
4.4. Cycle Life and Stability
4.5. Self-Discharge
4.6. Summary of Testing and Characterization Methods
5. Experimental Insights on Electrochemical–Mechanical Testing and Durability
5.1. Electrochemical Testing in Cementitious Specimens
5.1.1. Embedded Electrodes and Instrumentation
5.1.2. Containment
5.1.3. Multifunctional Loading Frames
5.1.4. Environmental Control
5.2. Mechanical Property Testing
5.2.1. Compressive Strength
5.2.2. Flexural and Tensile Behavior
5.2.3. Bond and Interface
5.2.4. Carbon-Based Materials Shrinkage and Creep
5.3. Durability Testing
5.3.1. Cycle Stability (Mechanical)
5.3.2. Environmental Exposure
5.3.3. Chemical Stability
5.4. Summary of Landscape for CBBs
6. Applications in Self-Powered Infrastructure
6.1. Self-Powered Structural Health Monitoring
6.2. Wireless Sensor Networks and 5G Infrastructure
6.3. Large-Scale Energy Storage (Vision for the Future)
6.4. Structural Considerations in Applications
7. Conclusions and Future Perspectives
7.1. Conclusions
- (1)
- CBBs currently demonstrate relatively low energy and power densities compared to conventional electrochemical systems. This limitation is primarily attributed to sluggish electrode kinetics and the intrinsically low ionic conductivity of cementitious electrolytes.
- (2)
- The majority of studies rely on Zn–Mn or Zn–Fe redox systems, which exhibit issues such as electrode passivation, low utilization efficiency, and rapid capacity degradation. A broader exploration of high-performance and corrosion-resistant electrode chemistries is urgently required.
- (3)
- Although aqueous electrolytes such as NaOH and KOH improve initial conductivity, they are susceptible to leaching, carbonation, and pore blockage, which collectively undermine long-term durability.
- (4)
- The electrochemical interfaces between electrodes and the cement matrix are typically nonuniform and characterized by high internal resistance. Research into tailored surface treatments and engineered interfacial layers remains limited but holds significant potential.
- (5)
- The multifunctional integration with structural health monitoring is conceptually promising but experimentally underdeveloped. Although piezoresistive behavior and electrical responses under mechanical stress have been observed, the concurrent optimization of electrochemical and mechanical sensing performance remains insufficient.
- (6)
- A lack of standardized performance metrics, including open-circuit voltage, impedance, and cycle life, limits meaningful cross-comparison and benchmarking across studies.
- (7)
- Most experimental investigations focus on small-scale laboratory cells with limited structural relevance. Large-scale demonstrators embedded in realistic infrastructure settings are notably absent.
- (8)
- Critical parameters for real-world applications, such as energy delivery capacity and service life under operational loads, are often overlooked, highlighting a disconnect between academic research and engineering practice.
- (9)
- While CBBs utilize relatively low-cost materials, trade-offs involving performance limitations, fabrication complexity, and uncertain long-term durability pose challenges for large-scale deployment.
- (10)
- The integration of advanced tools such as artificial intelligence for material design, machine learning for sensing interpretation, and hybridization with triboelectric or solar technologies remains largely untapped, constraining system-level innovation.
7.2. Future Perspectives
- (1)
- The development of high-performance electrode materials capable of significantly enhancing energy density without compromising the integrity of the cement matrix. This may involve novel composites or nano-engineered particles.
- (2)
- The establishment of mechanisms to preserve ionic conductivity under dry conditions, potentially through self-humidifying electrolytes or polymer-integrated systems.
- (3)
- The demonstration of reliable rechargeability and long-term cycling stability, ideally maintaining electrochemical performance over hundreds of cycles to validate multi-year operational lifespans in structural applications.
- (4)
- The real-world integration of sensing and energy storage capabilities in a unified system, demonstrating that both functionalities can operate concurrently without mutual interference.
- (5)
- Scalable production methods for conductive concrete that ensure consistency (perhaps an AI-controlled batching system or a factory precast approach where conditions are tightly controlled).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBB | Cement-Based Battery |
SHM | Structural Health Monitoring |
TENG | Triboelectric Nanogenerator |
OCV | Open-Circuit Voltage |
CNT | Carbon Nanotube |
CF | Carbon Fiber |
CNF | Carbon Nanofiber |
CB | Carbon Black |
SEM | Scanning Electron Microscopy |
EDS | Energy-Dispersive X-ray Spectroscopy |
EIS | Electrochemical Impedance Spectroscopy |
OPC | Ordinary Portland Cement |
SCM | Supplementary Cementitious Material |
ASR | Alkali-Silica Reaction |
AI | Artificial Intelligence |
PEG | Polyethylene Glycol |
PVA | Polyvinyl Alcohol |
KOH | Potassium Hydroxide |
NaOH | Sodium Hydroxide |
LiOH | Lithium Hydroxide |
MnO2 | Manganese Dioxide |
Mn2O3 | Manganese(III) Oxide |
Ni(OH)2 | Nickel(II) Hydroxide |
NiOOH | Nickel Oxyhydroxide |
Fe(OH)2 | Iron(II) Hydroxide |
LiFePO4 | Lithium Iron Phosphate |
LiMn2O4 | Lithium Manganese Oxide |
LiTiO2 | Lithium Titanate |
PbO2 | Lead Dioxide |
CV | Cyclic Voltammetry |
EV | Electric Vehicle |
References
