Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,660)

Search Parameters:
Keywords = network diagnosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4024 KiB  
Article
WaveCORAL-DCCA: A Scalable Solution for Rotor Fault Diagnosis Across Operational Variabilities
by Nima Rezazadeh, Mario De Oliveira, Giuseppe Lamanna, Donato Perfetto and Alessandro De Luca
Electronics 2025, 14(15), 3146; https://doi.org/10.3390/electronics14153146 (registering DOI) - 7 Aug 2025
Abstract
This paper presents WaveCORAL-DCCA, an unsupervised domain adaptation (UDA) framework specifically developed to address data distribution shifts and operational variabilities (OVs) in rotor fault diagnosis. The framework introduces the novel integration of discrete wavelet transformation for robust time–frequency feature extraction and an enhanced [...] Read more.
This paper presents WaveCORAL-DCCA, an unsupervised domain adaptation (UDA) framework specifically developed to address data distribution shifts and operational variabilities (OVs) in rotor fault diagnosis. The framework introduces the novel integration of discrete wavelet transformation for robust time–frequency feature extraction and an enhanced deep canonical correlation analysis (DCCA) network with correlation alignment (CORAL) loss for superior domain-invariant representation learning. This combination enables more effective alignment of source and target feature distributions without requiring any labelled data from the target domain. Comprehensive validation on both experimental and numerically simulated rotor datasets across three health conditions—i.e., normal, unbalanced, and misaligned—demonstrates that WaveCORAL-DCCA achieves an average diagnostic accuracy of 95%. Notably, it outperforms established UDA benchmarks by at least 5–17% in cross-domain scenarios. These results confirm that WaveCORAL-DCCA provides robust generalisation across machines, fault severities, and operational conditions, even with scarce target domain samples, offering a scalable and practical solution for industrial rotor fault diagnosis. Full article
Show Figures

Figure 1

17 pages, 5085 KiB  
Article
A Segmentation Network with Two Distinct Attention Modules for the Segmentation of Multiple Renal Structures in Ultrasound Images
by Youhe Zuo, Jing Li and Jing Tian
Diagnostics 2025, 15(15), 1978; https://doi.org/10.3390/diagnostics15151978 - 7 Aug 2025
Abstract
Background/Objectives: Ultrasound imaging is widely employed to assess kidney health and diagnose renal diseases. Accurate segmentation of renal structures in ultrasound images plays a critical role in the diagnosis and treatment of related kidney diseases. However, challenges such as speckle noise and [...] Read more.
Background/Objectives: Ultrasound imaging is widely employed to assess kidney health and diagnose renal diseases. Accurate segmentation of renal structures in ultrasound images plays a critical role in the diagnosis and treatment of related kidney diseases. However, challenges such as speckle noise and low contrast still hinder precise segmentation. Methods: In this work, we propose an encoder–decoder architecture, named MAT-UNet, which incorporates two distinct attention mechanisms to enhance segmentation accuracy. Specifically, the multi-convolution pixel-wise attention module utilizes the pixel-wise attention to enable the network to focus more effectively on important features at each stage. Furthermore, the triple-branch multi-head self-attention mechanism leverages the different convolution layers to obtain diverse receptive fields, capture global contextual information, compensate for the local receptive field limitations of convolution operations, and boost the segmentation performance. We evaluate the segmentation performance of the proposed MAT-UNet using the Open Kidney US Data Set (OKUD). Results: For renal capsule segmentation, MAT-UNet achieves a Dice Similarity Coefficient (DSC) of 93.83%, a 95% Hausdorff Distance (HD95) of 32.02 mm, an Average Surface Distance (ASD) of 9.80 mm, and an Intersection over Union (IOU) of 88.74%. Additionally, MAT-UNet achieves a DSC of 84.34%, HD95 of 35.79 mm, ASD of 11.17 mm, and IOU of 74.26% for central echo complex segmentation; a DSC of 66.34%, HD95 of 82.54 mm, ASD of 19.52 mm, and IOU of 51.78% for renal medulla segmentation; and a DSC of 58.93%, HD95 of 107.02 mm, ASD of 21.69 mm, and IOU of 43.61% for renal cortex segmentation. Conclusions: The experimental results demonstrate that our proposed MAT-UNet achieves superior performance in multiple renal structure segmentation in ultrasound images. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

