Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,727)

Search Parameters:
Keywords = natural motion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3248 KiB  
Article
Experimental Study on the Hydrodynamic Analysis of a Floating Offshore Wind Turbine Under Focused Wave Conditions
by Hanbo Zhai, Chaojun Yan, Wei Shi, Lixian Zhang, Xinmeng Zeng, Xu Han and Constantine Michailides
Energies 2025, 18(15), 4140; https://doi.org/10.3390/en18154140 - 5 Aug 2025
Viewed by 195
Abstract
The strong nonlinearity of shallow-water waves significantly affects the dynamic response of floating offshore wind turbines (FOWTs), introducing additional complexity in motion behavior. This study presents a series of 1:80-scale experiments conducted on a 5 MW FOWT at a 50 m water depth, [...] Read more.
The strong nonlinearity of shallow-water waves significantly affects the dynamic response of floating offshore wind turbines (FOWTs), introducing additional complexity in motion behavior. This study presents a series of 1:80-scale experiments conducted on a 5 MW FOWT at a 50 m water depth, under regular, irregular, and focused wave conditions. The tests were conducted under regular, irregular, and focused wave conditions. The results show that, under both regular and irregular wave conditions, the platform’s motion and mooring tension increased as the wave period became longer, indicating a greater energy transfer and stronger coupling effects at lower wave frequencies. Specifically, in irregular seas, mooring tension increased by 16% between moderate and high sea states, with pronounced surge–pitch coupling near the natural frequency. Under focused wave conditions, the platform experienced significant surge displacement due to the impact of large wave crests, followed by free-decay behavior. Meanwhile, the pitch amplitude increased by up to 27%, and mooring line tension rose by 16% as the wave steepness intensified. These findings provide valuable insights for the design and optimization of FOWTs in complex marine environments, particularly under extreme wave conditions. Additionally, they contribute to the refinement of relevant numerical simulation methods. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

15 pages, 2440 KiB  
Article
An Ultra-Robust, Highly Compressible Silk/Silver Nanowire Sponge-Based Wearable Pressure Sensor for Health Monitoring
by Zijie Li, Ning Yu, Martin C. Hartel, Reihaneh Haghniaz, Sam Emaminejad and Yangzhi Zhu
Biosensors 2025, 15(8), 498; https://doi.org/10.3390/bios15080498 - 1 Aug 2025
Viewed by 134
Abstract
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted [...] Read more.
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted from silkworm cocoons, as a promising material platform for next-generation wearable sensors. Owing to its remarkable biocompatibility, mechanical robustness, and structural tunability, silk fibroin serves as an ideal substrate for constructing capacitive pressure sensors tailored to medical applications. We engineered silk-derived capacitive architecture and evaluated its performance in real-time human motion and physiological signal detection. The resulting sensor exhibits a high sensitivity of 18.68 kPa−1 over a broad operational range of 0 to 2.4 kPa, enabling accurate tracking of subtle pressures associated with pulse, respiration, and joint articulation. Under extreme loading conditions, our silk fibroin sensor demonstrated superior stability and accuracy compared to a commercial resistive counterpart (FlexiForce™ A401). These findings establish silk fibroin as a versatile, practical candidate for wearable pressure sensing and pave the way for advanced biocompatible devices in healthcare monitoring. Full article
(This article belongs to the Special Issue Wearable Biosensors and Health Monitoring)
Show Figures