- Dong, W.; Tang, J.; Wang, K.; Huang, Y.; Shah, S.P.; Li, W. Cement-based batteries for renewable and sustainable energy storage toward an energy-efficient future. Energy 2025, 315, 134382. [Google Scholar] [CrossRef]
- Yin, L.; Liu, S.; Yin, D.; Du, K.; Yan, J.; Armwood-Gordon, C.K.; Li, L. Development of rechargeable cement-based batteries with carbon fiber mesh for energy storage solutions. J. Energy Storage 2024, 93, 112181. [Google Scholar] [CrossRef]
- Bahadori, A.; Nwaoha, C. A review on solar energy utilisation in Australia. Renew. Sustain. Energy Rev. 2013, 18, 1–5. [Google Scholar] [CrossRef]
- Xi, X.; Chung, D. Deviceless cement-based structures as energy sources that enable structural self-powering. Appl. Energy 2020, 280, 115916. [Google Scholar] [CrossRef]
- Chung, D.; Xi, X. A review of cement-based materials as electroceramics. Ceram. Int. 2023, 49, 24621–24642. [Google Scholar] [CrossRef]
- Salami, B.A.; Oyehan, T.A.; Tanimu, A.; Olabintan, A.B.; Ibrahim, M.; Sanni-Anibire, M.O.; Nafiu, S.A.; Arowojolu, O.; Saleh, T.A. Cement-based batteries design and performance. A review. Environ. Chem. Lett. 2022, 20, 1671–1694. [Google Scholar] [CrossRef]
- Liang, K.; Zeng, X.; Zhou, X.; Qu, F.; Wang, P. A new model for the electrical conductivity of cement-based material by considering pore size distribution. Mag. Concr. Res. 2017, 69, 1067–1078. [Google Scholar] [CrossRef]
- Manohar, A.K.; Malkhandi, S.; Yang, B.; Yang, C.; Prakash, G.S.; Narayanan, S. A high-performance rechargeable iron electrode for large-scale battery-based energy storage. J. Electrochem. Soc. 2012, 159, A1209. [Google Scholar] [CrossRef]
- Xi, X.; Chung, D. Electret behavior of carbon fiber structural composites with carbon and polymer matrices, and its application in self-sensing and self-powering. Carbon 2020, 160, 361–389. [Google Scholar] [CrossRef]
- Sundaramoorthi, A.; Thangaraj, P. A comprehensive review on cement-based batteries and their performance parameters. J. Eng. Appl. Sci. 2023, 70, 39. [Google Scholar] [CrossRef]
- Lu, D.; Fu, C.; Jiang, X.; Chen, Z.; Qu, F.; Huo, Y.; Leng, Z.; Zhong, J. Sustainable microwave-heating healing asphalt concrete incorporating functional aggregates and waste ferrite. Transp. Res. Part D Transp. Environ. 2024, 129, 104117. [Google Scholar] [CrossRef]
- Yang, K.; Tang, Z.; Li, W.; Long, Z.; He, J.; Ma, G.; Li, Y.; Xiang, Y.; Xie, Y.; Long, G. A comprehensive review on the toughening technologies of cement-based materials: From multiscale materials to advanced processes. Constr. Build. Mater. 2024, 456, 139274. [Google Scholar] [CrossRef]
- Chen, K.; Qu, F.; Sun, Z.; Shah, S.P.; Li, W. Carbon sequestration, performance optimization and environmental impact assessment of functional materials in cementitious composites. J. CO2 Util. 2024, 90, 102986. [Google Scholar] [CrossRef]
- Heptonstall, P.J.; Gross, R.J. A systematic review of the costs and impacts of integrating variable renewables into power grids. Nat. Energy 2021, 6, 72–83. [Google Scholar] [CrossRef]
- Ang, T.-Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Rev. 2022, 43, 100939. [Google Scholar] [CrossRef]
- Rahman, M.M.; Oni, A.O.; Gemechu, E.; Kumar, A. Assessment of energy storage technologies: A review. Energy Convers. Manag. 2020, 223, 113295. [Google Scholar] [CrossRef]
- Burstein, G.T.; Speckert, E.I. Developing a Battery using Concrete as an Electrolyte. ECS Trans. 2008, 3, 13. [Google Scholar] [CrossRef]
- Meng, Q.; Chung, D. Battery in the form of a cement-matrix composite. Cem. Concr. Compos. 2010, 32, 829–839. [Google Scholar] [CrossRef]
- Zhang, E.Q.; Tang, L. A novel anode material for cathodic prevention of steel reinforced concrete structures with hybrid functions. In Proceedings of the XXII Nordic Concrete Research Symposium, Reykjavik, Iceland, 13–15 August 2014; pp. 13–15. [Google Scholar]
- Dong, W.; Gao, S.; Peng, S.; Shi, L.; Shah, S.P.; Li, W. Graphene reinforced cement-based triboelectric nanogenerator for efficient energy harvesting in civil infrastructure. Nano Energy 2024, 131, 110380. [Google Scholar] [CrossRef]
- Qiao, G.; Sun, G.; Li, H.; Ou, J. Heterogeneous tiny energy: An appealing opportunity to power wireless sensor motes in a corrosive environment. Appl. Energy 2014, 131, 87–96. [Google Scholar] [CrossRef]
- Holmes, N.; Byrne, A.; Norton, B. First steps in developing cement-based batteries to power cathodic protection of embedded steel in concrete. SDAR* J. Sustain. Des. Appl. Res. 2015, 3, 3. [Google Scholar]
- Byrne, A.; Barry, S.; Holmes, N.; Norton, B. Optimising the Performance of Cement-Based Batteries. Adv. Mater. Sci. Eng. 2017, 2017, 4724302. [Google Scholar] [CrossRef]
- Byrne, A.; Holmes, N.; Norton, B. Cement based batteries and their potential for use in low power operations. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2015; p. 012073. [Google Scholar]
- Rampradheep, G.; Sivaraja, M.; Nivedha, K. Electricity generation from cement matrix incorporated with self-curing agent. In Proceedings of the IEEE-International Conference on Advances in Engineering, Science and Management (ICAESM-2012), Nagapattinam, India, 30–31 March 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 377–382. [Google Scholar]
- Byrne, A.; Holmes, N.; Norton, B. An overview of the development of cement-based batteries for the cathodic protection of embedded steel in concrete. Civ. Eng. Res. Irel. 2016, 1, 593–597. [Google Scholar]
- Guo, Y.; Qu, F.; Li, W. Advancing circular economy and construction sustainability: Transforming mine tailings into high-value cementitious and alkali-activated concrete. npj Mater. Sustain. 2025, 3, 8. [Google Scholar] [CrossRef]
