Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,661)

Search Parameters:
Keywords = natural recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/mouse/day), low-dose live NB23 (1 × 1010 CFU/mouse/day), or high-dose live NB23 (3 × 1010 CFU/mouse/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

2199 KiB  
Proceeding Paper
Analysis of Multi-Decadal Shoreline Changes at Topocalma Beach (O’Higgins Region, Chile) Using Satellite Imagery
by Waldo Pérez-Martínez, Idania Briceño de Urbaneja, Joaquín Valenzuela-Jara and Isidora Díaz-Quijada
Eng. Proc. 2025, 94(1), 16; https://doi.org/10.3390/engproc2025094016 - 6 Aug 2025
Abstract
This study presents a 39-year spatiotemporal analysis of shoreline variability at Topocalma Beach (Chile) using satellite-derived data collected between 1985 and 2024. A total of 350 satellite images were processed with CoastSat and DSAS v6.0 to quantify erosional and accretional trends across distinct [...] Read more.
This study presents a 39-year spatiotemporal analysis of shoreline variability at Topocalma Beach (Chile) using satellite-derived data collected between 1985 and 2024. A total of 350 satellite images were processed with CoastSat and DSAS v6.0 to quantify erosional and accretional trends across distinct beach sectors. The results show persistent erosion in the proximal zone near the Topocalma wetland and localized accretion in the distal (southern) segment. These changes are closely associated with the 2010 Maule earthquake and tsunami, strong ENSO phases, and an increase in storm surge activity since 2015. The spatiotemporal beach width model reveals distinct phases of retreat and short-term post-seismic stabilization, followed by a shift to sustained erosion. Overall, this study underscores the limited natural recovery capacity of the beach and highlights the utility of satellite-based monitoring tools for coastal resilience planning in data-limited regions. Full article
Show Figures

Figure 1

14 pages, 3011 KiB  
Article
Ameliorative Effects of Soybean Powder Fermented by Bacillus subtilis on Constipation Induced by Loperamide in Rats
by Gi Soo Lee, Su Kang Kim, Ju Yeon Ban and Chung-Hun Oh
Int. J. Mol. Sci. 2025, 26(15), 7615; https://doi.org/10.3390/ijms26157615 - 6 Aug 2025
Abstract
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated [...] Read more.
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated the laxative effects of soybean powder fermented by Bacillus subtilis DKU_09 in a loperamide-induced rat model of constipation. The probiotic strain was isolated from cheonggukjang, a traditional Korean fermented soybean paste, and its identity was confirmed through 16S rRNA sequencing. Fermented soybean powder was characterized morphologically via scanning electron microscopy and chemically via HPLC to assess its isoflavone content. Rats were administered loperamide (5 mg/kg) for four days to induce constipation and were then treated with fermented soybean powder at doses of 100, 200, or 300 mg/kg. No pharmacological laxatives (e.g., PEG) were used as a positive control; instead, values from the treatment groups were compared with those from the loperamide-only constipation group. Key outcomes of fecal output, water content, colonic fecal retention, and gastrointestinal transit ratio were measured. The fermented product significantly improved stool frequency and moisture content, reduced colonic fecal retention, and restored gastrointestinal transit in a dose-dependent manner. Notably, the 300 mg/kg group demonstrated nearly complete recovery of fecal parameters without affecting body weight. Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test. These findings suggest that Bacillus subtilis-fermented soybean powder exerts synergistic laxative effects through the combined action of probiotic viability and fermentation-enhanced bioactive compounds such as aglycone isoflavones. This study supports the potential use of fermented soybean-based nutraceuticals as a natural and safe intervention for constipation and gastrointestinal dysregulation. Full article
(This article belongs to the Special Issue Functions and Applications of Natural Products)
Show Figures