15 pages, 440 KiB  
Article
Automated Detection of Epileptic Seizures in EEG Signals via Micro-Capsule Networks
by Baozeng Wang, Jiayue Zhou, Hualiang Zhang, Jin Zhou and Changyong Wang
Brain Sci. 2025, 15(8), 842; https://doi.org/10.3390/brainsci15080842 (registering DOI) - 7 Aug 2025
Abstract
Background: Epilepsy is a chronic neurological disorder that affects individuals across all age groups. Early detection and intervention are crucial for minimizing both physical and psychological distress. However, the unpredictable nature of seizures presents considerable challenges for timely detection and accurate diagnosis. Method: [...] Read more.
Background: Epilepsy is a chronic neurological disorder that affects individuals across all age groups. Early detection and intervention are crucial for minimizing both physical and psychological distress. However, the unpredictable nature of seizures presents considerable challenges for timely detection and accurate diagnosis. Method: To address the challenge of low recognition accuracy in small-sample, single-channel epileptic electroencephalogram (EEG) signals, this study proposes an automated seizure detection method using a micro-capsule network. First, we propose a dimensionality-increasing transformation technique for single-channel EEG signals to meet the network’s input requirements. Second, a streamlined micro-capsule network is designed by optimizing and simplifying the framework’s architecture. Finally, EEG features are encoded as feature vectors to better represent spatial hierarchical relationships between seizure patterns, enhancing the framework’s adaptability and improving detection accuracy. Result: Compared to existing EEG-based detection methods, our approach achieves higher accuracy on small-sample datasets while maintaining a reduction in computational complexity. Conclusions: By leveraging its micro-capsule network architecture, the framework demonstrates superior classification accuracy when analyzing single-channel epileptiform EEG signals, significantly outperforming both convolutional neural network-based implementations and established machine learning methodologies. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

27 pages, 8053 KiB  
Article
Rolling Bearing Fault Diagnosis Based on Fractional Constant Q Non-Stationary Gabor Transform and VMamba-Conv
by Fengyun Xie, Chengjie Song, Yang Wang, Minghua Song, Shengtong Zhou and Yuanwei Xie
Fractal Fract. 2025, 9(8), 515; https://doi.org/10.3390/fractalfract9080515 - 6 Aug 2025
Abstract
Rolling bearings are prone to failure, meaning that research on intelligent fault diagnosis is crucial in relation to this key transmission component in rotating machinery. The application of deep learning (DL) has significantly advanced the development of intelligent fault diagnosis. This paper proposes [...] Read more.
Rolling bearings are prone to failure, meaning that research on intelligent fault diagnosis is crucial in relation to this key transmission component in rotating machinery. The application of deep learning (DL) has significantly advanced the development of intelligent fault diagnosis. This paper proposes a novel method for rolling bearing fault diagnosis based on the fractional constant Q non-stationary Gabor transform (FCO-NSGT) and VMamba-Conv. Firstly, a rolling bearing fault experimental platform is established and the vibration signals of rolling bearings under various working conditions are collected using an acceleration sensor. Secondly, a kurtosis-to-entropy ratio (KER) method and the rotational kernel function of the fractional Fourier transform (FRFT) are proposed and applied to the original CO-NSGT to overcome the limitations of the original CO-NSGT, such as the unsatisfactory time–frequency representation due to manual parameter setting and the energy dispersion problem of frequency-modulated signals that vary with time. A lightweight fault diagnosis model, VMamba-Conv, is proposed, which is a restructured version of VMamba. It integrates an efficient selective scanning mechanism, a state space model, and a convolutional network based on SimAX into a dual-branch architecture and uses inverted residual blocks to achieve a lightweight design while maintaining strong feature extraction capabilities. Finally, the time–frequency graph is inputted into VMamba-Conv to diagnose rolling bearing faults. This approach reduces the number of parameters, as well as the computational complexity, while ensuring high accuracy and excellent noise resistance. The results show that the proposed method has excellent fault diagnosis capabilities, with an average accuracy of 99.81%. By comparing the Adjusted Rand Index, Normalized Mutual Information, F1 Score, and accuracy, it is concluded that the proposed method outperforms other comparison methods, demonstrating its effectiveness and superiority. Full article
Show Figures