Figure 1

18 pages, 3318 KiB  
Article
Indirect AI-Based Estimation of Cardiorespiratory Fitness from Daily Activities Using Wearables
by Laura Saldaña-Aristizábal, Jhonathan L. Rivas-Caicedo, Kevin Niño-Tejada and Juan F. Patarroyo-Montenegro
Electronics 2025, 14(15), 3081; https://doi.org/10.3390/electronics14153081 - 1 Aug 2025
Viewed by 261
Abstract
Cardiorespiratory fitness is a predictor of long-term health, traditionally assessed through structured exercise protocols that require maximal effort and controlled laboratory conditions. These protocols, while clinically validated, are often inaccessible, physically demanding, and unsuitable for unsupervised monitoring. This study proposes a non-invasive, unsupervised [...] Read more.
Cardiorespiratory fitness is a predictor of long-term health, traditionally assessed through structured exercise protocols that require maximal effort and controlled laboratory conditions. These protocols, while clinically validated, are often inaccessible, physically demanding, and unsuitable for unsupervised monitoring. This study proposes a non-invasive, unsupervised alternative—predicting the heart rate a person would reach after completing the step test, using wearable data collected during natural daily activities. Ground truth post-exercise heart rate was obtained through the Queens College Step Test, which is a submaximal protocol widely used in fitness settings. Separately, wearable sensors recorded heart rate (HR), blood oxygen saturation, and motion data during a protocol of lifestyle tasks spanning a range of intensities. Two machine learning models were developed—a Human Activity Recognition (HAR) model that classified daily activities from inertial data with 96.93% accuracy, and a regression model that estimated post step test HR using motion features, physiological trends, and demographic context. The regression model achieved an average root mean squared error (RMSE) of 5.13 beats per minute (bpm) and a mean absolute error (MAE) of 4.37 bpm. These findings demonstrate the potential of test-free methods to estimate standardized test outcomes from daily activity data, offering an accessible pathway to infer cardiorespiratory fitness. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

16 pages, 2448 KiB  
Article
A Body-Powered Underactuated Prosthetic Finger Driven by MCP Joint Motion
by Worathris Chungsangsatiporn, Chaiwuth Sithiwichankit, Ratchatin Chancharoen, Ronnapee Chaichaowarat, Nopdanai Ajavakom and Gridsada Phanomchoeng
Robotics 2025, 14(8), 107; https://doi.org/10.3390/robotics14080107 - 31 Jul 2025
Viewed by 287
Abstract
This study presents the design, fabrication, and clinical validation of a lightweight, body-powered prosthetic index finger actuated via metacarpophalangeal (MCP) joint motion. The proposed system incorporates an underactuated, cable-driven mechanism combining rigid and compliant elements to achieve passive adaptability and embodied intelligence, supporting [...] Read more.
This study presents the design, fabrication, and clinical validation of a lightweight, body-powered prosthetic index finger actuated via metacarpophalangeal (MCP) joint motion. The proposed system incorporates an underactuated, cable-driven mechanism combining rigid and compliant elements to achieve passive adaptability and embodied intelligence, supporting intuitive user interaction. Results indicate that the prosthesis successfully mimics natural finger flexion and adapts effectively to a variety of grasping tasks with minimal effort. This study was conducted in accordance with ethical standards and approved by the Institutional Review Board (IRB), Project No. 670161, titled “Biologically-Inspired Synthetic Finger: Design, Fabrication, and Application.” The findings suggest that the device offers a viable and practical solution for individuals with partial hand loss, particularly in settings where electrically powered systems are unsuitable or inaccessible. Full article
(This article belongs to the Section Neurorobotics)
Show Figures