Figure 1

21 pages, 7718 KiB  
Article
Monitoring the Early Growth of Pinus and Eucalyptus Plantations Using a Planet NICFI-Based Canopy Height Model: A Case Study in Riqueza, Brazil
by Fabien H. Wagner, Fábio Marcelo Breunig, Rafaelo Balbinot, Emanuel Araújo Silva, Messias Carneiro Soares, Marco Antonio Kramm, Mayumi C. M. Hirye, Griffin Carter, Ricardo Dalagnol, Stephen C. Hagen and Sassan Saatchi
Remote Sens. 2025, 17(15), 2718; https://doi.org/10.3390/rs17152718 - 6 Aug 2025
Abstract
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address [...] Read more.
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address the challenge of scaling up canopy height monitoring by evaluating a recent deep learning model, trained on data from the Amazon and Atlantic Forests, developed to extract canopy height from RGB-NIR Planet NICFI imagery. The research questions are as follows: (i) How are canopy height estimates from the model affected by slope and orientation in natural forests, based on a large and well-balanced experimental design? (ii) How effectively does the model capture the growth trajectories of Pinus and Eucalyptus plantations over an eight-year period following planting? We find that the model closely tracks Pinus growth at the parcel scale, with predictions generally within one standard deviation of UAV-derived heights. For Eucalyptus, while growth is detected, the model consistently underestimates height, by more than 10 m in some cases, until late in the cycle when the canopy becomes less dense. In stable natural forests, the model reveals seasonal artifacts driven by topographic variables (slope × aspect × day of year), for which we propose strategies to reduce their influence. These results highlight the model’s potential as a cost-effective and scalable alternative to field-based and LiDAR methods, enabling broad-scale monitoring of forest regrowth and contributing to innovation in remote sensing for forest dynamics assessment. Full article
Show Figures

Figure 1

21 pages, 787 KiB  
Article
Rethinking Modbus-UDP for Real-Time IIoT Systems
by Ivan Cibrario Bertolotti
Future Internet 2025, 17(8), 356; https://doi.org/10.3390/fi17080356 - 5 Aug 2025
Abstract
The original Modbus specification for RS-485 and RS-232 buses supported broadcast transmission. As the protocol evolved into Modbus-TCP, to use the TCP transport, this useful feature was lost, likely due to the point-to-point nature of TCP connections. Later proposals did not restore the [...] Read more.
The original Modbus specification for RS-485 and RS-232 buses supported broadcast transmission. As the protocol evolved into Modbus-TCP, to use the TCP transport, this useful feature was lost, likely due to the point-to-point nature of TCP connections. Later proposals did not restore the broadcast transmission capability, although they used UDP as transport and UDP, by itself, would have supported it. Moreover, they did not address the inherent lack of reliable delivery of UDP, leaving datagram loss detection and recovery to the application layer. This paper describes a novel redesign of Modbus-UDP that addresses the aforementioned shortcomings. It achieves a mean round-trip time of only 38% with respect to Modbus-TCP and seamlessly supports a previously published protocol based on Modbus broadcast. In addition, the built-in retransmission of Modbus-UDP reacts more efficiently than the equivalent Modbus-TCP mechanism, exhibiting 50% of its round-trip standard deviation when subject to a 1% two-way IP datagram loss probability. Combined with the lower overhead of UDP versus TCP, this makes the redesigned Modbus-UDP protocol better suited for a variety of Industrial Internet of Things systems with limited computing and communication resources. Full article
Show Figures