Figure 1

25 pages, 7961 KiB  
Article
A Multi-Layer Attention Knowledge Tracking Method with Self-Supervised Noise Tolerance
by Haifeng Wang, Hao Liu, Yanling Ge and Zhihao Yu
Appl. Sci. 2025, 15(15), 8717; https://doi.org/10.3390/app15158717 (registering DOI) - 6 Aug 2025
Abstract
The knowledge tracing method based on deep learning is used to assess learners’ cognitive states, laying the foundation for personalized education. However, deep learning methods are inefficient when processing long-term series data and are prone to overfitting. To improve the accuracy of cognitive [...] Read more.
The knowledge tracing method based on deep learning is used to assess learners’ cognitive states, laying the foundation for personalized education. However, deep learning methods are inefficient when processing long-term series data and are prone to overfitting. To improve the accuracy of cognitive state prediction, we design a Multi-layer Attention Self-supervised Knowledge Tracing Method (MASKT) using self-supervised learning and the Transformer method. In the pre-training stage, MASKT uses a random forest method to filter out positive and negative correlation feature embeddings; then, it reuses noise-processed restoration tasks to extract more learnable features and enhance the learning ability of the model. The Transformer in MASKT not only solves the problem of long-term dependencies between input and output using an attention mechanism, but also has parallel computing capabilities that can effectively improve the learning efficiency of the prediction model. Finally, a multidimensional attention mechanism is integrated into cross-attention to further optimize prediction performance. The experimental results show that, compared with various knowledge tracing models on multiple datasets, MASKT’s prediction performance remains 2 percentage points higher. Compared with the multidimensional attention mechanism of graph neural networks, MASKT’s time efficiency is shortened by nearly 30%. Due to the improvement in prediction accuracy and performance, this method has broad application prospects in the field of cognitive diagnosis in intelligent education. Full article
Show Figures

Figure 1

18 pages, 8099 KiB  
Article
Leveraging Synthetic Degradation for Effective Training of Super-Resolution Models in Dermatological Images
by Francesco Branciforti, Kristen M. Meiburger, Elisa Zavattaro, Paola Savoia and Massimo Salvi
Electronics 2025, 14(15), 3138; https://doi.org/10.3390/electronics14153138 - 6 Aug 2025
Abstract
Teledermatology relies on digital transfer of dermatological images, but compression and resolution differences compromise diagnostic quality. Image enhancement techniques are crucial to compensate for these differences and improve quality for both clinical assessment and AI-based analysis. We developed a customized image degradation pipeline [...] Read more.
Teledermatology relies on digital transfer of dermatological images, but compression and resolution differences compromise diagnostic quality. Image enhancement techniques are crucial to compensate for these differences and improve quality for both clinical assessment and AI-based analysis. We developed a customized image degradation pipeline simulating common artifacts in dermatological images, including blur, noise, downsampling, and compression. This synthetic degradation approach enabled effective training of DermaSR-GAN, a super-resolution generative adversarial network tailored for dermoscopic images. The model was trained on 30,000 high-quality ISIC images and evaluated on three independent datasets (ISIC Test, Novara Dermoscopic, PH2) using structural similarity and no-reference quality metrics. DermaSR-GAN achieved statistically significant improvements in quality scores across all datasets, with up to 23% enhancement in perceptual quality metrics (MANIQA). The model preserved diagnostic details while doubling resolution and surpassed existing approaches, including traditional interpolation methods and state-of-the-art deep learning techniques. Integration with downstream classification systems demonstrated up to 14.6% improvement in class-specific accuracy for keratosis-like lesions compared to original images. Synthetic degradation represents a promising approach for training effective super-resolution models in medical imaging, with significant potential for enhancing teledermatology applications and computer-aided diagnosis systems. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

