Leveraging Synthetic Degradation for Effective Training of Super-Resolution Models in Dermatological Images
Abstract
1. Introduction
- We introduce DermaSR-GAN, a novel super-resolution generative adversarial network tailored through specialized training and architecture optimizations to address the unique challenges and image characteristics encountered in dermatology.
- We develop a customized image degradation pipeline to simulate common quality issues in real-world dermatological images, allowing DermaSR-GAN to learn effective mappings from low to high-quality counterparts during training.
- We comprehensively evaluate DermaSR-GAN on three external dermatology image datasets, demonstrating consistent and statistically significant improvements in objective image quality metrics compared to original images and state-of-the-art super-resolution techniques.
- We showcase DermaSR-GAN’s capabilities in boosting downstream classification performance, achieving up to 14.6% improvement in a dermatological image classifier when using DermaSR-GAN-enhanced images, highlighting its utility for computer-aided diagnosis.
2. Related Works
2.1. SR Techniques in Medical Imaging
2.2. Motivation of Our Work
3. Materials and Methods
3.1. Dataset Description
3.2. Custom Degradation Pipeline for Dermatological Images
- Image blur is simulated by randomly applying one of three types: Gaussian, motion, or defocus blur, each with equal probability. Kernel sizes are sampled from odd values between 7 × 7 and 21 × 21. For Gaussian blur, the standard deviation σ ranges between 0.1 and 3.0. This variability aims to capture the diversity of acquisition conditions (e.g., handheld devices, shaky images).
- To replicate sensor-related degradation or transmission noise, we added either Gaussian noise (p = 0.20), Poisson noise (p = 0.20), or salt-and-pepper noise (p = 0.05). Gaussian noise uses a σ randomly sampled between 1 and 30. Poisson noise mimics low-light image acquisition and sensor variability. Salt-and-pepper noise is applied with a lower probability to simulate digital artifacts or faulty pixel sensors.
- Image resolution is reduced using one of four interpolation methods: bilinear, bicubic, area, or nearest-neighbor, each selected with equal likelihood. This step ensures that the model becomes robust to various image resizing operations, as commonly seen when images are shared or viewed on different devices.
- Finally, lossy compression is applied using JPEG compression [31] with a quality factor randomly chosen between 50 and 100, with high probability (p = 0.80). This emulates compression artifacts resulting from storage limitations or transfer via mobile or web platforms, which is frequent in real-world teledermatology workflows.
3.3. DermaSR-GAN Architecture and Training
- Twenty-three RRDB blocks with growth channel of 32;
- Initial convolution layer with 64 feature channels;
- Upsampling via pixel shuffle with scale factor of 2;
- Final convolution layer producing 3-channel RGB output.
- is the pixel-wise L1 loss ensuring content consistency,
- uses pre-trained VGG19 features,
- is the adversarial loss for generation of high-frequency details.
3.4. Evaluation Criteria
- Pix2Pix: A Pixel-To-Pixel HD [40] architecture trained using the same high-resolution images, but with low-resolution images obtained solely by downsampling the high-resolution ones.
- Pix2PixDP: Another Pixel-To-Pixel-HD network trained using the same dataset utilized for the DermaSR-GAN, where low-resolution images were obtained through the customized degradation pipeline (DP), ensuring a fair comparison under identical conditions.
- VDSR: A single-image SR method [41] based on a very deep convolutional network (20 layers) inspired by VGG-Net.
- ResShift: A diffusion-based SR model [42] that overcomes the slow inference of traditional diffusion methods (which require hundreds of steps) by reducing sampling to just 15 steps.
- An ESR-GAN [23] pretained model tailored for real-world applications, providing a benchmark against a renowned model in super-resolution tasks beyond the specific domain of dermatological imagery.