Figure 1

23 pages, 12693 KiB  
Article
Upscaling Soil Salinization in Keriya Oasis Using Bayesian Belief Networks
by Hong Chen, Jumeniyaz Seydehmet and Xiangyu Li
Sustainability 2025, 17(15), 7082; https://doi.org/10.3390/su17157082 - 5 Aug 2025
Viewed by 56
Abstract
Soil salinization in oasis areas of arid regions is recognized as a dynamic and multifaceted environmental threat influenced by both natural processes and human activities. In this study, 13 spatiotemporal predictors derived from field surveys and remote sensing are utilized to construct a [...] Read more.
Soil salinization in oasis areas of arid regions is recognized as a dynamic and multifaceted environmental threat influenced by both natural processes and human activities. In this study, 13 spatiotemporal predictors derived from field surveys and remote sensing are utilized to construct a spatial probabilistic model of salinization. A Bayesian Belief Network is integrated with spline interpolation in ArcGIS to map the likelihood of salinization, while Partial Least Squares Structural Equation Modeling (PLS-SEM) is applied to analyze the interactions among multiple drivers. The test results of this model indicate that its average sensitivity exceeds 80%, confirming its robustness. Salinization risk is categorized into degradation (35–79% probability), stability (0–58%), and improvement (0–48%) classes. Notably, 58.27% of the 1836.28 km2 Keriya Oasis is found to have a 50–79% chance of degradation, whereas only 1.41% (25.91 km2) exceeds a 50% probability of remaining stable, and improvement probabilities are never observed to surpass 50%. Slope gradient and soil organic matter are identified by PLS-SEM as the strongest positive drivers of degradation, while higher population density and coarser soil textures are found to counteract this process. Spatially explicit probability maps are generated to provide critical spatiotemporal insights for sustainable oasis management, revealing the complex controls and limited recovery potential of soil salinization. Full article
Show Figures

Figure 1

20 pages, 3354 KiB  
Article
An Assessment of the Population Structure and Stock Dynamics of Megalobrama skolkovii During the Early Phase of the Fishing Ban in the Poyang Lake Basin
by Xinwen Huang, Qun Xu, Bao Zhang, Chiping Kong, Lei Fang, Xiaoping Gao, Leyi Sun, Lekang Li and Xiaoling Gong
Fishes 2025, 10(8), 378; https://doi.org/10.3390/fishes10080378 - 4 Aug 2025
Viewed by 90
Abstract
The ten-year fishing ban on the Yangtze River aims to restore aquatic biodiversity and rebuild fishery resources. Megalobrama skolkovii, a key species in the basin, was investigated using 2024 data to provide a preliminary assessment of its population structure, stock dynamics, and [...] Read more.
The ten-year fishing ban on the Yangtze River aims to restore aquatic biodiversity and rebuild fishery resources. Megalobrama skolkovii, a key species in the basin, was investigated using 2024 data to provide a preliminary assessment of its population structure, stock dynamics, and early recovery. Age analysis (n = 243) showed that 1–6-year-olds were dominated by fish aged 3 (35%), with few older than 4, indicating moderate structural truncation. Growth parameters modeled by the von Bertalanffy Growth Function yielded L = 61.89 cm and k = 0.25 year1, with a weight–growth inflection age of 4.4 years. Natural mortality (M = 0.48 year−1) was estimated using Pauly’s empirical formula, and total mortality (Z = 0.55 year−1) was estimated from the catch curve analysis. While fishing mortality (F) was statistically indistinguishable from zero, a plausible low-intensity fishing scenario was explored to assess potential impacts of residual activities. Length-based indicators (LBIs) showed Pmat = 46.05%, Popt = 9.51%, and Pmega = 6.88%, suggesting reproductive recovery but incomplete structural restoration. These preliminary findings reveal an asymmetrical recovery trajectory, whereby physiological improvements and enhanced recruitment have occurred, yet full structural restoration remains incomplete. This underscores the need for continued, long-term conservation and monitoring to support population resilience. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