14 pages, 1122 KiB  
Article
Revisiting Cytoreductive Nephrectomy in Metastatic Renal Cell Carcinoma: Real-World Evidence of Survival Benefit with First-Line Immunotherapy and Targeted Therapy Regimens
by Sri Saran Manivasagam, Alireza Aminsharifi and Jay D. Raman
J. Clin. Med. 2025, 14(15), 5543; https://doi.org/10.3390/jcm14155543 - 6 Aug 2025
Abstract
Background: Renal cell carcinoma (RCC) is a common malignancy with a rising global incidence. While cytoreductive nephrectomy (CRN) was historically a cornerstone in the management of metastatic RCC (mRCC), its role has been questioned following pivotal trials such as CARMENA and SURTIME. [...] Read more.
Background: Renal cell carcinoma (RCC) is a common malignancy with a rising global incidence. While cytoreductive nephrectomy (CRN) was historically a cornerstone in the management of metastatic RCC (mRCC), its role has been questioned following pivotal trials such as CARMENA and SURTIME. With the advent of immune checkpoint inhibitors (ICIs) and targeted therapies, the contemporary relevance of CRN coupled with first-line immunotherapy and targeted therapy combination regimens warrants re-evaluation. Methods: This retrospective cohort study utilized the TriNetX research network to identify patients aged 18–90 years diagnosed with mRCC between 2005 and 2024 who received first-line systemic therapies. Patients were stratified into two cohorts based on receipt of CRN status within one year of diagnosis. Propensity score matching (1:1) was done to adjust baseline characteristics. Kaplan–Meier survival analysis and Cox proportional hazards modeling were used to compare five-year overall survival between the groups. Results: Among 5960 eligible patients, 1776 (888 CRN matched to 888 who did not) formed the cohort of analysis. The CRN group demonstrated significantly higher five-year survival (57.7% vs. 45.0%, p < 0.0001) with a hazard ratio of 1.56 (95% CI: 1.33–1.83). Subgroup analyses showed consistent survival benefits across all four NCCN-recommended first-line regimens—Axitinib + Pembrolizumab: 64.0% (CRN) vs. 53.3% (no CRN), p = 0.01; Cabozantinib + Nivolumab: 50.1% vs. 40.4%, p = 0.004; Lenvatinib + Pembrolizumab: 37.4% vs. 22.8%, p = 0.012; Nivolumab + Ipilimumab: 56.4% vs. 46.1%, p = 0.005. Conclusions: In the era of modern immunotherapy and targeted agents, CRN remains associated with improved survival in patients with mRCC receiving NCCN-recommended first-line regimens. These findings support the continued evaluation of CRN as a component of multimodal therapy, particularly in patients with favorable risk profiles. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