4. Results
4.1. Quantitative Evaluation and Benchmark
4.2. Comparison with Heuristic Methods
4.3. Comparison with Deep Learning Methods
4.4. Qualitative Evaluation and Impact on Downstream Tasks
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
BKL | Benign Keratosis-like Lesions |
CNN | Convolutional Neural Network |
DP | Degradation Pipeline |
DS | Downsampling |
EDSR | Enhanced Deep Super-Resolution |
ESRGAN | Enhanced Super-Resolution Generative Adversarial Network |
FSIM | Feature Similarity Index |
GAN | Generative Adversarial Network |
HR | High-Resolution |
ISIC | International Skin Imaging Collaboration |
LR | Low-Resolution |
MANIQA | Multi-Dimension Attention Network for No-Reference Image Quality |
P2P-HD | Pixel-To-Pixel High Definition |
PSNR | Peak Signal-to-Noise Ratio |
SR | Super-Resolution |
SRGAN | Super-Resolution Generative Adversarial Network |
SSIM | Structural Similarity Index |
VDSR | Very Deep Super-Resolution |
ViT | Vision Transformer |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Helfand, M.; Mahon, S.M.; Eden, K.B.; Frame, P.S.; Orleans, C.T. Screening for Skin Cancer. Am. J. Prev. Med. 2001, 20, 47–58. [Google Scholar] [CrossRef]
- Veronese, F.; Tarantino, V.; Zavattaro, E.; Biacchi, F.; Airoldi, C.; Salvi, M.; Seoni, S.; Branciforti, F.; Meiburger, K.M.; Savoia, P. Teledermoscopy in the Diagnosis of Melanocytic and Non-Melanocytic Skin Lesions: NurugoTM Derma Smartphone Microscope as a Possible New Tool in Daily Clinical Practice. Diagnostics 2022, 12, 1371. [Google Scholar] [CrossRef]
- Pala, P.; Bergler-Czop, B.S.; Gwiżdż, J. Teledermatology: Idea, Benefits and Risks of Modern Age—A Systematic Review Based on Melanoma. Pdia 2020, 37, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Coates, S.J.; Kvedar, J.; Granstein, R.D. Teledermatology: From Historical Perspective to Emerging Techniques of the Modern Era. J. Am. Acad. Dermatol. 2015, 72, 563–574. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Zeng, T.; Yang, G.; Shi, Z.; Gao, Z. Bridging Multi-Level Gaps: Bidirectional Reciprocal Cycle Framework for Text-Guided Label-Efficient Segmentation in Echocardiography. Med. Image Anal. 2025, 102, 103536. [Google Scholar] [CrossRef]
- Wang, W.; Liang, D.; Chen, Q.; Iwamoto, Y.; Han, X.-H.; Zhang, Q.; Hu, H.; Lin, L.; Chen, Y.-W. Medical Image Classification Using Deep Learning. In Deep Learning in Healthcare; Chen, Y.-W., Jain, L.C., Eds.; Intelligent Systems Reference Library; Springer International Publishing: Cham, Switzerland, 2020; Volume 171, pp. 33–51. ISBN 978-3-030-32605-0. [Google Scholar]
- Fernando, T.; Gammulle, H.; Denman, S.; Sridharan, S.; Fookes, C. Deep Learning for Medical Anomaly Detection—A Survey. ACM Comput. Surv. 2022, 54, 1–37. [Google Scholar] [CrossRef]
- Konz, N.; Chen, Y.; Dong, H.; Mazurowski, M.A. Anatomically-Controllable Medical Image Generation with Segmentation-Guided Diffusion Models. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2024; Linguraru, M.G., Dou, Q., Feragen, A., Giannarou, S., Glocker, B., Lekadir, K., Schnabel, J.A., Eds.; Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2024; Volume 15007, pp. 88–98. ISBN 978-3-031-72103-8. [Google Scholar]
- Datta, S.K.; Shaikh, M.A.; Srihari, S.N.; Gao, M. Soft Attention Improves Skin Cancer Classification Performance. In Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data; Reyes, M., Henriques Abreu, P., Cardoso, J., Hajij, M., Zamzmi, G., Rahul, P., Thakur, L., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2021; Volume 12929, pp. 13–23. ISBN 978-3-030-87443-8. [Google Scholar]