Figure 1

33 pages, 4142 KiB  
Review
Advances in Wettability-Engineered Open Planar-Surface Droplet Manipulation
by Ge Chen, Jin Yan, Junjie Liang, Jiajia Zheng, Jinpeng Wang, Hongchen Pang, Xianzhang Wang, Zihao Weng and Wei Wang
Micromachines 2025, 16(8), 893; https://doi.org/10.3390/mi16080893 (registering DOI) - 31 Jul 2025
Viewed by 324
Abstract
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the [...] Read more.
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the field of droplet manipulation on open planar surfaces with engineered wettability. To achieve droplet manipulation, the core driving forces primarily stem from natural forces guided by bioinspired gradient surfaces or the regulatory effects of external fields. In terms of bioinspired self-propelled droplet movement, this paper summarizes research inspired by natural organisms such as desert beetles, cacti, self-aligning floating seeds of emergent plants, or water-walking insects, which construct bioinspired special gradient surfaces to induce Laplace pressure differences or wettability gradients on both sides of droplets for droplet manipulation. Moreover, this paper further analyzes the mechanisms, advantages, and limitations of these self-propelled approaches, while summarizing the corresponding driving force sources and their theoretical formulas. For droplet manipulation under external fields, this paper elaborates on various external stimuli including electric fields, thermal fields, optical fields, acoustic fields, and magnetic fields. Among them, electric fields involve actuation mechanisms such as directly applied electrostatic forces and indirectly applied electrocapillary forces; thermal fields influence droplet motion through thermoresponsive wettability gradients and thermocapillary effects; optical fields cover multiple wavelengths including near-infrared, ultraviolet, and visible light; acoustic fields utilize horizontal and vertical acoustic radiation pressure or acoustic wave-induced acoustic streaming for droplet manipulation; the magnetic force acting on droplets may originate from their interior, surface, or external substrates. Based on these different transport principles, this paper comparatively analyzes the unique characteristics of droplet manipulation under the five external fields. Finally, this paper summarizes the current challenges and issues in the research of droplet manipulation on the open planar surfaces and provides an outlook on future development directions in this field. Full article
(This article belongs to the Special Issue Advanced Microfluidic Chips: Optical Sensing and Detection)
Show Figures

Figure 1

30 pages, 7223 KiB  
Article
Smart Wildlife Monitoring: Real-Time Hybrid Tracking Using Kalman Filter and Local Binary Similarity Matching on Edge Network
by Md. Auhidur Rahman, Stefano Giordano and Michele Pagano
Computers 2025, 14(8), 307; https://doi.org/10.3390/computers14080307 - 30 Jul 2025
Viewed by 193
Abstract
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part [...] Read more.
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part of a single event, resulting in increased power consumption and inefficient bandwidth usage. Furthermore, maintaining consistent animal identities in the wild is difficult due to occlusions, variable lighting, and complex environments. In this study, we propose a lightweight hybrid tracking framework built on the YOLOv8m deep neural network, combining motion-based Kalman filtering with Local Binary Pattern (LBP) similarity for appearance-based re-identification using texture and color features. To handle ambiguous cases, we further incorporate Hue-Saturation-Value (HSV) color space similarity. This approach enhances identity consistency across frames while reducing redundant transmissions. The framework is optimized for real-time deployment on edge platforms such as NVIDIA Jetson Orin Nano and Raspberry Pi 5. We evaluate our method against state-of-the-art trackers using event-based metrics such as MOTA, HOTA, and IDF1, with a focus on detected animals occlusion handling, trajectory analysis, and counting during both day and night. Our approach significantly enhances tracking robustness, reduces ID switches, and provides more accurate detection and counting compared to existing methods. When transmitting time-series data and detected frames, it achieves up to 99.87% bandwidth savings and 99.67% power reduction, making it highly suitable for edge-based wildlife monitoring in resource-constrained environments. Full article
(This article belongs to the Special Issue Intelligent Edge: When AI Meets Edge Computing)
Show Figures

Figure 1

24 pages, 3349 KiB  
Article
Effect of Damping Plate Parameters on Liquid Sloshing in Cylindrical Tanks of Offshore Launch Platforms
by Yuxin Pan, Yuanyuan Wang, Fengyuan Liu and Gang Xu
J. Mar. Sci. Eng. 2025, 13(8), 1448; https://doi.org/10.3390/jmse13081448 - 29 Jul 2025
Viewed by 141
Abstract
To meet the growing demand for space launches and overcome the limitations of land-based launches, the scientific research community is committed to developing safer and more flexible offshore rocket launch technologies. Their core carriers—marine platforms—are directly exposed to the dynamic and variable marine [...] Read more.
To meet the growing demand for space launches and overcome the limitations of land-based launches, the scientific research community is committed to developing safer and more flexible offshore rocket launch technologies. Their core carriers—marine platforms—are directly exposed to the dynamic and variable marine environment. The complex coupling effects of wind, waves, and currents impose severe challenges upon these platforms, causing complex phenomena such as severe rocking. These phenomena pose severe threats to and significantly interfere with the stability and normal execution of offshore rocket launch operations. This study employs CFD simulation software to analyze liquid sloshing within a cylindrical tank, both with and without baffles. Following validation of the natural frequency, the analysis focuses on the suppression effect of different baffle positions and configurations on tank sloshing. The numerical simulation results indicate the following: Incorporating baffles alters the natural frequency of liquid sloshing within the tank and effectively suppresses the free surface motion. The suppression of the wave surface motion improves as the baffle is positioned closer to the free surface and as the number of perforations in the baffle increases. However, when the number of perforations exceeds a certain threshold, further increasing it yields negligible improvement in the suppression of the sloshing wave surface motion. Full article
Show Figures