19 pages, 1185 KiB  
Article
PredictMed-CDSS: Artificial Intelligence-Based Decision Support System Predicting the Probability to Develop Neuromuscular Hip Dysplasia
by Carlo M. Bertoncelli, Federico Solla, Michal Latalski, Sikha Bagui, Subhash C. Bagui, Stefania Costantini and Domenico Bertoncelli
Bioengineering 2025, 12(8), 846; https://doi.org/10.3390/bioengineering12080846 (registering DOI) - 6 Aug 2025
Abstract
Neuromuscular hip dysplasia (NHD) is a common deformity in children with cerebral palsy (CP). Although some predictive factors of NHD are known, the prediction of NHD is in its infancy. We present a Clinical Decision Support System (CDSS) designed to calculate the probability [...] Read more.
Neuromuscular hip dysplasia (NHD) is a common deformity in children with cerebral palsy (CP). Although some predictive factors of NHD are known, the prediction of NHD is in its infancy. We present a Clinical Decision Support System (CDSS) designed to calculate the probability of developing NHD in children with CP. The system utilizes an ensemble of three machine learning (ML) algorithms: Neural Network (NN), Support Vector Machine (SVM), and Logistic Regression (LR). The development and evaluation of the CDSS followed the DECIDE-AI guidelines for AI-driven clinical decision support tools. The ensemble was trained on a data series from 182 subjects. Inclusion criteria were age between 12 and 18 years and diagnosis of CP from two specialized units. Clinical and functional data were collected prospectively between 2005 and 2023, and then analyzed in a cross-sectional study. Accuracy and area under the receiver operating characteristic (AUROC) were calculated for each method. Best logistic regression scores highlighted history of previous orthopedic surgery (p = 0.001), poor motor function (p = 0.004), truncal tone disorder (p = 0.008), scoliosis (p = 0.031), number of affected limbs (p = 0.05), and epilepsy (p = 0.05) as predictors of NHD. Both accuracy and AUROC were highest for NN, 83.7% and 0.92, respectively. The novelty of this study lies in the development of an efficient Clinical Decision Support System (CDSS) prototype, specifically designed to predict future outcomes of neuromuscular hip dysplasia (NHD) in patients with cerebral palsy (CP) using clinical data. The proposed system, PredictMed-CDSS, demonstrated strong predictive performance for estimating the probability of NHD development in children with CP, with the highest accuracy achieved using neural networks (NN). PredictMed-CDSS has the potential to assist clinicians in anticipating the need for early interventions and preventive strategies in the management of NHD among CP patients. Full article
Show Figures

Figure 1

23 pages, 6490 KiB  
Article
LISA-YOLO: A Symmetry-Guided Lightweight Small Object Detection Framework for Thyroid Ultrasound Images
by Guoqing Fu, Guanghua Gu, Wen Liu and Hao Fu
Symmetry 2025, 17(8), 1249; https://doi.org/10.3390/sym17081249 - 6 Aug 2025
Abstract
Non-invasive ultrasound diagnosis, combined with deep learning, is frequently used for detecting thyroid diseases. However, real-time detection on portable devices faces limitations due to constrained computational resources, and existing models often lack sufficient capability for small object detection of thyroid nodules. To address [...] Read more.
Non-invasive ultrasound diagnosis, combined with deep learning, is frequently used for detecting thyroid diseases. However, real-time detection on portable devices faces limitations due to constrained computational resources, and existing models often lack sufficient capability for small object detection of thyroid nodules. To address this, this paper proposes an improved lightweight small object detection network framework called LISA-YOLO, which enhances the lightweight multi-scale collaborative fusion algorithm. The proposed framework exploits the inherent symmetrical characteristics of ultrasound images and the symmetrical architecture of the detection network to better capture and represent features of thyroid nodules. Specifically, an improved depthwise separable convolution algorithm replaces traditional convolution to construct a lightweight network (DG-FNet). Through symmetrical cross-scale fusion operations via FPN, detection accuracy is maintained while reducing computational overhead. Additionally, an improved bidirectional feature network (IMS F-NET) fully integrates the semantic and detailed information of high- and low-level features symmetrically, enhancing the representation capability for multi-scale features and improving the accuracy of small object detection. Finally, a collaborative attention mechanism (SAF-NET) uses a dual-channel and spatial attention mechanism to adaptively calibrate channel and spatial weights in a symmetric manner, effectively suppressing background noise and enabling the model to focus on small target areas in thyroid ultrasound images. Extensive experiments on two image datasets demonstrate that the proposed method achieves improvements of 2.3% in F1 score, 4.5% in mAP, and 9.0% in FPS, while maintaining only 2.6 M parameters and reducing GFLOPs from 6.1 to 5.8. The proposed framework provides significant advancements in lightweight real-time detection and demonstrates the important role of symmetry in enhancing the performance of ultrasound-based thyroid diagnosis. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