- Goceri, E. Automated Skin Cancer Detection: Where We Are and The Way to The Future. In Proceedings of the 2021 44th International Conference on Telecommunications and Signal Processing (TSP), Brno, Czech Republic, 26–28 July 2021; pp. 48–51. [Google Scholar]
- Branciforti, F.; Meiburger, K.M.; Zavattaro, E.; Veronese, F.; Tarantino, V.; Mazzoletti, V.; Cristo, N.D.; Savoia, P.; Salvi, M. Impact of Artificial Intelligence-based Color Constancy on Dermoscopical Assessment of Skin Lesions: A Comparative Study. Ski. Res. Technol. 2023, 29, e13508. [Google Scholar] [CrossRef]
- Li, Z.; Koban, K.C.; Schenck, T.L.; Giunta, R.E.; Li, Q.; Sun, Y. Artificial Intelligence in Dermatology Image Analysis: Current Developments and Future Trends. J. Clin. Med. 2022, 11, 6826. [Google Scholar] [CrossRef] [PubMed]
- Salvi, M.; Branciforti, F.; Molinari, F.; Meiburger, K.M. Generative Models for Color Normalization in Digital Pathology and Dermatology: Advancing the Learning Paradigm. Expert Syst. Appl. 2024, 245, 123105. [Google Scholar] [CrossRef]
- Zhang, M.; Ling, Q. Supervised Pixel-Wise GAN for Face Super-Resolution. IEEE Trans. Multimed. 2021, 23, 1938–1950. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, Q.; Jin, X.; Feng, J.; Wang, R.; Liao, H.; Lee, S.-J.; Yao, S. CASR-Net: A Color-Aware Super-Resolution Network for Panchromatic Image. Eng. Appl. Artif. Intell. 2022, 114, 105084. [Google Scholar] [CrossRef]
- Wang, X.; Xie, L.; Dong, C.; Shan, Y. Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 1905–1914. [Google Scholar]
- Abd El-Fattah, I.; Ali, A.M.; El-Shafai, W.; Taha, T.E.; Abd El-Samie, F.E. Deep-Learning-Based Super-Resolution and Classification Framework for Skin Disease Detection Applications. Opt. Quant. Electron. 2023, 55, 427. [Google Scholar] [CrossRef]
- Gohil, Z.M.; Desai, M.B. Revolutionizing Dermatology: A Comprehensive Survey of AI-Enhanced Early Skin Cancer Diagnosis. Arch. Comput. Methods Eng. 2024, 31, 4521–4531. [Google Scholar] [CrossRef]
- Freeman, W.T.; Jones, T.R.; Pasztor, E.C. Example-Based Super-Resolution. IEEE Comput. Grap. Appl. 2002, 22, 56–65. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the Super-Resolution Convolutional Neural Network. In Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; Volume 9906, pp. 391–407. ISBN 978-3-319-46474-9. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. Esrgan: Enhanced Super-Resolution Generative Adversarial Networks. In Computer Vision—ECCV 2018 Workshops; Springer: Berlin/Heidelberg, Germany, 2018; pp. 63–79. [Google Scholar]
- Alwakid, G.; Gouda, W.; Humayun, M.; Sama, N.U. Melanoma Detection Using Deep Learning-Based Classifications. Healthcare 2022, 10, 2481. [Google Scholar] [CrossRef]
- Mukadam, S.B.; Patil, H.Y. Skin Cancer Classification Framework Using Enhanced Super Resolution Generative Adversarial Network and Custom Convolutional Neural Network. Appl. Sci. 2023, 13, 1210. [Google Scholar] [CrossRef]
- Veeramani, N.; Jayaraman, P. A Promising AI Based Super Resolution Image Reconstruction Technique for Early Diagnosis of Skin Cancer. Sci. Rep. 2025, 15, 5084. [Google Scholar] [CrossRef]
- Meta AI. Executorch. Available online: https://docs.pytorch.org/executorch-overview (accessed on 1 August 2025).