Figure 1

23 pages, 2779 KiB  
Article
Seismic Response Analysis of a Six-Story Building in Sofia Using Accelerograms from the 2012 Mw5.6 Pernik Earthquake
by Lyubka Pashova, Emil Oynakov, Ivanka Paskaleva and Radan Ivanov
Appl. Sci. 2025, 15(15), 8385; https://doi.org/10.3390/app15158385 - 28 Jul 2025
Viewed by 301
Abstract
On 22 May 2012, a magnitude Mw 5.6 earthquake struck the Pernik region of western Bulgaria, causing structural damage in nearby cities, including Sofia. This study assesses the seismic response of a six-story reinforced concrete building in central Sofia, utilizing real accelerogram data [...] Read more.
On 22 May 2012, a magnitude Mw 5.6 earthquake struck the Pernik region of western Bulgaria, causing structural damage in nearby cities, including Sofia. This study assesses the seismic response of a six-story reinforced concrete building in central Sofia, utilizing real accelerogram data recorded at the basement (SGL1) and sixth floor (SGL2) levels during the earthquake. Using the Kanai–Yoshizawa (KY) model, the study estimates inter-story motion and assesses amplification effects across the structure. Analysis of peak ground acceleration (PGA), velocity (PGV), displacement (PGD), and spectral ratios reveals significant dynamic amplification of peak ground acceleration and displacement on the sixth floor, indicating flexible and dynamic behavior, as well as potential resonance effects. The analysis combines three spectral techniques—Horizontal-to-Vertical Spectral Ratio (H/V), Floor Spectral Ratio (FSR), and the Random Decrement Method (RDM)—to determine the building’s dynamic characteristics, including natural frequency and damping ratio. The results indicate a dominant vibration frequency of approximately 2.2 Hz and damping ratios ranging from 3.6% to 6.5%, which is consistent with the typical damping ratios of mid-rise concrete buildings. The findings underscore the significance of soil–structure interaction (SSI), particularly in sedimentary basins like the Sofia Graben, where localized geological effects influence seismic amplification. By integrating accelerometric data with advanced spectral techniques, this research can enhance ongoing site-specific monitoring and seismic design practices, contributing to the refinement of earthquake engineering methodologies for mitigating seismic risk in earthquake-prone urban areas. Full article
(This article belongs to the Special Issue Seismic-Resistant Materials, Devices and Structures)
Show Figures