15 pages, 2415 KiB  
Article
HBiLD-IDS: An Efficient Hybrid BiLSTM-DNN Model for Real-Time Intrusion Detection in IoMT Networks
by Hamed Benahmed, Mohammed M’hamedi, Mohammed Merzoug, Mourad Hadjila, Amina Bekkouche, Abdelhak Etchiali and Saïd Mahmoudi
Information 2025, 16(8), 669; https://doi.org/10.3390/info16080669 - 6 Aug 2025
Abstract
The Internet of Medical Things (IoMT) is revolutionizing healthcare by enabling continuous patient monitoring, early diagnosis, and personalized treatments. However, the het-erogeneity of IoMT devices and the lack of standardized protocols introduce serious security vulnerabilities. To address these challenges, we propose a hybrid [...] Read more.
The Internet of Medical Things (IoMT) is revolutionizing healthcare by enabling continuous patient monitoring, early diagnosis, and personalized treatments. However, the het-erogeneity of IoMT devices and the lack of standardized protocols introduce serious security vulnerabilities. To address these challenges, we propose a hybrid BiLSTM-DNN intrusion detection system, named HBiLD-IDS, that combines Bidirectional Long Short-Term Memory (BiLSTM) networks with Deep Neural Networks (DNNs), leveraging both temporal dependencies in network traffic and hierarchical feature extraction. The model is trained and evaluated on the CICIoMT2024 dataset, which accurately reflects the diversity of devices and attack vectors encountered in connected healthcare environments. The dataset undergoes rigorous preprocessing, including data cleaning, feature selection through correlation analysis and recursive elimination, and feature normalization. Compared to existing IDS models, our approach significantly enhances detection accuracy and generalization capacity in the face of complex and evolving attack patterns. Experimental results show that the proposed IDS model achieves a classification accuracy of 98.81% across 19 attack types confirming its robustness and scalability. This approach represents a promising solution for strengthening the security posture of IoMT networks against emerging cyber threats. Full article
Show Figures

Figure 1

16 pages, 4442 KiB  
Article
Faulted-Pole Discrimination in Shipboard DC Microgrids Using S-Transformation and Convolutional Neural Networks
by Yayu Yang, Zhenxing Wang, Ning Gao, Kangan Wang, Binjie Jin, Hao Chen and Bo Li
J. Mar. Sci. Eng. 2025, 13(8), 1510; https://doi.org/10.3390/jmse13081510 - 5 Aug 2025
Abstract
The complex topology of shipboard DC microgrids and the strong coupling between positive and negative poles during faults pose significant challenges for faulted-pole identification, especially under high-resistance conditions. To address these issues, this paper proposes a novel faulted-pole identification method based on S-Transformation [...] Read more.
The complex topology of shipboard DC microgrids and the strong coupling between positive and negative poles during faults pose significant challenges for faulted-pole identification, especially under high-resistance conditions. To address these issues, this paper proposes a novel faulted-pole identification method based on S-Transformation and convolutional neural networks (CNNs). Single-ended voltage and current measurements from the generator side are used to generate time–frequency spectrograms via S-Transformation, which are then processed by a CNN trained to classify the faulted pole. This approach avoids reliance on complex threshold settings. Simulation results on a representative shipboard DC microgrid demonstrate that the proposed method achieves high accuracy, fast response, and strong robustness, even under high-resistance fault scenarios. The method significantly enhances the selectivity and reliability of fault protection, offering a promising solution for advanced marine DC power systems. Compared to conventional fault-diagnosis techniques, the proposed model achieves notable improvements in classification accuracy and computational efficiency for line-fault detection. Full article
Show Figures