- Kumar, S.; Lalitha Kameswari, Y.; Koteswara Rao, S. Smart Grid Management for Smart City Infrastructure Using Wearable Sensors. In Data Analytics for Smart Grids Applications—A Key to Smart City Development; Springer: Berlin/Heidelberg, Germany, 2023; pp. 39–63. [Google Scholar]
- Silva, N.S.E.; Castro, R.; Ferrao, P. Smart Grids in the Context of Smart Cities: A Literature Review and Gap Analysis. Energies 2025, 18, 1186. [Google Scholar] [CrossRef]
- Fernandez, M.I.; Go, Y.I.; Wong, M.L.D.; Früh, W.-G. Review of Challenges and Key Enablers in Energy Systems towards Net Zero Target: Renewables, Storage, Buildings, & Grid Technologies. Heliyon 2024, 10, e40691. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Ahmed, A.H.; Liebscher, M.; Li, H.; Guo, Y.; Pang, B.; Adresi, M.; Li, W.; Mechtcherine, V. Electrical resistivity and self-sensing properties of low-cement limestone calcined clay cement (LC3) mortar. Mater. Des. 2025, 252, 113790. [Google Scholar] [CrossRef]
- Tian, W.; Du, H.; Wang, J.; Weigand, J.J.; Qi, J.; Wang, S.; Li, L. A review of electrolyte additives in vanadium redox flow batteries. Materials 2023, 16, 4582. [Google Scholar] [CrossRef]
- Zhang, E.Q.; Tang, L. Rechargeable concrete battery. Buildings 2021, 11, 103. [Google Scholar] [CrossRef]
- Yin, D.; Liu, S.; Yin, L.; Du, K.; Yan, J.; Armwood-Gordon, C.K.; Li, L. Rechargeable cement-based solid-state nickel-iron batteries for energy storage of self-powered buildings. Sustain. Mater. Technol. 2025, 44, e01350. [Google Scholar] [CrossRef]
- Barcellona, S.; Codecasa, L.; Colnago, S.; Piegari, L. Calendar aging effect on the open circuit voltage of lithium-ion battery. Energies 2023, 16, 4869. [Google Scholar] [CrossRef]
- Wang, D.; Bao, Y.; Shi, J. Online lithium-ion battery internal resistance measurement application in state-of-charge estimation using the extended Kalman filter. Energies 2017, 10, 1284. [Google Scholar] [CrossRef]
- Bangera, D.N.; Sudhakar, Y.; Nazareth, R.A. Concrete-based energy storage: Exploring electrode and electrolyte enhancements. RSC Adv. 2024, 14, 28854–28880. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-F.; Xiong, X.-B.; Ma, J.; Huang, J. MnO2 with/without Ni doped films on carbon fibers by for enhancing compression and thermoelectric performances of cement. J. Build. Eng. 2024, 95, 110154. [Google Scholar] [CrossRef]
- Mohamad, A.A.; Khezri, R.; Motlagh, S.R.; Etesami, M.; Kheawhom, S. Anode Corrosion and Mitigation in Metal–Air Batteries—II (Zn–Air). In Corrosion and Degradation in Fuel Cells, Supercapacitors and Batteries; Springer Nature: Cham, Switzerland, 2024; pp. 425–442. [Google Scholar]
- Joseph, R.J. Development of Cement-Based Batteries for Self-Powering Cathodic Protection Systems. Ph.D. Thesis, Heriot-Watt University, Edinburgh, UK, 2018. [Google Scholar]
- Wu, Y.; Liu, N. Visualizing battery reactions and processes by using in situ and in operando microscopies. Chem 2018, 4, 438–465. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Balke, N. Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: Status and perspectives. Adv. Mater. 2010, 22, E193–E209. [Google Scholar] [CrossRef] [PubMed]
- Kwon, G.; Ko, Y.; Kim, Y.; Kim, K.; Kang, K. Versatile redox-active organic materials for rechargeable energy storage. Acc. Chem. Res. 2021, 54, 4423–4433. [Google Scholar] [CrossRef]
- Taufiq Musa, M.; Shaari, N.; Kamarudin, S.K. Carbon nanotube, graphene oxide and montmorillonite as conductive fillers in polymer electrolyte membrane for fuel cell: An overview. Int. J. Energy Res. 2021, 45, 1309–1346. [Google Scholar] [CrossRef]
- Yadav, S.; Kamble, Z.; Behera, B.K. Advances in multifunctional textile structural power composites: A review. J. Mater. Sci. 2022, 57, 17105–17138. [Google Scholar] [CrossRef]
- Chung, D. A critical review of electrical-resistance-based self-sensing in conductive cement-based materials. Carbon 2023, 203, 311–325. [Google Scholar] [CrossRef]
- Chuang, W.; Geng-Sheng, J.; Bing-Liang, L.; Lei, P.; Ying, F.; Ni, G.; Ke-Zhi, L. Dispersion of carbon fibers and conductivity of carbon fiber-reinforced cement-based composites. Ceram. Int. 2017, 43, 15122–15132. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Qiang, S.; Lu, H.; Li, J. Effect of carbon fibers and graphite particles on mechanical properties and electrical conductivity of cement composite. J. Build. Eng. 2024, 94, 110036. [Google Scholar] [CrossRef]
- Sun, M.-Q.; Li, J.; Wang, Y.-J.; Zhang, X.-Y. Preparation of carbon fiber reinforced cement-based composites using self-made carbon fiber mat. Constr. Build. Mater. 2015, 79, 283–289. [Google Scholar] [CrossRef]
- Allam, H.; Duplan, F.; Amziane, S.; Burtschell, Y. Carbon fibers’ percolation in smart cementitious materials considering sand characteristics. Mater. Struct. 2023, 56, 103. [Google Scholar] [CrossRef]
- Navarro, L.; De Gracia, A.; Colclough, S.; Browne, M.; McCormack, S.J.; Griffiths, P.; Cabeza, L.F. Thermal energy storage in building integrated thermal systems: A review. Part 1. Active storage systems. Renew. Energy 2016, 88, 526–547. [Google Scholar] [CrossRef]
- Silva-Campillo, A.; Pérez-Arribas, F.; Suárez-Bermejo, J.C. Health-monitoring systems for marine structures: A review. Sensors 2023, 23, 2099. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Zhang, C.; Li, M.; Li, N.; Wu, H.; Liu, Y.; Peng, W.; Song, Y. Marine structural health monitoring with optical fiber sensors: A review. Sensors 2023, 23, 1877. [Google Scholar] [CrossRef]