25 pages, 1529 KiB  
Article
Native Flora and Potential Natural Vegetation References for Effective Forest Restoration in Italian Urban Systems
by Carlo Blasi, Giulia Capotorti, Eva Del Vico, Sandro Bonacquisti and Laura Zavattero
Plants 2025, 14(15), 2396; https://doi.org/10.3390/plants14152396 - 2 Aug 2025
Viewed by 177
Abstract
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of [...] Read more.
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of an NRRP measure devoted to forest restoration in Italian Metropolitan Cities, and at assessing respective preliminary results. Therefore, the measure’s overarching goal (not to create urban parks or gardens, but activate forest recovery), geographic extent and scope (over 4000 ha and more than 4 million planted trees and shrubs across the country), plantation model (mandatory use of native species consistent with local potential vegetation, density of 1000 seedlings per ha, use of at least four tree and four shrub species in each project, with a minimum proportion of 70% for trees, certified provenance for reproductive material), and compulsory management activities (maintenance and replacement of any dead plants for at least five years), are herein shown and explained under an ecological perspective. Current implementation outcomes were thus assessed in terms of coherence and expected biodiversity benefits, especially with respect to ecological and biogeographic consistency of planted forests, representativity in relation to national and European plant diversity, biogeographic interest and conservation concern of adopted plants, and potential contribution to the EU Habitats Directive. Compliance with international strategic goals and normative rules, along with recognizable advantages of the measure and limitations to be solved, are finally discussed. In conclusion, the forestation model proposed for the Italian Metropolitan Cities proved to be fully applicable in its ecological rationale, with expected benefits in terms of biodiversity support plainly met, and even exceeded, at the current stage of implementation, especially in terms of the contribution to protected habitats. These promising preliminary results allow the model to be recognized at the international level as a good practice that may help achieve protection targets and sustainable development goals within and beyond urban systems. Full article
Show Figures

Figure 1

33 pages, 8604 KiB  
Article
Sulforaphane-Rich Broccoli Sprout Extract Promotes Hair Regrowth in an Androgenetic Alopecia Mouse Model via Enhanced Dihydrotestosterone Metabolism
by Laxman Subedi, Duc Dat Le, Eunbin Kim, Susmita Phuyal, Arjun Dhwoj Bamjan, Vinhquang Truong, Nam Ah Kim, Jung-Hyun Shim, Jong Bae Seo, Suk-Jung Oh, Mina Lee and Jin Woo Park
Int. J. Mol. Sci. 2025, 26(15), 7467; https://doi.org/10.3390/ijms26157467 - 1 Aug 2025
Viewed by 382
Abstract
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on [...] Read more.
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on keratinocytes, dermal fibroblasts, and dermal papilla cells, showing greater in vitro activity than sulforaphane (SFN) and minoxidil under the tested conditions, while maintaining low cytotoxicity. In a testosterone-induced AGA mouse model, oral BSE significantly accelerated hair regrowth, with 20 mg/kg achieving 99% recovery by day 15, alongside increased follicle length, density, and hair weight. Mechanistically, BSE upregulated hepatic and dermal DHT-metabolizing enzymes (Akr1c21, Dhrs9) and activated Wnt/β-catenin signaling in the skin, suggesting dual actions via androgen metabolism modulation and follicular regeneration. Pharmacokinetic analysis revealed prolonged SFN plasma exposure following BSE administration, and in silico docking showed strong binding affinities of key BSE constituents to Akr1c2 and β-catenin. No systemic toxicity was observed in liver histology. These findings indicate that BSE may serve as a safe, effective, and multitargeted natural therapy for AGA. Further clinical studies are needed to validate its efficacy in human populations. Full article
Show Figures