Figure 1

25 pages, 13175 KiB  
Article
Fault Diagnosis for CNC Machine Tool Feed Systems Based on Enhanced Multi-Scale Feature Network
by Peng Zhang, Min Huang and Weiwei Sun
Lubricants 2025, 13(8), 350; https://doi.org/10.3390/lubricants13080350 - 5 Aug 2025
Abstract
Despite advances in Convolutional Neural Networks (CNNs) for intelligent fault diagnosis in CNC machine tools, bearing fault diagnosis in CNC feed systems remains challenging, particularly in multi-scale feature extraction and generalization across operating conditions. This study introduces an enhanced multi-scale feature network (MSFN) [...] Read more.
Despite advances in Convolutional Neural Networks (CNNs) for intelligent fault diagnosis in CNC machine tools, bearing fault diagnosis in CNC feed systems remains challenging, particularly in multi-scale feature extraction and generalization across operating conditions. This study introduces an enhanced multi-scale feature network (MSFN) that addresses these limitations through three integrated modules designed to extract critical fault features from vibration signals. First, a Soft-Scale Denoising (S2D) module forms the backbone of the MSFN, capturing multi-scale fault features from input signals. Second, a Multi-Scale Adaptive Feature Enhancement (MS-AFE) module based on long-range weighting mechanisms is developed to enhance the extraction of periodic fault features. Third, a Dynamic Sequence–Channel Attention (DSCA) module is incorporated to improve feature representation across channel and sequence dimensions. Experimental results on two datasets demonstrate that the proposed MSFN achieves high diagnostic accuracy and exhibits robust generalization across diverse operating conditions. Moreover, ablation studies validate the effectiveness and contributions of each module. Full article
(This article belongs to the Special Issue Advances in Tool Wear Monitoring 2025)
Show Figures

Figure 1

21 pages, 4707 KiB  
Article
A Real-Time Cell Image Segmentation Method Based on Multi-Scale Feature Fusion
by Xinyuan Zhang, Yang Zhang, Zihan Li, Yujiao Song, Shuhan Chen, Zhe Mao, Zhiyong Liu, Guanglan Liao and Lei Nie
Bioengineering 2025, 12(8), 843; https://doi.org/10.3390/bioengineering12080843 (registering DOI) - 5 Aug 2025
Abstract
Cell confluence and number are critical indicators for assessing cellular growth status, contributing to disease diagnosis and the development of targeted therapies. Accurate and efficient cell segmentation is essential for quantifying these indicators. However, current segmentation methodologies still encounter significant challenges in addressing [...] Read more.
Cell confluence and number are critical indicators for assessing cellular growth status, contributing to disease diagnosis and the development of targeted therapies. Accurate and efficient cell segmentation is essential for quantifying these indicators. However, current segmentation methodologies still encounter significant challenges in addressing multi-scale heterogeneity, poorly delineated boundaries under limited annotation, and the inherent trade-off between computational efficiency and segmentation accuracy. We propose an innovative network architecture. First, a preprocessing pipeline combining contrast-limited adaptive histogram equalization (CLAHE) and Gaussian blur is introduced to balance noise suppression and local contrast enhancement. Second, a bidirectional feature pyramid network (BiFPN) is incorporated, leveraging cross-scale feature calibration to enhance multi-scale cell recognition. Third, adaptive kernel convolution (AKConv) is developed to capture the heterogeneous spatial distribution of glioma stem cells (GSCs) through dynamic kernel deformation, improving boundary segmentation while reducing model complexity. Finally, a probability density-guided non-maximum suppression (Soft-NMS) algorithm is proposed to alleviate cell under-detection. Experimental results demonstrate that the model achieves 95.7% mAP50 (box) and 95% mAP50 (mask) on the GSCs dataset with an inference speed of 38 frames per second. Moreover, it simultaneously supports dual-modality output for cell confluence assessment and precise counting, providing a reliable automated tool for tumor microenvironment research. Full article
Show Figures