- Votsis, R.A.; Michailides, C.; Tantele, E.A.; Onoufriou, T. Review of technologies for monitoring the performance of marine structures. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Sapporo, Japan, 10−15 June 2018. [Google Scholar]
- Li, W.; Liu, J.; Xia, K.; Yang, P.; Zhang, Z.; Jiao, P.; Qu, F.; Xu, Z.; He, Z. Dual-mode wireless integrated system for real-time monitoring and early warning of large-scale marine structures. Nano Energy 2023, 118, 108970. [Google Scholar] [CrossRef]
- Tsafack, P.; Fru, S.E.; Nghemachi, A.V.; Tanyi, E. Impact of high constant charging current rates on the charge/discharge efficiency in lead acid batteries, for residential photovoltaic system applications. J. Energy Storage 2023, 63, 107013. [Google Scholar] [CrossRef]
- Zhao, C.; Dong, W.; Wang, K.; Tao, Z.; Li, W. Investigation on effects of LiCl, KCl and polyethylene oxide on electrochemical properties of cement-based capacitors. Constr. Build. Mater. 2025, 481, 141612. [Google Scholar] [CrossRef]
- Xiao, J.; Lv, Z.; Duan, Z.; Zhang, C. Pore structure characteristics, modulation and its effect on concrete properties: A review. Constr. Build. Mater. 2023, 397, 132430. [Google Scholar] [CrossRef]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar] [CrossRef]
- Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280. [Google Scholar] [CrossRef]
- Ouellette, S.A.; Todd, M.D. Cement seawater battery energy harvester for marine infrastructure monitoring. IEEE Sens. J. 2013, 14, 865–872. [Google Scholar] [CrossRef]
- Honorio, T.; Bore, T.; Benboudjema, F.; Vourc’h, E.; Ferhat, M. Dielectric properties of the pore solution in cement-based materials. J. Mol. Liq. 2020, 302, 112548. [Google Scholar] [CrossRef]
- Zhang, W.; Hou, D.; Ma, H. Multi-scale study water and ions transport in the cement-based materials: From molecular dynamics to random walk. Microporous Mesoporous Mater. 2021, 325, 111330. [Google Scholar] [CrossRef]
- Sun, Z. Estimating volume fraction of bound water in Portland cement concrete during hydration based on dielectric constant measurement. Mag. Concr. Res. 2008, 60, 205–210. [Google Scholar] [CrossRef]
- Johari, S.N.A.M.; Tajuddin, N.A.; Hanibah, H.; Deraman, S.K. A review: Ionic conductivity of solid polymer electrolyte based polyethylene oxide. Int. J. Electrochem. Sci. 2021, 16, 211049. [Google Scholar] [CrossRef]
- Su, X.; Xu, X.-P.; Ji, Z.-Q.; Wu, J.; Ma, F.; Fan, L.-Z. Polyethylene oxide-based composite solid electrolytes for lithium batteries: Current progress, low-temperature and high-voltage limitations, and prospects. Electrochem. Energy Rev. 2024, 7, 2. [Google Scholar] [CrossRef]
- Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253. [Google Scholar] [CrossRef]
- Rawat, S.; Singh, P.K.; Pandey, S.P.; Singh, R.C. Review on comparative study of solid polymer electrolyte polyethylene oxide (PEO) doped with ionic liquid. In Macromolecular Symposia; Wiley Online Library: Hoboken, NJ, USA, 2024; p. 2300050. [Google Scholar]
- Zhao, H.; Gan, Y.; Qu, F.; Tang, Z.; Peng, S.; Chen, Y.; Li, W. Nano-and micro-characterisation on the heterogeneity of ITZs in recycled lump concrete. Cem. Concr. Compos. 2025, 161, 106078. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Lehmann, C.; Abd Elrahman, M.; Stephan, D. Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches. Appl. Sci. 2017, 7, 550. [Google Scholar] [CrossRef]
- Zhang, D.; Tao, J.; Wan, C.; Huang, L.; Yang, M. Resilience analysis of maritime transportation networks: A systematic review. Transp. Saf. Environ. 2024, 6, tdae009. [Google Scholar] [CrossRef]
- Provis, J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Qu, F.; Li, W.; Tao, Z.; Castel, A.; Wang, K. High temperature resistance of fly ash/GGBFS-based geopolymer mortar with load-induced damage. Mater. Struct. 2020, 53, 111. [Google Scholar] [CrossRef]
- Sahoo, P.; Rao, N.; Jain, S.K.; Gupta, S. Carbon sequestration in earth-based alkali-activated mortar: Phase changes and performance after natural exposure. Npj Mater. Sustain. 2024, 2, 34. [Google Scholar] [CrossRef]
- Jin, F.; Zhao, M.; Xu, M.; Mo, L. Maximising the benefits of calcium carbonate in sustainable cements: Opportunities and challenges associated with alkaline waste carbonation. Npj Mater. Sustain. 2024, 2, 1. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Lin, S.-C.; Wang, J.-A.; Hsu, S.-Y.; Ma, C.-C.M. Preparation and characterization of geopolymer-based batteries with electrochemical impedance spectroscopy (EIS) and discharge performance. J. Electrochem. Soc. 2018, 165, A3029. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Lorente, S.; Duhard-Barone, A. Effect of the pore size of cement based materials on ionic transport. Constr. Build. Mater. 2017, 147, 160–167. [Google Scholar] [CrossRef]
- Xie, J.; Qin, Y.; Zhang, Y.; Chen, T.; Wang, B.; Zhang, Q.; Xia, Y. Towards human-like automated vehicles: Review and perspectives on behavioural decision making and intelligent motion planning. Transp. Saf. Environ. 2025, 7, tdae005. [Google Scholar] [CrossRef]
- Yang, H.; Wu, N. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review. Energy Sci. Eng. 2022, 10, 1643–1671. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, B.; Liu, X.; Liu, J.; Ding, J.; Zhong, C.; Hu, W. Water-in-salt electrolyte for safe and high-energy aqueous battery. Energy Storage Mater. 2021, 34, 461–474. [Google Scholar] [CrossRef]
- Haschka, F.; Warthmann, W.; Benczúr-Ürmössy, G. Alkaline batteries for hybrid and electric vehicles. J. Power Sources 1998, 72, 32–36. [Google Scholar] [CrossRef]
