Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (314)

Search Parameters:
Keywords = natural aroma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 822 KiB  
Article
From Forest to Fork: Antioxidant and Antimicrobial Potential of Laetiporus sulphureus (Bull.) Murrill in Cooked Sausages
by Aleksandra Novaković, Maja Karaman, Branislav Šojić, Predrag Ikonić, Tatjana Peulić, Jelena Tomić and Mirjana Šipovac
Microorganisms 2025, 13(8), 1832; https://doi.org/10.3390/microorganisms13081832 - 6 Aug 2025
Abstract
In response to the growing demand for clean-label preservatives, this study investigates the potential of Laetiporus sulphureus, an edible polypore mushroom, as a multifunctional additive in cooked sausages. The ethanolic extract of L. sulphureus (LsEtOH) was evaluated for its chemical composition, antioxidant [...] Read more.
In response to the growing demand for clean-label preservatives, this study investigates the potential of Laetiporus sulphureus, an edible polypore mushroom, as a multifunctional additive in cooked sausages. The ethanolic extract of L. sulphureus (LsEtOH) was evaluated for its chemical composition, antioxidant capacity, and antimicrobial activity. Leucine (12.4 ± 0.31 mg/g d.w.) and linoleic acid (68.6%) were identified as the dominant essential amino acid and fatty acid. LsEtOH exhibited strong antioxidant activity, with IC50 values of 215 ± 0.05 µg/mL (DPPH•), 182 ± 0.40 µg/mL (NO•), and 11.4 ± 0.01 µg/mL (OH•), and showed a selective inhibition of Gram-positive bacteria, particularly Staphylococcus aureus (MIC/MBC: 0.31/0.62 mg/mL). In cooked sausages treated with 0.05 mg/kg of LsEtOH, lipid peroxidation was reduced (TBARS: 0.26 mg MDA/kg compared to 0.36 mg MDA/kg in the control), microbial growth was suppressed (33.3 ± 15.2 CFU/g in the treated sample compared to 43.3 ± 5.7 CFU/g in the control group), and color and pH were stabilized over 30 days. A sensory evaluation revealed minor flavor deviations due to the extract’s inherent aroma. Encapsulation and consumer education are recommended to enhance acceptance. This is the first study to demonstrate the efficacy of L. sulphureus extract as a natural preservative in a meat matrix, supporting its application as a clean-label additive for shelf life and safety improvement. Full article
(This article belongs to the Special Issue Microbial Biocontrol in the Agri-Food Industry, 2nd Edition)
Show Figures

Figure 1

23 pages, 3877 KiB  
Article
Enhancing Bioactive Compound Extraction from Rose Hips Using Pulsed Electric Field (PEF) Treatment: Impacts on Polyphenols, Carotenoids, Volatiles, and Fermentation Potential
by George Ntourtoglou, Chaido Bardouki, Andreas Douros, Nikolaos Gkanatsios, Eleni Bozinou, Vassilis Athanasiadis, Stavros I. Lalas and Vassilis G. Dourtoglou
Molecules 2025, 30(15), 3259; https://doi.org/10.3390/molecules30153259 - 4 Aug 2025
Viewed by 178
Abstract
Rose hips are rich in polyphenols, making them a promising ingredient for the development of functional fruit-based beverages. This study aimed to evaluate the effect of Pulsed Electric Field (PEF) extraction treatment on rose hip (RH) pulp to enhance the extraction of polyphenols, [...] Read more.
Rose hips are rich in polyphenols, making them a promising ingredient for the development of functional fruit-based beverages. This study aimed to evaluate the effect of Pulsed Electric Field (PEF) extraction treatment on rose hip (RH) pulp to enhance the extraction of polyphenols, carotenoids, and volatile compounds. Additionally, this study examined the impact of adding rose hip berries during different stages of carbohydrate fermentation on the resulting phenolic and aroma profiles. A control wort and four experimental formulations were prepared. Rose hip pulp—treated or untreated with PEF—was added either during fermentation or beforehand, and the volatiles produced were analyzed using GC-MS (in triplicate). Fermentation was carried out over 10 days at 20 °C using Saccharomyces cerevisiae and Torulaspora delbrueckii. At a 10:1 ratio, all beverage samples were subjected to physicochemical testing and HPLC analysis for polyphenols, organic acids, and carotenoids, as well as GC-MS analysis for aroma compounds. The results demonstrated that the use of PEF-treated rose hips significantly improved phenolic compound extraction. Moreover, the PEF treatment enhanced the aroma profile of the beverage, contributing to a more complex and appealing sensory experience. This research highlights the rich polyphenol content of rose hips and the potential of PEF-treated fruit as a natural ingredient to improve both the functional and sensory qualities of fruit-based beverages. Their application opens new possibilities for the development of innovative, health-promoting drinks in the brewing industry. Full article
Show Figures