Figure 1

22 pages, 2875 KiB  
Article
Optimization of Test Mass Motion State for Enhancing Stiffness Identification Performance in Space Gravitational Wave Detection
by Ningbiao Tang, Ziruo Fang, Zhongguang Yang, Zhiming Cai, Haiying Hu and Huawang Li
Aerospace 2025, 12(8), 673; https://doi.org/10.3390/aerospace12080673 - 28 Jul 2025
Viewed by 173
Abstract
In space gravitational wave detection, various physical effects in the spacecraft, such as self-gravity, electricity, and magnetism, will introduce undesirable parasitic stiffness. The coupling noise between stiffness and the motion states of the test mass critically affects the performance of scientific detection, making [...] Read more.
In space gravitational wave detection, various physical effects in the spacecraft, such as self-gravity, electricity, and magnetism, will introduce undesirable parasitic stiffness. The coupling noise between stiffness and the motion states of the test mass critically affects the performance of scientific detection, making accurate stiffness identification crucial. In response to the question, this paper proposes a method to optimize the test mass motion state for enhancing stiffness identification performance. First, the dynamics of the test mass are studied and a recursive least squares algorithm is applied for the implementation of on-orbit stiffness identification. Then, the motion state of the test mass is parametrically characterized by multi-frequency sinusoidal signals as the variable to be optimized, with the optimization objectives and constraints of stiffness identification defined based on convergence time, convergence accuracy, and engineering requirements. To tackle the dual-objective, computationally expensive nature of the problem, a multigranularity surrogate-assisted evolutionary algorithm with individual progressive constraints (MGSAEA-IPC) is proposed. A fuzzy radial basis function neural network PID (FRBF-PID) controller is also designed to address complex control needs under varying motion states. Numerical simulations demonstrate that the convergence time after optimization is less than 2 min, and the convergence accuracy is less than 1.5 × 10−10 s−2. This study can provide ideas and design references for subsequent related identification and control missions. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

24 pages, 9395 KiB  
Article
Experimental Investigation of the Seismic Behavior of a Multi-Story Steel Modular Building Using Shaking Table Tests
by Xinxin Zhang, Yucong Nie, Kehao Qian, Xinyu Xie, Mengyang Zhao, Zhan Zhao and Xiang Yuan Zheng
Buildings 2025, 15(15), 2661; https://doi.org/10.3390/buildings15152661 - 28 Jul 2025
Viewed by 283
Abstract
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative [...] Read more.
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative to conduct in-depth research on their seismic behavior. In this study, a seven-story modular steel building is investigated using shaking table tests. Three seismic waves (artificial ground motion, Tohoku wave, and Tianjin wave) are selected and scaled to four intensity levels (PGA = 0.035 g, 0.1 g, 0.22 g, 0.31 g). It is found that no residual deformation of the structure is observed after tests, and its stiffness degradation ratio is 7.65%. The largest strains observed during the tests are 540 × 10−6 in beams, 1538 × 10−6 in columns, and 669 × 10−6 in joint regions, all remaining below a threshold value of 1690 × 10−6. Amplitudes and frequency characteristics of the acceleration responses are significantly affected by the characteristics of the seismic waves. However, the acceleration responses at higher floors are predominantly governed by the structure’s low-order modes (first-mode and second-mode), with the corresponding spectra containing only a single peak. When the predominant frequency of the input ground motion is close to the fundamental natural frequency of the modular steel structure, the acceleration responses will be significantly amplified. Overall, the structure demonstrates favorable seismic resistance. Full article
Show Figures

Figure 1

24 pages, 4281 KiB  
Article
Free Vibration Characteristics of FG-CNTRC Conical–Cylindrical Combined Shells Resting on Elastic Foundations Using the Haar Wavelet Discretization Method
by Jianyu Fan, Haoran Zhang, Yongqiang Tu, Shaohui Yang, Yan Huang, Zhichang Du and Hakim Boudaoud
Polymers 2025, 17(15), 2035; https://doi.org/10.3390/polym17152035 - 25 Jul 2025
Viewed by 222
Abstract
Functionally graded carbon nanotube reinforced composites (FG-CNTRCs) are a novel breed of polymer nanocomposite, in which the nonuniform distribution of the carbon nanotube (CNT) reinforcement is adopted to maximize the macro-mechanical performance of the polymer with a lower content of CNTs. Composite conical–cylindrical [...] Read more.
Functionally graded carbon nanotube reinforced composites (FG-CNTRCs) are a novel breed of polymer nanocomposite, in which the nonuniform distribution of the carbon nanotube (CNT) reinforcement is adopted to maximize the macro-mechanical performance of the polymer with a lower content of CNTs. Composite conical–cylindrical combined shells (CCCSs) are widely utilized as loading-bearing components in various engineering applications, and a comprehensive understanding of the vibration characteristics of these shells under different external excitations and boundary conditions is crucial for engineering applications. In this study, the free vibration behaviors of FG-CNTRC CCCSs supported by an elastic foundation are examined using the Haar wavelet discretization method (HWDM). First, by means of the HWDM, the equations of motion of each shell segment, the continuity and boundary conditions are converted into a system of algebraic equations. Subsequently, the natural frequencies and modes of the CCCSs are achieved by calculating the resultant algebraic equations. The convergence and accuracy are evaluated, and the results demonstrate that the proposed method has stable convergence, high efficiency, and excellent accuracy. Furthermore, an exhaustive parametric investigation is conducted to reveal the effects of foundation stiffnesses, boundary conditions, material mechanical properties, and geometric parameters on the vibration characteristics of the FG-CNTRC CCCS. Full article
Show Figures