- Li, W.; Qu, F.; Dong, W.; Mishra, G.; Shah, S.P. A comprehensive review on self-sensing graphene/cementitious composites: A pathway toward next-generation smart concrete. Constr. Build. Mater. 2022, 331, 127284. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Guo, Y.; Qu, F.; Wang, K.; Sheng, D. Piezoresistive performance of hydrophobic cement-based sensors under moisture and chloride-rich environments. Cem. Concr. Compos. 2022, 126, 104379. [Google Scholar] [CrossRef]
- Collins, F.; Lambert, J.; Duan, W.H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cem. Concr. Compos. 2012, 34, 201–207. [Google Scholar] [CrossRef]
- Mahmood, F.; Ashraf, S.; Shahzad, M.; Li, B.; Asghar, F.; Amjad, W.; Omar, M.M. Graphene synthesis from organic substrates: A review. Ind. Eng. Chem. Res. 2023, 62, 17314–17327. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Lu, N.; Qu, F.; Vessalas, K.; Sheng, D. Piezoresistive behaviours of cement-based sensor with carbon black subjected to various temperature and water content. Compos. Part B Eng. 2019, 178, 107488. [Google Scholar] [CrossRef]
- Guo, Y.; Li, W.; Dong, W.; Luo, Z.; Qu, F.; Yang, F.; Wang, K. Self-sensing performance of cement-based sensor with carbon black and polypropylene fibre subjected to different loading conditions. J. Build. Eng. 2022, 59, 105003. [Google Scholar] [CrossRef]
- Guo, Y.; Qu, F.; Tiwari, R.; Yoo, D.-Y.; Wang, K.; Wang, Y.; Li, W. Development of self-sensing asphalt cementitious composites using conductive carbon fibre and recycled copper tailing. Constr. Build. Mater. 2025, 474, 140965. [Google Scholar] [CrossRef]
- Zare, Y.; Munir, M.T.; Rhee, K.Y.; Park, S.-J. Multi-scale prediction of effective conductivity for carbon nanofiber polymer composites. J. Mater. Res. Technol. 2024, 33, 8895–8902. [Google Scholar] [CrossRef]
- Rew, Y.; Baranikumar, A.; Tamashausky, A.V.; El-Tawil, S.; Park, P. Electrical and mechanical properties of asphaltic composites containing carbon based fillers. Constr. Build. Mater. 2017, 135, 394–404. [Google Scholar] [CrossRef]
- De Beauvoir, T.H.; Dursun, S.; Gao, L.; Randall, C. New opportunities in metallization integration in cofired electroceramic multilayers by the cold sintering process. ACS Appl. Electron. Mater. 2019, 1, 1198–1207. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, Q.; Xu, Z.; Wang, Z.; Chen, G.; Deng, X.; Fu, C.; Cai, W. A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics. Compos. Part B Eng. 2019, 166, 204–212. [Google Scholar] [CrossRef]
- Tiwari, B.; Choudhary, R. Effect of mn on structural and dielectric properties of Pb(Zr0.5Tti0.48)O3 electroceramic. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3046–3052. [Google Scholar] [CrossRef]
- Zhao, C.; Dong, W.; Mahlia, T.I.; Shi, L.; Wang, K.; Shah, S.P.; Li, W. Enhancing energy storage capability for renewable energy systems through advanced cement-based supercapacitors. Energy Build. 2025, 338, 115732. [Google Scholar] [CrossRef]
- Demircilioglu, E.; Teomete, E.; Ozbulut, O.E. Strain sensitivity of steel-fiber-reinforced industrial smart concrete. J. Intell. Mater. Syst. Struct. 2020, 31, 127–136. [Google Scholar] [CrossRef]
- Zheng, J.; Engelhard, M.H.; Mei, D.; Jiao, S.; Polzin, B.J.; Zhang, J.-G.; Xu, W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2017, 2, 17012. [Google Scholar] [CrossRef]
- Wirtanen, T.; Prenzel, T.; Tessonnier, J.-P.; Waldvogel, S.R. Cathodic corrosion of metal electrodes—How to prevent it in electroorganic synthesis. Chem. Rev. 2021, 121, 10241–10270. [Google Scholar] [CrossRef] [PubMed]
- Krupa, I.; Cecen, V.; Boudenne, A.; Prokeš, J.; Novák, I. The mechanical and adhesive properties of electrically and thermally conductive polymeric composites based on high density polyethylene filled with nickel powder. Mater. Des. 2013, 51, 620–628. [Google Scholar] [CrossRef]
- Ishfaq, K.; Anjum, I.; Pruncu, C.I.; Amjad, M.; Kumar, M.S.; Maqsood, M.A. Progressing towards sustainable machining of steels: A detailed review. Materials 2021, 14, 5162. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D. Polymer/cement composite electrolyte with high strength and high ionic conductivity for structural supercapacitors. Cem. Concr. Compos. 2024, 149, 105512. [Google Scholar] [CrossRef]
- Li, M.; Zhong, J.; Li, G.; Zhang, Q.; Cen, F.; Gao, P. Study on the performance of polymer-modified conductive cement-based materials. Buildings 2023, 13, 2961. [Google Scholar] [CrossRef]
- Lim, K.-M.; Lee, J.-H. Technology Status and Prospect of Conductive Concrete and Cementitious Composite Battery. Int. J. Struct. Civ. Eng. Res. 2018, 7, 194–198. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Zhang, D.; Zhan, P. Porous polymer cement composites for quasi-solid graphene supercapacitors. J. Energy Storage 2023, 63, 106991. [Google Scholar] [CrossRef]
- Deng, H.; Lin, L.; Ji, M.; Zhang, S.; Yang, M.; Fu, Q. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 2014, 39, 627–655. [Google Scholar] [CrossRef]
- Hu, H.; Li, D.; Salim, T.; Li, Y.; Cheng, G.; Lam, Y.M.; Ding, J. Electrically driven hydrogel actuators: Working principle, material design and applications. J. Mater. Chem. C 2024, 12, 1565–1582. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; Khayat, K.H. Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cem. Concr. Compos. 2016, 71, 97–109. [Google Scholar] [CrossRef]