Figure 1

19 pages, 8805 KiB  
Article
Effects of Inactive Yeast Biostimulants on Mechanical and Color Attributes of Wine Grape Cultivars
by Giovanni Gentilesco, Vittorio Alba, Giovanna Forte, Rosa Anna Milella, Giuseppe Roselli and Mauro Eugenio Maria D’Arcangelo
Sustainability 2025, 17(15), 6958; https://doi.org/10.3390/su17156958 - 31 Jul 2025
Viewed by 159
Abstract
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile [...] Read more.
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile of wine grapes in line with sustainable practices. Methods: Two wine grape cultivars, Merlot and Cabernet Sauvignon, were sprayed with the inactive yeast Saccharomyces cerevisiae in a single treatment in pre-veraison or in a double treatment in pre-veraison and veraison. Berry weight, must, total polyphenols, anthocyanins, and mechanical and colorimetric properties were measured on fresh grapes. Results: Two-way ANOVA revealed that titratable acidity (TA), pH, and total polyphenol content (TPC) were not affected, while mean berry weight and anthocyanin content varied by cultivar, treatment, and interaction; total soluble solids (TSS) differed only by cultivar. Inactive yeasts reduced weight in the single-treatment thesis but stabilized it in the double-treatment one; anthocyanins decreased in Cabernet Sauvignon but increased in Merlot. Mechanical and colorimetric analyses showed cultivar-dependent responses, with significant improvements in elasticity, skin thickness, and hue of berries, especially in Merlot when the treatment was applied twice. Conclusions: Inactive yeasts (IYs) showed an effect on the weight of the berries, the anthocyanins, the mechanics, and the color; Merlot significantly improved skin thickness, elasticity, and hue; and Cabernet remained less reactive to treatments. Full article
Show Figures

Graphical abstract

15 pages, 1565 KiB  
Article
Volatile Compounds Profiling of Fresh R. alba L. Blossom by Headspace—Solid Phase Microextraction and Gas Chromatography
by Daniela Antonova-Nedeltcheva, Ana Dobreva, Kamelia Gechovska and Liudmil Antonov
Molecules 2025, 30(15), 3102; https://doi.org/10.3390/molecules30153102 - 24 Jul 2025
Viewed by 277
Abstract
The white oil-bearing rose (R. alba L.) is the second of the industrially important rose species for Bulgarian rose cultivation and essential oil production. In recent years, the interest in white oil-bearing rose has increased, following the worldwide trend for searching for [...] Read more.
The white oil-bearing rose (R. alba L.) is the second of the industrially important rose species for Bulgarian rose cultivation and essential oil production. In recent years, the interest in white oil-bearing rose has increased, following the worldwide trend for searching for new aromatic alternatives. Therefore, the purpose of the current research is to evaluate the volatile compounds profile of fresh R. alba L. flowers using headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC/MS). More than 75 individual compounds were identified and quantified using HS-SPME-GC/MS. The study revealed that the aroma-bearing fraction of rose volatiles consists mainly of monoterpene alcohols; 2-phenylethanol was the most abundant component (8.4–33.9%), followed by geraniol (12.8–32.5%) and citronellol + nerol (17.7–26.5%). Linalool, α-pinene, β-myrcene, and rose oxides were also observed in low concentrations. The stearopten fraction in the HS phase was observed in low concentration, with main representatives nonadecane + nonadecene, heptadecane, heneicosane, and tricosane. The HS-GC profile of the R. alba fresh flowers shows distinct differences in relative abundance of the components between the two studied clones of the population, as well as between volatiles in petals and in the whole blossom. The absence of some undesirable components, such as allergenic and potentially carcinogenic methyl eugenol in fresh R. alba blossom, makes white oil-bearing rose a promising alternative to R. damascena in perfumery, natural cosmetics, and aromatherapy. Full article
Show Figures