Figure 1

17 pages, 5265 KiB  
Article
Influence of Agricultural Practices on Soil Physicochemical Properties and Rhizosphere Microbial Communities in Apple Orchards in Xinjiang, China
by Guangxin Zhang, Zili Wang, Huanhuan Zhang, Xujiao Li, Kun Liu, Kun Yu, Zhong Zheng and Fengyun Zhao
Horticulturae 2025, 11(8), 891; https://doi.org/10.3390/horticulturae11080891 (registering DOI) - 1 Aug 2025
Viewed by 204
Abstract
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological [...] Read more.
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological balance. However, most of the existing studies focus on a single management practice or indicator and lack a systematic assessment of the effects of integrated orchard management in arid zones. This study aims to investigate how different agricultural management practices influence soil physicochemical properties and inter-root microbial communities in apple orchards in Xinjiang and to identify the main physicochemical factors affecting the composition of inter-root microbial communities. Inter-root soil samples were collected from apple orchards under green management (GM), organic management (OM), and conventional management (CM) in major apple-producing regions of Xinjiang. Microbial diversity and community composition of the samples were analyzed using high-throughput amplicon sequencing. The results revealed significant differences (p < 0.05) in soil physicochemical properties across different management practices. Specifically, GM significantly reduced soil pH and C:N compared with OM. Both OM and GM significantly decreased soil available nutrient content compared with CM. Moreover, GM and OM significantly increased bacterial diversity and changed the community composition of bacteria and fungi. Proteobacteria and Ascomycota were identified as the dominant bacteria and fungi, respectively, in all management practices. Linear discriminant analysis (LEfSe) showed that biomarkers were more abundant under OM, suggesting that OM may contribute to ecological functions through specific microbial taxa. Co-occurrence network analysis (building a network of microbial interactions) demonstrated that the topologies of bacteria and fungi varied across different management practices and that OM increased the complexity of microbial co-occurrence networks. Mantel test analysis (analyzing soil factors and microbial community correlations) showed that C:N and available potassium (AK) were significantly and positively correlated with the community composition of bacteria and fungi, and that C:N, soil organic carbon (SOC), and alkaline hydrolyzable nitrogen (AN) were significantly and positively correlated with the diversity of fungi. Redundancy analysis (RDA) further indicated that SOC, C:N, and AK were the primary soil physicochemical factors influencing the composition of microbial communities. This study provides theoretical guidance for the sustainable management of orchards in arid zones. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

20 pages, 3293 KiB  
Article
Does Beach Sand Nourishment Have a Negative Effect on Natural Recovery of a Posidonia oceanica Seagrass Fringing Reef? The Case of La Vieille Beach (Saint-Mandrier-sur-Mer) in the North-Western Mediterranean
by Dominique Calmet, Pierre Calmet and Charles-François Boudouresque
Water 2025, 17(15), 2287; https://doi.org/10.3390/w17152287 - 1 Aug 2025
Viewed by 337
Abstract
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th [...] Read more.
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th century, P. oceanica declined conspicuously in the vicinity of large ports and urbanized areas, particularly in the north-western Mediterranean. The main causes of decline are land reclamation, anchoring, bottom trawling, turbidity and pollution. Artificial sand nourishment of beaches has also been called into question, with sand flowing into the sea, burying and destroying neighbouring meadows. A fringing reef of P. oceanica, located at Saint-Mandrier-sur-Mer, near the port of Toulon (Provence, France), is severely degraded. Analysis of aerial photos shows that, since the beginning of the 2000s, it has remained stable in some parts or continued to decline in others. This contrasts with the trend towards recovery, observed in France, thanks to e.g., the legally protected status of P. oceanica, and the reduction of pollution and coastal developments. The sand nourishment of the study beach, renewed every year, with the sand being washed or blown very quickly (within a few months) from the beach into the sea, burying the P. oceanica meadow, seems the most likely explanation. Other factors, such as pollution, trampling by beachgoers and overgrazing, may also play a role in the decline. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