- Badalyan, M.M.; Muradyan, N.G.; Shainova, R.S.; Arzumanyan, A.A.; Kalantaryan, M.A.; Sukiasyan, R.R.; Yeranosyan, M.; Laroze, D.; Vardanyan, Y.V.; Barseghyan, M.G. Effect of silica fume concentration and water–cement ratio on the compressive strength of cement-based mortars. Buildings 2024, 14, 757. [Google Scholar] [CrossRef]
- Yan, H.; Li, S.; Zhong, J.; Li, B. An electrochemical perspective of aqueous zinc metal anode. Nano-Micro Lett. 2024, 16, 15. [Google Scholar] [CrossRef]
- Bella, F.; De Luca, S.; Fagiolari, L.; Versaci, D.; Amici, J.; Francia, C.; Bodoardo, S. An overview on anodes for magnesium batteries: Challenges towards a promising storage solution for renewables. Nanomaterials 2021, 11, 810. [Google Scholar] [CrossRef]
- Yang, J.; Chen, J.; Wang, Z.; Wang, Z.; Zhang, Q.; He, B.; Zhang, T.; Gong, W.; Chen, M.; Qi, M. High-capacity iron-based anodes for aqueous secondary nickel−iron batteries: Recent progress and prospects. ChemElectroChem 2021, 8, 274–290. [Google Scholar] [CrossRef]
- Moncada, A.; Piazza, S.; Sunseri, C.; Inguanta, R. Recent improvements in PbO2 nanowire electrodes for lead-acid battery. J. Power Sources 2015, 275, 181–188. [Google Scholar] [CrossRef]
- Popp, H.; Koller, M.; Jahn, M.; Bergmann, A. Mechanical methods for state determination of Lithium-Ion secondary batteries: A review. J. Energy Storage 2020, 32, 101859. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, K. A comprehensive review on the development of solid-state metal–air batteries operated on oxide-ion chemistry. Adv. Energy Mater. 2021, 11, 2000630. [Google Scholar] [CrossRef]
- Khalifa, H.; Shenashen, M.; Reda, A.; Selim, M.; Elmarakb, A.; El-Safty, S. Complex structure model mutated anode/cathode electrodes for improving large-scale battery designs. ACS Appl. Energy Mater. 2020, 3, 9168–9181. [Google Scholar] [CrossRef]
- Jiao, P.; Fang, C.; Zhang, D. In-situ polymerized polyacrylamide/magnesium phosphate cement electrolyte for structural supercapacitor. J. Energy Storage 2022, 55, 105416. [Google Scholar] [CrossRef]
- Gao, J.; Fan, H.; Wang, E.; Song, Y.; Sun, G. Exploring the effect of magnesium content on the electrochemical performance of aluminum anodes in alkaline batteries. Electrochim. Acta 2020, 353, 136497. [Google Scholar] [CrossRef]
- Attias, R.; Salama, M.; Hirsch, B.; Goffer, Y.; Aurbach, D. Anode-electrolyte interfaces in secondary magnesium batteries. Joule 2019, 3, 27–52. [Google Scholar] [CrossRef]
- Yoon, H.; Howlett, P.; Best, A.S.; Forsyth, M.; Macfarlane, D.R. Fast charge/discharge of Li metal batteries using an ionic liquid electrolyte. J. Electrochem. Soc. 2013, 160, A1629. [Google Scholar] [CrossRef]
- Ovshinsky, S.R.; Fetcenko, M.A.; Ross, J. A nickel metal hydride battery for electric vehicles. Science 1993, 260, 176–181. [Google Scholar] [CrossRef]
- Cattelan, M.; Mazzucato, M.; Durante, C. Corrosion in Pb-Acid Batteries—Recent Developments. In Corrosion and Degradation in Fuel Cells, Supercapacitors and Batteries; Springer: Cham, Switzerland, 2024; pp. 195–217. [Google Scholar]
- Wang, Q.; Jiang, L.; Yu, Y.; Sun, J. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93–114. [Google Scholar] [CrossRef]
- Christensen, J.; Albertus, P.; Sanchez-Carrera, R.S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A. A critical review of Li/air batteries. J. Electrochem. Soc. 2011, 159, R1. [Google Scholar] [CrossRef]
- Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.-P.; Phan, T.N.; Bertin, D.; Gigmes, D.; Devaux, D. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 2013, 12, 452–457. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Hu, J.; Hu, Y.; Li, M.; Yu, W.; Zhang, P.; Liang, S.; Wu, X.; Xiao, K. Insights on relationship between deterioration and direct-current internal resistance of valve regulated lead-acid battery by addition of granular carbon additives under HRPSoC duty. J. Electrochem. Soc. 2018, 165, A1753. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.P.; Sougrati, M.T.; Feng, Z.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 2017, 7, 1601424. [Google Scholar] [CrossRef]
- Shan, R.; Yang, J.; Kuo, A.; Lee, R.; Hu, X.; Boyle, N.G.; Do, D.H. Continuous heart rate dynamics preceding in-hospital pulseless electrical activity or asystolic cardiac arrest of respiratory etiology. Resuscitation 2022, 179, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhan, P.; Zhang, D. Redox active cement-based electrolyte towards high-voltage asymmetric solid supercapacitor. Cem. Concr. Compos. 2023, 138, 104987. [Google Scholar] [CrossRef]
- Patowary, B.B.; Brahma, D.; Mondal, A. Study of RuO2- and MnO2-based electrode materials and their performance review in conjunction with PANi for supercapacitor applications. Ionics 2025, 31, 67–115. [Google Scholar] [CrossRef]
- Rahhal, V.; Bonavetti, V.; Trusilewicz, L.; Pedrajas, C.; Talero, R. Role of the filler on Portland cement hydration at early ages. Constr. Build. Mater. 2012, 27, 82–90. [Google Scholar] [CrossRef]
- Talero, R.; Pedrajas, C.; González, M.; Aramburo, C.; Blazquez, A.; Rahhal, V. Role of the filler on Portland cement hydration at very early ages: Rheological behaviour of their fresh cement pastes. Constr. Build. Mater. 2017, 151, 939–949. [Google Scholar] [CrossRef]
- Xu, L.; Sun, Z.; Chen, Y.; Yang, K.; Yang, X.; Wu, K.; Lothenbach, B. Retardation mechanism of zinc on Portland cement and alite hydration. Cem. Concr. Res. 2024, 184, 107571. [Google Scholar] [CrossRef]
- Mo, X. Laboratory study of LiOH in inhibiting alkali–silica reaction at 20 °C: A contribution. Cem. Concr. Res. 2005, 35, 499–504. [Google Scholar] [CrossRef]