Figure 1

19 pages, 7531 KiB  
Article
Evaluating the Impact of 2D MRI Slice Orientation and Location on Alzheimer’s Disease Diagnosis Using a Lightweight Convolutional Neural Network
by Nadia A. Mohsin and Mohammed H. Abdulameer
J. Imaging 2025, 11(8), 260; https://doi.org/10.3390/jimaging11080260 - 5 Aug 2025
Viewed by 35
Abstract
Accurate detection of Alzheimer’s disease (AD) is critical yet challenging for early medical intervention. Deep learning methods, especially convolutional neural networks (CNNs), have shown promising potential for improving diagnostic accuracy using magnetic resonance imaging (MRI). This study aims to identify the most informative [...] Read more.
Accurate detection of Alzheimer’s disease (AD) is critical yet challenging for early medical intervention. Deep learning methods, especially convolutional neural networks (CNNs), have shown promising potential for improving diagnostic accuracy using magnetic resonance imaging (MRI). This study aims to identify the most informative combination of MRI slice orientation and anatomical location for AD classification. We propose an automated framework that first selects the most relevant slices using a feature entropy-based method applied to activation maps from a pretrained CNN model. For classification, we employ a lightweight CNN architecture based on depthwise separable convolutions to efficiently analyze the selected 2D MRI slices extracted from preprocessed 3D brain scans. To further interpret model behavior, an attention mechanism is integrated to analyze which feature level contributes the most to the classification process. The model is evaluated on three binary tasks: AD vs. mild cognitive impairment (MCI), AD vs. cognitively normal (CN), and MCI vs. CN. The experimental results show the highest accuracy (97.4%) in distinguishing AD from CN when utilizing the selected slices from the ninth axial segment, followed by the tenth segment of coronal and sagittal orientations. These findings demonstrate the significance of slice location and orientation in MRI-based AD diagnosis and highlight the potential of lightweight CNNs for clinical use. Full article
(This article belongs to the Section AI in Imaging)
Show Figures

Figure 1

20 pages, 4095 KiB  
Article
Integrated Explainable Diagnosis of Gear Wear Faults Based on Dynamic Modeling and Data-Driven Representation
by Zemin Zhao, Tianci Zhang, Kang Xu, Jinyuan Tang and Yudian Yang
Sensors 2025, 25(15), 4805; https://doi.org/10.3390/s25154805 - 5 Aug 2025
Viewed by 52
Abstract
Gear wear degrades transmission performance, necessitating highly reliable fault diagnosis methods. To address the limitations of existing approaches—where dynamic models rely heavily on prior knowledge, while data-driven methods lack interpretability—this study proposes an integrated bidirectional verification framework combining dynamic modeling and deep learning [...] Read more.
Gear wear degrades transmission performance, necessitating highly reliable fault diagnosis methods. To address the limitations of existing approaches—where dynamic models rely heavily on prior knowledge, while data-driven methods lack interpretability—this study proposes an integrated bidirectional verification framework combining dynamic modeling and deep learning for interpretable gear wear diagnosis. First, a dynamic gear wear model is established to quantitatively reveal wear-induced modulation effects on meshing stiffness and vibration responses. Then, a deep network incorporating Gradient-weighted Class Activation Mapping (Grad-CAM) enables visualized extraction of frequency-domain sensitive features. Bidirectional verification between the dynamic model and deep learning demonstrates enhanced meshing harmonics in wear faults, leading to a quantitative diagnostic index that achieves 0.9560 recognition accuracy for gear wear across four speed conditions, significantly outperforming comparative indicators. This research provides a novel approach for gear wear diagnosis that ensures both high accuracy and interpretability. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

Back to TopTop