15 pages, 1273 KiB  
Article
Fungal Pretreatment of Alperujo for Bioproduct Recovery and Detoxification: Comparison of Two White Rot Fungi
by Viviana Benavides, Gustavo Ciudad, Fernanda Pinto-Ibieta, Elisabet Aranda, Victor Ramos-Muñoz, Maria A. Rao and Antonio Serrano
Agronomy 2025, 15(8), 1851; https://doi.org/10.3390/agronomy15081851 - 31 Jul 2025
Viewed by 210
Abstract
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile [...] Read more.
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile fatty acids (VFAs). When used as a substrate for white rot fungi (WRF), it also produces ligninolytic enzymes. This study explores the use of two native WRF, Anthracophyllum discolor and Stereum hirsutum, for the biotransformation of alperujo under solid-state fermentation conditions, with and without supplementation of copper and manganese, two cofactors known to enhance fungal enzymatic activity. S. hirsutum stood out for its ability to release high concentrations of phenolic compounds (up to 6001 ± 236 mg gallic acid eq L−1) and VFAs (up to 1627 ± 325 mg L−1) into the aqueous extract, particularly with metal supplementation. In contrast, A. discolor was more effective in degrading phenolic compounds within the solid matrix, achieving a 41% reduction over a 30-day period. However, its ability to accumulate phenolics and VFAs in the extract was limited. Both WRF exhibited increased enzymatic activities (particularly Laccase and Manganese Peroxidase) with the addition of Cu-Mn, highlighting the potential of the aqueous extract as a natural source of biocatalysts. Phytotoxicity assays using Solanum lycopersicum seeds confirmed a partial detoxification of the treated alperujo. However, none of the fungi could entirely eliminate inhibitory effects on their own, suggesting the need for complementary stabilization steps before agricultural reuse. Overall, the results indicate that S. hirsutum, especially when combined with metal supplementation, is better suited for valorizing alperujo through the recovery of bioactive compounds. Meanwhile, A. discolor may be more suitable for detoxifying the solid phase strategies. These findings support the integration of fungal pretreatment into biorefinery schemes that valorize agroindustrial residues while mitigating environmental issues. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

17 pages, 3206 KiB  
Article
Inverse Punicines: Isomers of Punicine and Their Application in LiAlO2, Melilite and CaSiO3 Separation
by Maximilian H. Fischer, Ali Zgheib, Iliass El Hraoui, Alena Schnickmann, Thomas Schirmer, Gunnar Jeschke and Andreas Schmidt
Separations 2025, 12(8), 202; https://doi.org/10.3390/separations12080202 - 30 Jul 2025
Viewed by 159
Abstract
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. [...] Read more.
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. These amphoteric molecules were synthesized via a straightforward four-step route and structurally tuned for hydrophobization by alkylation. Their performance as collectors was evaluated in microflotation experiments of lithium aluminate (LiAlO2) and silicate matrix minerals such as melilite and calcium silicate. Characterization techniques including ultraviolet-visible (UV-Vis), nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy as well as contact angle, zeta potential (ζ potential) and microflotation experiments revealed strong pH- and structure-dependent interactions with mineral surfaces. Notably, N-alkylated inverse Punicine derivatives showed high flotation yields for LiAlO2 at pH of 11, with a derivative possessing a dodecyl group attached to the nitrogen as collector achieving up to 86% recovery (collector conc. 0.06 mmol/L). Preliminary separation tests showed Li upgrading from 5.27% to 6.95%. Radical formation and light-response behavior were confirmed by ESR and flotation tests under different illumination conditions. These results demonstrate the potential of inverse Punicines as tunable, sustainable flotation reagents for advanced lithium recycling from complex slag systems. Full article
(This article belongs to the Special Issue Application of Green Flotation Technology in Mineral Processing)
Show Figures