- Collins, C.; Ideker, J.H.; Willis, G.; Kurtis, K. Examination of the effects of LiOH, LiCl, and LiNO3 on alkali–silica reaction. Cem. Concr. Res. 2004, 34, 1403–1415. [Google Scholar] [CrossRef]
- Wetzel, A.; Middendorf, B. Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag. Cem. Concr. Compos. 2019, 100, 53–59. [Google Scholar] [CrossRef]
- Xi, J.; Liu, J.; Yang, K.; Zhang, S.; Han, F.; Sha, J.; Zheng, X. Role of silica fume on hydration and strength development of ultra-high performance concrete. Constr. Build. Mater. 2022, 338, 127600. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, J.; Yu, Z.; Liu, L.; Chu, H. Improving conductivity and self-sensing properties of magnetically aligned electroless nickel coated glass fiber cement. Cem. Concr. Compos. 2023, 137, 104929. [Google Scholar] [CrossRef]
- Wang, H.; Xu, D.; Jia, G.; Mao, Z.; Gong, Y.; He, B.; Wang, R.; Fan, H.J. Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Mater. 2020, 25, 114–123. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, J.; Bai, M.; Wu, W.; Li, S.; Ma, Y. Investigation of the self-discharge behaviors of the LiMn2O4 cathode at elevated temperatures: In situ X-ray diffraction analysis and a co-doping mitigation strategy. J. Mater. Chem. A 2019, 7, 13364–13371. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, J.; Li, H. Batteries with high theoretical energy densities. Energy Storage Mater. 2020, 26, 46–55. [Google Scholar] [CrossRef]
- Dong, W.; Duan, Z.; Peng, S.; Chen, Y.; Chu, D.; Tai, H.; Li, W. Triboelectric nanogenerator-powering piezoresistive cement-based sensors for energy harvesting and structural health monitoring. Nano Energy 2025, 137, 110823. [Google Scholar] [CrossRef]
- Farzanian, K.; Teixeira, K.P.; Rocha, I.P.; Carneiro, L.D.S.; Ghahremaninezhad, A. The mechanical strength, degree of hydration, and electrical resistivity of cement pastes modified with superabsorbent polymers. Constr. Build. Mater. 2016, 109, 156–165. [Google Scholar] [CrossRef]
- Wang, H.; Du, T.; Zhang, A.; Cao, P.; Zhang, L.; Gao, X.; Liu, J.; Shi, F.; He, Z. Relationship between electrical resistance and rheological parameters of fresh cement slurry. Constr. Build. Mater. 2020, 256, 119479. [Google Scholar] [CrossRef]
- Sadeghi, A.; Ghaffarinejad, A. Recent advances of electrode materials based on nickel foam current collector for lithium-based batteries–A review. J. Power Sources 2024, 600, 234275. [Google Scholar] [CrossRef]
- Seong, W.M.; Park, K.-Y.; Lee, M.H.; Moon, S.; Oh, K.; Park, H.; Lee, S.; Kang, K. Abnormal self-discharge in lithium-ion batteries. Energy Environ. Sci. 2018, 11, 970–978. [Google Scholar] [CrossRef]
- Sosa Gallardo, A.F.; Provis, J.L. Electrochemical cell design and impedance spectroscopy of cement hydration. J. Mater. Sci. 2021, 56, 1203–1220. [Google Scholar] [CrossRef]
- Yan, D.; Mao, J.; Gao, R.; Wang, W.; Wang, S.; Ruan, S.; Qian, H.; Mu, F.; Chen, S.; Liu, Y. Improving the electrochemical performance of cement-based supercapacitors through microstructure optimization. J. Energy Storage 2024, 96, 112717. [Google Scholar] [CrossRef]
- Dong, W.; Zhao, C.; Peng, S.; Wu, C.; Kim, T.; Wang, K.; Li, W. Recycled carbon fibre/cement-based triboelectric nanogenerators toward energy-efficient and smart civil infrastructure. Compos. Part B Eng. 2025, 303, 112603. [Google Scholar] [CrossRef]
- Ramírez, C.; Belmonte, M.; Miranzo, P.; Osendi, M.I. Applications of ceramic/graphene composites and hybrids. Materials 2021, 14, 2071. [Google Scholar] [CrossRef]
- Nciri, N.; Kim, N.; Cho, N. Spent graphite from end-of-life lithium-ion batteries (LIBs) as a promising nanoadditive to boost road pavement performance. Materials 2021, 14, 7908. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Ji, Z.; Li, B.; Zhu, L.; Wang, J. Electromagnetic wave absorption properties of helical carbon fibers and expanded glass beads filled cement-based composites. Compos. Part A Appl. Sci. Manuf. 2018, 114, 360–367. [Google Scholar] [CrossRef]
- Xu, Y.; Mawatari, K.; Konno, T.; Kitamori, T.; Ishihara, K. Spontaneous packaging and hypothermic storage of mammalian cells with a cell-membrane-mimetic polymer hydrogel in a microchip. ACS Appl. Mater. Interfaces 2015, 7, 23089–23097. [Google Scholar] [CrossRef]
- Deivanayagam, R.; Shahbazian-Yassar, R. Electrochemical methods and protocols for characterization of ceramic and polymer electrolytes for rechargeable batteries. Batter. Supercaps 2021, 4, 596–606. [Google Scholar] [CrossRef]
- Kang, Z.; Yang, Y.; Zhang, J.; Li, N. Synergistic effects of biochar and carbon black on conductive cement composites: Mechanical and conductive properties. Constr. Build. Mater. 2025, 470, 140579. [Google Scholar] [CrossRef]
- Chakraborti, S.; Banerjee, P.S.; Basu, D.; Wießner, S.; Heinrich, G.; Das, A.; Banerjee, S.S. Elastomers for Soft Electronics: A Review from the Material’s Perspective. Adv. Eng. Mater. 2025, 27, 2402458. [Google Scholar] [CrossRef]
- Crews, J.A. Methodology for Analysis of Stress, Creep, and Fatigue Behavior of Compliant Mechanisms; Missouri University of Science and Technology: Rolla, MI, USA, 2016. [Google Scholar]
- Lu, D.; Jiang, X.; Qu, F.; Huo, Y. Mitigating sulfate ions migration in concrete: A targeted approach to address recycled concrete aggregate’s impact. J. Clean. Prod. 2024, 442, 141135. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Hong, T.; Piette, M.A. Energy flexibility of residential buildings: A systematic review of characterization and quantification methods and applications. Adv. Appl. Energy 2021, 3, 100054. [Google Scholar] [CrossRef]