Figure 1

22 pages, 6221 KiB  
Article
Development and Experimental Validation of a Tubular Permanent Magnet Linear Alternator for Free-Piston Engine Applications
by Parviz Famouri, Jayaram Subramanian, Fereshteh Mahmudzadeh-Ghomi, Mehar Bade, Terence Musho and Nigel Clark
Machines 2025, 13(8), 651; https://doi.org/10.3390/machines13080651 - 25 Jul 2025
Viewed by 298
Abstract
The ongoing rise in global electricity demand highlights the need for advanced, efficient, and environmentally responsible energy conversion technologies. This research presents a comprehensive design, modeling, and experimental validation of a tubular permanent magnet linear alternator (PMLA) integrated with a free piston engine [...] Read more.
The ongoing rise in global electricity demand highlights the need for advanced, efficient, and environmentally responsible energy conversion technologies. This research presents a comprehensive design, modeling, and experimental validation of a tubular permanent magnet linear alternator (PMLA) integrated with a free piston engine system. Linear alternators offer a direct conversion of linear motion to electricity, eliminating the complexity and losses associated with rotary generators and enabling higher efficiency and simplified system architecture. The study combines analytical modeling, finite element simulations, and a sensitivity-based design optimization to guide alternator and engine integration. Two prototype systems, designated as alpha and beta, were developed, modeled, and tested. The beta prototype achieved a maximum electrical output of 550 W at 57% efficiency using natural gas fuel, demonstrating reliable performance at elevated reciprocating frequencies. The design and optimization of specialized flexure springs were essential in achieving stable, high-frequency operation and improved power density. These results validate the effectiveness of the proposed design approach and highlight the scalability and adaptability of PMLA technology for sustainable power generation. Ultimately, this study demonstrates the potential of free piston linear generator systems as efficient, robust, and environmentally friendly alternatives to traditional rotary generators, with applications spanning hybrid electric vehicles, distributed energy systems, and combined heat and power. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

20 pages, 7332 KiB  
Article
Analytical Derivation of the q-Factor for Slender Masonry Structures Under Out-of-Plane Seismic Action
by Simona Coccia
Buildings 2025, 15(15), 2622; https://doi.org/10.3390/buildings15152622 - 24 Jul 2025
Viewed by 222
Abstract
Slender masonry structures, in the absence of disintegration phenomena, can be idealized as rigid bodies subjected to seismic excitation. In this study, a closed-form expression for the behavior factor (q-factor) associated with overturning collapse under out-of-plane seismic loading is derived. The [...] Read more.
Slender masonry structures, in the absence of disintegration phenomena, can be idealized as rigid bodies subjected to seismic excitation. In this study, a closed-form expression for the behavior factor (q-factor) associated with overturning collapse under out-of-plane seismic loading is derived. The analysis considers five-step pulse seismic inputs. In the proposed approach, valid for slender masonry structures, sliding failure is neglected, and collapse is assumed to occur when, at the end of the seismic excitation, the rotation of the structure reaches a value equal to its slenderness. Based on this criterion, it is possible to derive a formulation for the q-factor as a function of a dimensionless parameter that combines the geometric characteristics of the slender structure and the period of the applied accelerogram. To validate the proposed formulation, a comparative analysis is conducted against the results obtained from a numerical integration of the motion equation using a set of 20 natural accelerograms recorded in Italy. The characteristic period of each accelerogram is evaluated through different methodologies, with the aim of identifying the most suitable approach for application in simplified seismic assessment procedures. Full article
(This article belongs to the Special Issue Seismic Assessment of Unreinforced Masonry Buildings)
Show Figures