Graphical abstract

18 pages, 1332 KiB  
Article
Optimization of Anthocyanin Extraction from Purple Sweet Potato Peel (Ipomea batata) Using Sonotrode Ultrasound-Assisted Extraction
by Raquel Lucas-González, Mirian Pateiro, Rubén Domínguez-Valencia, Celia Carrillo and José M. Lorenzo
Foods 2025, 14(15), 2686; https://doi.org/10.3390/foods14152686 - 30 Jul 2025
Viewed by 275
Abstract
Sweet potato is a valuable root due to its nutritional benefits, health-promoting properties, and technological applications. The peel, often discarded during food processing, can be employed in the food industry, supporting a circular economy. Purple sweet potato peel (PSPP) is rich in anthocyanins, [...] Read more.
Sweet potato is a valuable root due to its nutritional benefits, health-promoting properties, and technological applications. The peel, often discarded during food processing, can be employed in the food industry, supporting a circular economy. Purple sweet potato peel (PSPP) is rich in anthocyanins, which can be used as natural colourants and antioxidants. Optimising their extraction can enhance yield and reduce costs. The current work aimed to optimize anthocyanin and antioxidant recovery from PSPP using a Box-Behnken design and sonotrode ultrasound-assisted extraction (sonotrode-UAE). Three independent variables were analysed: extraction time (2–6 min), ethanol concentration (35–85%), and liquid-to-solid ratio (10–30 mL/g). The dependent variables included total monomeric anthocyanin content (TMAC), individual anthocyanins, and antioxidant activity. TMAC in 15 extracts ranged from 0.16 to 2.66 mg/g PSPP. Peonidin-3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside was the predominant anthocyanin. Among four antioxidant assays, Ferric-reducing antioxidant power (FRAP) showed the highest value. Ethanol concentration significantly influenced anthocyanin and antioxidant recovery (p < 0.05). The model demonstrated adequacy based on the coefficient of determination and variation. Optimal extraction conditions were 6 min with 60% ethanol at a 30 mL/g ratio. Predicted values were validated experimentally (coefficient of variation <10%). In conclusion, PSPP is a promising matrix for obtaining anthocyanin-rich extracts with antioxidant activity, offering potential applications in the food industry. Full article
Show Figures

Figure 1

10 pages, 1225 KiB  
Article
Development of an LC-MS Method for the Analysis of Birch (Betula sp.) Bark Bioactives Extracted with Biosolvents
by Inmaculada Luque-Jurado, Jesús E. Quintanilla-López, Rosa Lebrón-Aguilar, Ana Cristina Soria and María Luz Sanz
Molecules 2025, 30(15), 3181; https://doi.org/10.3390/molecules30153181 - 29 Jul 2025
Viewed by 183
Abstract
Birch (Betula sp.) bark is a well-known natural source of betulin (Bet) and betulinic acid (BAc), both of which have several bioactive properties. The evaluation of the extraction performance, relative to these lupane-type triterpenoids, provided by different biosolvents requires the development of [...] Read more.
Birch (Betula sp.) bark is a well-known natural source of betulin (Bet) and betulinic acid (BAc), both of which have several bioactive properties. The evaluation of the extraction performance, relative to these lupane-type triterpenoids, provided by different biosolvents requires the development of a high-resolution and high-sensitivity liquid chromatography-mass spectrometry (LC-MS) approach that is also compatible with challenging extractants such as natural deep eutectic solvents (NADESs). In this work, an LC-MS method was developed and analytically characterized prior to its application for the quantitation of Bet and BAc in birch bark extracts obtained using conventional solvents (methanol and acetone) and biosolvents (limonene and NADESs). High precision (RSD < 3.3%), sensitivity (LOD: 23 ng mL−1 and 29 ng mL−1 for Bet and BAc, respectively), and accuracy (95–102% recovery) were found for this optimized method, using an acidulated water–methanol mixture as the mobile phase and sodium acetate as an additive. Extraction experiments conducted at 55 °C revealed that the NADESs, particularly thymol:1-octanol (1:1 molar ratio), outperformed the other solvents and were highly effective for the recovery of both triterpenoids (17.50 mg g−1 and 0.92 mg g−1 of Bet and BAc, respectively). This method can also be applied to similar extracts obtained from other biomasses. Full article
(This article belongs to the Special Issue New Advances in Deep Eutectic Solvents, 2nd Edition)
Show Figures

Figure 1

Back to TopTop