- Rotemberg, V.; Kurtansky, N.; Betz-Stablein, B.; Caffery, L.; Chousakos, E.; Codella, N.; Combalia, M.; Dusza, S.; Guitera, P.; Gutman, D.; et al. A Patient-Centric Dataset of Images and Metadata for Identifying Melanomas Using Clinical Context. Sci. Data 2021, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, B.; Kendrick, C.; Brodzicki, A.; Jaworek-Korjakowska, J.; Yap, M.H. Analysis of the ISIC Image Datasets: Usage, Benchmarks and Recommendations. Med. Image Anal. 2022, 75, 102305. [Google Scholar] [CrossRef]
- Mendonca, T.; Ferreira, P.M.; Marques, J.S.; Marcal, A.R.S.; Rozeira, J. PH2—A Dermoscopic Image Database for Research and Benchmarking. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5437–5440. [Google Scholar]
- Al-Ani, M.S.; Awad, F.H. The JPEG Image Compression Algorithm. Int. J. Adv. Eng. Technol 2013, 6, 1055–1062. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar] [CrossRef]
- Schonfeld, E.; Schiele, B.; Khoreva, A. A U-Net Based Discriminator for Generative Adversarial Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 8207–8216. [Google Scholar]
- Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral Normalization for Generative Adversarial Networks. arXiv 2018, arXiv:1802.05957. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef]
- Huynh-Thu, Q.; Ghanbari, M. Scope of Validity of PSNR in Image/Video Quality Assessment. Electron. Lett. 2008, 44, 800–801. [Google Scholar] [CrossRef]
- Yang, S.; Wu, T.; Shi, S.; Lao, S.; Gong, Y.; Cao, M.; Wang, J.; Yang, Y. Maniqa: Multi-Dimension Attention Network for No-Reference Image Quality Assessment. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 19–20 June 2022; pp. 1191–1200. [Google Scholar]
- Gonzalez, R.C. Digital Image Processing; Pearson Education India: Chennai, India, 2009; ISBN 81-317-2695-9. [Google Scholar]
- Wang, T.-C.; Liu, M.-Y.; Zhu, J.-Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8798–8807. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Yue, Z.; Wang, J.; Loy, C.C. Resshift: Efficient Diffusion Model for Image Super-Resolution by Residual Shifting. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2023; Volume 36, pp. 13294–13307. [Google Scholar]
- Shao, D.; Qin, L.; Xiang, Y.; Ma, L.; Xu, H. Medical Image Blind Super-resolution Based on Improved Degradation Process. IET Image Process. 2023, 17, 1615–1625. [Google Scholar] [CrossRef]
- Lee, D.Y.; Kim, J.Y.; Cho, S.Y. Improving Medical Image Quality Using a Super-Resolution Technique with Attention Mechanism. Appl. Sci. 2025, 15, 867. [Google Scholar] [CrossRef]
- Ding, S.; Zheng, J.; Liu, Z.; Zheng, Y.; Chen, Y.; Xu, X.; Lu, J.; Xie, J. High-Resolution Dermoscopy Image Synthesis with Conditional Generative Adversarial Networks. Biomed. Signal Process. Control 2021, 64, 102224. [Google Scholar] [CrossRef]
Dataset | Number of Images | Usage |
---|---|---|
ISIC Archive | 15,857 | Training set |
ISIC Archive | 3027 | Validation set |
ISIC Archive | 9932 | Test set |