- Sunderlin, N.; Colclasure, A.; Yang, C.; Major, J.; Fink, K.; Saxon, A.; Keyser, M. Effects of cryogenic freezing upon lithium-ion battery safety and component integrity. J. Energy Storage 2023, 63, 107046. [Google Scholar] [CrossRef]
- Du, T.; Li, C.; Wang, X.; Ma, L.; Qu, F.; Wang, B.; Peng, J.; Li, W. Effects of pipe diameter, curing age and exposure temperature on chloride diffusion of concrete with embedded PVC pipe. J. Build. Eng. 2022, 57, 104957. [Google Scholar] [CrossRef]
- Du, T.; Chen, J.; Qu, F.; Li, C.; Zhao, H.; Xie, B.; Yuan, M.; Li, W. Degradation prediction of recycled aggregate concrete under sulphate wetting–drying cycles using BP neural network. In Structures; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1837–1850. [Google Scholar]
- Na, O.; Xi, Y.; Ou, E.; Saouma, V.E. The effects of alkali-silica reaction on the mechanical properties of concretes with three different types of reactive aggregate. Struct. Concr. 2016, 17, 74–83. [Google Scholar] [CrossRef]
- Wu, W.; Wang, T.; Gong, Q.; Zhang, K.; An, X.; Wang, D. Characteristics of the alkali-silica reaction in seawater and sea sand concrete with different water-cement ratios. Constr. Build. Mater. 2023, 400, 132822. [Google Scholar] [CrossRef]
- Feng, X.; Thomas, M.; Bremner, T.; Balcom, B.; Folliard, K. Studies on lithium salts to mitigate ASR-induced expansion in new concrete: A critical review. Cem. Concr. Res. 2005, 35, 1789–1796. [Google Scholar] [CrossRef]
- Cañón, A.; Garcés, P.; Climent, M.; Carmona, J.; Zornoza, E. Feasibility of electrochemical chloride extraction from structural reinforced concrete using a sprayed conductive graphite powder–cement paste as anode. Corros. Sci. 2013, 77, 128–134. [Google Scholar] [CrossRef]
- Li, G.; Wu, S.; Sha, Z.; Zhou, Y.; Wang, C.-H.; Peng, S. Dual-breakdown direct-current triboelectric nanogenerator with synergistically enhanced performance. Nano Energy 2022, 99, 107355. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Huang, F.; Wu, S.; Wang, C.-H.; Peng, S. Transparent, stretchable and high-performance triboelectric nanogenerator based on dehydration-free ionically conductive solid polymer electrode. Nano Energy 2021, 88, 106289. [Google Scholar] [CrossRef]
- Yu, W.; Gao, Y.; Du, Z.; Feng, H.; Xu, H. Sensor fault diagnosis based on passive observer and hybrid CNN-GRU model for intelligent ship. Transp. Saf. Environ. 2025, tdaf034. [Google Scholar] [CrossRef]
- Yin, M.; Li, K.; Cheng, X. A review on artificial intelligence in high-speed rail. Transp. Saf. Environ. 2020, 2, 247–259. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, E. World first rechargeable cement-based batteries. Chalmers University of Technology, January 5, 2022. Available online: https://www.chalmers.se/en/current/news/ace-world-first-rechargeable-cement-based-batteries/ (accessed on 20 July 2025).
- Li, G.; Wu, S.; Sha, Z.; Zhao, L.; Chu, D.; Wang, C.H.; Peng, S. A triboelectric nanogenerator powered piezoresistive strain sensing technique insensitive to output variations. Nano Energy 2023, 108, 108185. [Google Scholar] [CrossRef]
- Xiong, Y.; Xie, J.; Hu, Y.; Huang, H.; Wang, T.; Yang, J.; Zuo, Y. Research on the physical layer diagnosis of an Ethernet-based train communication network. Transp. Saf. Environ. 2025, tdaf033. [Google Scholar] [CrossRef]
- Fu, X.; Ma, E.; Chung, D.; Anderson, W. Self-monitoring in carbon fiber reinforced mortar by reactance measurement. Cem. Concr. Res. 1997, 27, 845–852. [Google Scholar] [CrossRef]
- Chung, D.; Wang, Y. Capacitance-based stress self-sensing in cement paste without requiring any admixture. Cem. Concr. Compos. 2018, 94, 255–263. [Google Scholar] [CrossRef]
- Zhao, C.; Dong, W.; Liu, J.; Peng, S.; Li, W. Toward smart buildings and civil infrastructure: A review on multifunctional conductive concrete materials through nanotechnology. Cem. Concr. Compos. 2025, 163, 106165. [Google Scholar] [CrossRef]
Type | Electrodes and Key Additives | Output and Performance | Ref. |
---|---|---|---|
Probe (Al–steel) | Al anode; steel cathode; cement electrolyte | ~0.4 V; ~100 nW/cm2 power | [17] |
Layered | Zn powder anode; MnO2 cathode; C black | 0.72 V OCV; 0.2 mAh capacity; 1.4 µW/cm2 | [19] |
Layered (cyl) | Zn/MnO2 + C fiber/CNT; PEG in electrolyte | ~0.7–1.4 V; ~35 µA/cm2; charged supercapacitor | [21] |
Probe/Can | Mg or Zn or Al anodes; Cu cathode | Mg–Cu: 1.3 V OCV (0.1 mA load); Can: ~5 mA initial | [22] |
Probe (Mg–Cu) | Mg anode plate; Cu plate | 1.6 V OCV; ~0.6 mA for 238 h (primary cell) | [23] |
Layered (Ni–Fe) | Ni(OH)2 cathode; Fe anode; CF mesh + KOH/resin | 1.8 V OCV; >2 mA for 22 h; 7 Wh/m2; rechargeable | [33] |
Layered (Ni–Fe) | Ni foam + rGO/NiCo2Sₓ cathode; Ni foam + Fe2O3 anode; resin | ~1.5 V(est.); >11 Wh/m2 over 30 cycles; improved kinetics | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Zhang, S.; Wang, Y.; Guo, Y.; Zhang, C.; Qu, F. Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects. Materials 2025, 18, 3601. https://doi.org/10.3390/ma18153601
Huang H, Zhang S, Wang Y, Guo Y, Zhang C, Qu F. Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects. Materials. 2025; 18(15):3601. https://doi.org/10.3390/ma18153601
Chicago/Turabian StyleHuang, Haifeng, Shuhao Zhang, Yizhe Wang, Yipu Guo, Chao Zhang, and Fulin Qu. 2025. "Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects" Materials 18, no. 15: 3601. https://doi.org/10.3390/ma18153601
APA StyleHuang, H., Zhang, S., Wang, Y., Guo, Y., Zhang, C., & Qu, F. (2025). Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects. Materials, 18(15), 3601. https://doi.org/10.3390/ma18153601