Figure 1

23 pages, 3376 KiB  
Article
Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions
by Joanna Kolniak-Ostek, Agnieszka Kita, Davide Giacalone, Laura Vázquez-Araújo, Luis Noguera-Artiaga, Jessica Brzezowska and Anna Michalska-Ciechanowska
Foods 2025, 14(15), 2593; https://doi.org/10.3390/foods14152593 - 24 Jul 2025
Viewed by 348
Abstract
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders [...] Read more.
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders from both widely available fruits, such as apple and pear, chosen for their accessibility and economic relevance, and less commonly consumed fruits, such as Japanese quince, rosehip, and rhubarb, which are often discarded due to sour or astringent flavors. Processing these into powders helped mask undesirable sensory traits and enabled incorporation into beverage matrices. Physicochemical analyses confirmed their technological suitability, while high polyphenol content indicated potential health benefits. Importantly, no process contaminants (furfural, 5-hydroxymethyl-L-furfural, and acrylamide) were detected, supporting the powders’ safety for food use. The integrated application of an electronic tongue and nose enabled objective profiling of taste and aroma. The electronic tongue distinguished taste profiles across formulations, revealing matrix-dependent effects and interactions, particularly with trehalose, that influenced sweetness and bitterness. The electronic nose provided consistent aroma differentiation. Overall, the results highlight the potential of these underutilized plant powders as multifunctional ingredients in plant-based beverage development. They support product innovation aligned with consumer expectations for natural, health-promoting foods. Future work will include sensory validation with consumer panels. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

19 pages, 1098 KiB  
Article
The Pyramid of Mineral Waters: A New Paradigm for Hydrogastronomy and the Combination of Food and Water
by Sergio Marini Grassetti and Betty Carlini
Gastronomy 2025, 3(3), 12; https://doi.org/10.3390/gastronomy3030012 - 23 Jul 2025
Viewed by 209
Abstract
The art of food–drink pairing has always fascinated gourmets and cooking enthusiasts. While wine has long held pride of place on the table, natural mineral water plays a central role in this new concept. Through the Pyramid of Natural Mineral Waters, we aim [...] Read more.
The art of food–drink pairing has always fascinated gourmets and cooking enthusiasts. While wine has long held pride of place on the table, natural mineral water plays a central role in this new concept. Through the Pyramid of Natural Mineral Waters, we aim to explore the relationships between the structure of water and food, flavors and aromas, revealing a world of previously unexplored nuances and tastes. This new approach is based on the analysis of the fixed residue of water, i.e., the amount of mineral salts dissolved in it. The fixed residue gives the water unique organoleptic characteristics, influencing the perception of flavors and sensations in the mouth. By analyzing the technical data sheet of mineral waters designed by us, it is possible to identify their main characteristics and combine them in a consistent way with various dishes, as proposed in the pyramid scheme. There are many possible combinations between natural mineral waters and foods, depending on numerous factors, including the type of water and the salts dissolved in it, the type of food, the cooking method, and the types of sauces and condiments present in the dish. To guide consumers in this fascinating universe, the figure of the water sommelier, or so-called hydro-sommelier, was born. As expert connoisseurs of natural mineral waters, they are able to recommend the ideal water for every occasion, maximizing the taste characteristics of the food served at the table. This study is completed with the construction of the Pyramid of Natural Mineral Waters, which relates the composition of water, specifically the salient characteristics related to dissolved minerals, with the respective food combinations recommended by us, in relation to the structure of both water and food. Full article
Show Figures