Novara Dermoscopic | 149 | Test set |
PH2 | 200 | Test set |
Dataset | Full-Reference Metrics | No-Reference Metrics | |||
---|---|---|---|---|---|
FSIM (↑) | SSIM (↑) | PSNR (↑) | MANIQAOR | MANIQASR | |
ISIC Test | 0.952 ± 0.019 | 0.940 ± 0.002 | 33.828 ± 2.340 | 0.504 ± 0.053 | 0.591 ± 0.048 * |
Novara Dermoscopic | 0.987 ± 0.004 | 0.919 ± 0.001 | 32.360 ± 1.243 | 0.463 ± 0.049 | 0.570 ± 0.043 * |
PH2 | 0.920 ± 0.016 | 0.868 ± 0.018 | 30.380 ± 1.654 | 0.543 ± 0.041 | 0.614 ± 0.047 * |
SR Method | Dataset | ||
---|---|---|---|
ISIC Test | Novara Dermoscopic | PH2 | |
Original image | 0.504 ± 0.053 | 0.463 ± 0.049 | 0.543 ± 0.041 |
Bilinear upsampling | 0.477 ± 0.052 | 0.460 ± 0.051 | 0.555 ± 0.043 |
Bicubic upsampling | 0.503 ± 0.054 | 0.469 ± 0.051 | 0.558 ± 0.043 |
DermaSR (proposed) | 0.591 ± 0.048 * | 0.570 ± 0.043 * | 0.614 ± 0.047 * |
SR Method | Dataset | ||
---|---|---|---|
ISIC Test | Novara Dermoscopic | PH2 | |
Original image | 0.504 ± 0.053 | 0.463 ± 0.049 | 0.543 ± 0.041 |
Pix2Pix [40] | 0.454 ± 0.036 | 0.473 ± 0.032 | 0.491 ± 0.037 |
Pix2PixDP [40] | 0.394 ± 0.026 | 0.409 ± 0.021 | 0.396 ± 0.022 |
VDSR [41] | 0.501 ± 0.032 | 0.494 ± 0.041 | 0.533 ± 0.025 |
ResShift [42] | 0.453 ± 0.420 | 0.376 ± 0.054 | 0.492 ± 0.036 |
ERSGAN [23] | 0.454 ± 0.033 | 0.380 ± 0.015 | 0.451 ± 0.052 |
DermaSR (proposed) | 0.591 ± 0.048 * | 0.570 ± 0.043 * | 0.614 ± 0.047 * |
Image | AKIEC | BCC | KL | MEL | NV | Average Accuracy |
---|---|---|---|---|---|---|
Original | 0.607 | 0.832 | 0.628 | 0.645 | 0.672 | 0.677 |
Pix2Pix | 0.612 | 0.827 | 0.645 | 0.660 | 0.693 | 0.687 |
Pix2PixDP | 0.641 | 0.831 | 0.692 | 0.714 | 0.710 | 0.717 |
VDSR | 0.644 | 0.825 | 0.741 | 0.750 | 0.738 | 0.739 |
ResShift | 0.618 | 0.827 | 0.670 | 0.691 | 0.737 | 0.708 |
ESRGAN | 0.629 | 0.824 | 0.651 | 0.648 | 0.687 | 0.700 |
Derma-SR GAN | 0.651 | 0.843 | 0.774 | 0.751 | 0.768 | 0.758 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branciforti, F.; Meiburger, K.M.; Zavattaro, E.; Savoia, P.; Salvi, M. Leveraging Synthetic Degradation for Effective Training of Super-Resolution Models in Dermatological Images. Electronics 2025, 14, 3138. https://doi.org/10.3390/electronics14153138
Branciforti F, Meiburger KM, Zavattaro E, Savoia P, Salvi M. Leveraging Synthetic Degradation for Effective Training of Super-Resolution Models in Dermatological Images. Electronics. 2025; 14(15):3138. https://doi.org/10.3390/electronics14153138
Chicago/Turabian StyleBranciforti, Francesco, Kristen M. Meiburger, Elisa Zavattaro, Paola Savoia, and Massimo Salvi. 2025. "Leveraging Synthetic Degradation for Effective Training of Super-Resolution Models in Dermatological Images" Electronics 14, no. 15: 3138. https://doi.org/10.3390/electronics14153138
APA StyleBranciforti, F., Meiburger, K. M., Zavattaro, E., Savoia, P., & Salvi, M. (2025). Leveraging Synthetic Degradation for Effective Training of Super-Resolution Models in Dermatological Images. Electronics, 14(15), 3138. https://doi.org/10.3390/electronics14153138