Figure 1

17 pages, 4072 KiB  
Article
Mechanistic Insights into Brine Domain Assembly Regulated by Natural Potential Field: A Molecular Dynamics Exploration in Porous Media
by Xiaoman Leng, Yajun Wang, Yueying Wang, Zhixue Sun, Shuangyan Kou, Ruidong Wu, Yifan Xu and Yufeng Jiang
Processes 2025, 13(8), 2355; https://doi.org/10.3390/pr13082355 - 24 Jul 2025
Viewed by 189
Abstract
The behavior of brine solution in the porous media of the strata is of great significance for geological environment regulation. In this study, a molecular dynamics model with silicon dioxide walls was constructed to reveal the regulatory mechanism of the natural potential of [...] Read more.
The behavior of brine solution in the porous media of the strata is of great significance for geological environment regulation. In this study, a molecular dynamics model with silicon dioxide walls was constructed to reveal the regulatory mechanism of the natural potential of the electric field on cluster aggregation. It was found that the critical electric field intensity was 7 V/m. When the electric field intensity was lower than this value, the aggregation rate was only increased by 0.73 times due to thermal motion; when it was higher than this value, the rate increased sharply by 3.2 times due to the dominant effect of electric field force. The microscopic structure analysis indicated that the strong electric field induced the transformation of clusters from fractal structure into an amorphous structure (the index of the order degree increased by 58%). The directional regulation experiments confirmed that the axial electric field led to anisotropic growth (the index of uniformity increased by 0.58 ± 0.04), and the rotational electric field could achieve a three-dimensional uniform distribution (the index of uniformity increased by 42%). This study provides theoretical support for the regulation of brine behavior and the optimization of geological energy storage. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 2159 KiB  
Article
A New Depth-Averaged Eulerian SPH Model for Passive Pollutant Transport in Open Channel Flows
by Kao-Hua Chang, Kai-Hsin Shih and Yung-Chieh Wang
Water 2025, 17(15), 2205; https://doi.org/10.3390/w17152205 - 24 Jul 2025
Viewed by 278
Abstract
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. [...] Read more.
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. This study presents the first development of a two-dimensional (2D) meshless advection–diffusion model based on an Eulerian smoothed particle hydrodynamics (SPH) framework, specifically designed to simulate passive pollutant transport in open channel flows. The proposed model marks a pioneering application of the ESPH technique to environmental pollutant transport problems. It couples the 2D depth-averaged shallow water equations with an advection–diffusion equation to represent both fluid motion and pollutant concentration dynamics. A uniform particle arrangement ensures that each fluid particle interacts symmetrically with eight neighboring particles for flux computation. To represent the pollutant transport process, the dispersion coefficient is defined as the sum of molecular and turbulent diffusion components. The turbulent diffusion coefficient is calculated using a prescribed turbulent Schmidt number and the eddy viscosity obtained from a Smagorinsky-type mixing-length turbulence model. Three analytical case studies, including one-dimensional transcritical open channel flow, 2D isotropic and anisotropic diffusion in still water, and advection–diffusion in a 2D uniform flow, are employed to verify the model’s accuracy and convergence. The model demonstrates first-order convergence, with relative root mean square errors (RRMSEs) of approximately 0.2% for water depth and velocity, and 0.1–0.5% for concentration. Additionally, the model is applied to a laboratory experiment involving 2D pollutant dispersion in a 90° junction channel. The simulated results show good agreement with measured velocity and concentration distributions. These findings indicate that the developed model is a reliable and effective tool for evaluating the performance of NbS in mitigating pollutant transport in open channels and river systems. Full article
Show Figures

Figure 1

Back to TopTop