Figure 1

20 pages, 1007 KiB  
Article
Fatty Acids Are Responsible for the Discrepancy of Key Aroma Compounds in Naturally Dried Red Goji Berries and Hot-Air-Dried Red Goji Berries
by Yan Zheng, Claudia Oellig, Walter Vetter, Vanessa Bauer, Yuan Liu, Yanping Chen and Yanyan Zhang
Foods 2025, 14(13), 2388; https://doi.org/10.3390/foods14132388 - 6 Jul 2025
Viewed by 415
Abstract
Red goji berries, reputed worldwide as “superfruit”, are commonly marketed after natural drying or hot-air drying. A sensomics approach was applied to the aroma analysis of red goji berries under two drying methods. Fifty-two aroma-active compounds were screened and identified by aroma extract [...] Read more.
Red goji berries, reputed worldwide as “superfruit”, are commonly marketed after natural drying or hot-air drying. A sensomics approach was applied to the aroma analysis of red goji berries under two drying methods. Fifty-two aroma-active compounds were screened and identified by aroma extract dilution analysis (AEDA) coupled with gas chromatography with olfactometry (GC/O). The contents and the odor activity values (OAVs) of 49 aroma-active compounds were determined. Acetic acid was the predominant aroma compounds in both berries. Meanwhile, the key aroma compounds in both berries were (E)-2-nonenal, (Z)-4-heptenal, 3-methyl-2,4-nonanedione, hexanal, etc., which were lipid derivatives. Natural drying promoted the formation of some aldehydes that exhibited green and fatty notes. Hot-air drying facilitated the production of ketones with hay-like and cooked apple-like odor attributes due to the thermal reaction. The fatty acid patterns between naturally dried and hot-air-dried red goji berries differed not significantly and were dominated by linoleic acid, oleic acid, palmitic acid, etc. The knowledge of the impacts of different drying processes on the aroma quality in red goji berries is beneficial for the quality control and optimization of dried red goji berries. Full article
Show Figures

Figure 1

23 pages, 3738 KiB  
Article
Effect of Ultrasonic Treatment on the Quality of Pumpkin Juice Fermented by Yeast
by Wenhui Pan, Wen Li, Chunli Zhou, Manjun Zhang, Wei Su, Renqin Tan and Leyi Yao
Foods 2025, 14(13), 2284; https://doi.org/10.3390/foods14132284 - 27 Jun 2025
Viewed by 260
Abstract
To investigate the effect of ultrasound on the quality of pumpkin juice fermented by yeast, ultrasound (power range 0–400 W, duration 10 min) was used to assist the yeast fermentation of pumpkin juice. The effects of ultrasound-assisted fermentation at different powers on the [...] Read more.
To investigate the effect of ultrasound on the quality of pumpkin juice fermented by yeast, ultrasound (power range 0–400 W, duration 10 min) was used to assist the yeast fermentation of pumpkin juice. The effects of ultrasound-assisted fermentation at different powers on the quality characteristics of pumpkin juice, such as the color, aroma components, carotenoid content, and antioxidant activity, were studied. The optimal combination of fermentation process parameters was determined as follows: a pumpkin juice content of 20 mL, fermentation temperature of 30 °C, fermentation time of 1 day, and inoculation amount of 3% (the mass-to-volume ratio of yeast to water). The results showed that after ultrasound treatment, the physicochemical properties of pumpkin juice, including the Vitamin C (VC) content, carotenoid content, and antioxidant activity, did not change significantly (p > 0.05), while the total acid content decreased significantly, indicating that ultrasound treatment was beneficial for improving the sensory properties of pumpkin juice after yeast fermentation. Notably, when the ultrasound power was 100 W, the flavonoid content in pumpkin juice reached the highest level (1.27 mg/100 g). A total of 127 volatile substances were identified via gas chromatography, among which 14 were characteristic aroma profiles of pumpkin juice, suggesting that ultrasound (US) treatment had little impact on the natural flavor of pumpkin juice. Cavitation caused cell rupture in pumpkin juice, and ultrasound treatment significantly improved the sterilization rate of yeast-fermented pumpkin juice and was extremely effective in maintaining its color. This study provides a theoretical basis for the development of high-quality and nutrient-rich fermented pumpkin juice. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

16 pages, 1835 KiB  
Article
Stress Tolerance and Contribution to Aroma Profile of Pichia kudriavzevii GAAS-JG-1 Isolated from Apricot Fermentation in Co-Fermentation of Sea Buckthorn Wine
by Yuwen Mu, Yu’an Wang and Chaozhen Zeng
Microorganisms 2025, 13(7), 1491; https://doi.org/10.3390/microorganisms13071491 - 26 Jun 2025
Viewed by 344
Abstract
High-acidity fruit wines, such as sea buckthorn wine, are valued for their nutritional benefits but often suffer from excessive tartness and limited aroma complexity, which restrict their consumer acceptance. The application of non-Saccharomyces yeasts with acid tolerance and flavor-enhancing potential offers a promising [...] Read more.
High-acidity fruit wines, such as sea buckthorn wine, are valued for their nutritional benefits but often suffer from excessive tartness and limited aroma complexity, which restrict their consumer acceptance. The application of non-Saccharomyces yeasts with acid tolerance and flavor-enhancing potential offers a promising strategy to address these challenges. In this study, a highly acid-tolerant yeast strain, Pichia kudriavzevii GAAS-JG-1, was isolated from a naturally fermented apricot system and systematically characterized in terms of its taxonomy, physiological properties, and fermentation potential. The experimental results demonstrated that Pichia kudriavzevii GAAS-JG-1 maintained robust growth activity (OD600 = 1.18 ± 0.09) even under extremely acidic conditions (pH 2.0). Furthermore, the strain exhibited a strong tolerance to high ethanol concentrations (16%), elevated sugar levels (350 g/L), and substantial sulfur dioxide exposure (500 mg/L). Optimal growth was observed at 35 °C (OD600 = 2.21 ± 0.02). When co-fermented with Saccharomyces cerevisiae in sea buckthorn wine, the ethyl acetate content increased significantly from 303.71 μg/L to 4453.12 μg/L, while the ethyl propionate levels rose from 5.18 μg/L to 87.75 μg/L. Notably, Pichia kudriavzevii GAAS-JG-1 also produced novel flavor compounds such as methyl acetate and ethyl 3-methylthiopropionate, which were absent in the single-strain fermentation. These findings highlight the potential of Pichia kudriavzevii GAAS-JG-1 as a valuable non-Saccharomyces yeast resource with promising applications in the fermentation of high-acidity specialty fruit wines. Full article
(This article belongs to the Special Issue Beneficial Microbes: Food, Mood and Beyond—Third Edition)
Show Figures

Figure 1

13 pages, 1374 KiB  
Article
Effects of Monochromatic and Composite Light Withering on Black Tea Aroma
by Yafang Li, Bilin Li, Ziyan Zhu, Wushuang Zhang, Jingwen Yang, Wei Xu and Ling Lin
Foods 2025, 14(13), 2232; https://doi.org/10.3390/foods14132232 - 25 Jun 2025
Viewed by 336
Abstract
In this study, the effects of different monochromatic (red, blue, and yellow light) and composite (red–blue and red–yellow) LED light withering on the aroma of black tea was investigated. The results showed that among monochromatic LED treatments, red light withering achieved the highest [...] Read more.
In this study, the effects of different monochromatic (red, blue, and yellow light) and composite (red–blue and red–yellow) LED light withering on the aroma of black tea was investigated. The results showed that among monochromatic LED treatments, red light withering achieved the highest sensory evaluation score for aroma. However, yellow light withering enhanced soluble sugar content and reduced tea polyphenol levels. It also increased the total amount of volatile compounds more effectively than red or blue light treatments. Nevertheless, single-wavelength LED withering was less effective than natural light in aroma improvement. In contrast, composite light withering outperformed single-wavelength LED treatments in improving black tea aroma, with the red–yellow light combination being more pronounced. It elevated the level of hydrocarbons, certain aldehydes, and alcohols, which ultimately impart an almond-like and roasted aroma profile to the black tea. The findings suggested that appropriate composite light withering can effectively improve the aroma of black tea. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

15 pages, 1908 KiB  
Article
An Efficient and Safe Rapid Aging Technology for Tea: UV-C Irradiation Enhances the Taste and Aroma of Fresh Pu’er Raw Tea Toward a Naturally Aged Profile
by Xinghai Zhang, Xinyu Feng, Yani Pan, Hanfei Wuzeng, Xinxin Wang, Anran Yan, Lin Xiang, Yaping Lin, Ping Chen, Qiang Chu and Liping Liu
Plants 2025, 14(12), 1851; https://doi.org/10.3390/plants14121851 - 16 Jun 2025
Viewed by 498
Abstract
Pu’er raw tea, a representative tea with a positive correlation between quality and storage time, has a unique aging process. It can not only reduce the heavy astringent taste of newly produced tea, but also has a complex and fragrant aging aroma. However, [...] Read more.
Pu’er raw tea, a representative tea with a positive correlation between quality and storage time, has a unique aging process. It can not only reduce the heavy astringent taste of newly produced tea, but also has a complex and fragrant aging aroma. However, the extremely slow natural aging process often takes years or even decades for quality transformation, along with the risk of termite infestation, odor absorption, etc. This study found that UV-C irradiation could significantly accelerate the aging process of tea. It enhanced the richness of the aroma, while reducing astringency and creating a smoother and mellower taste. The results of substances analysis revealed an increase in key aroma compounds such as alcohols, aldehydes and terpenes, and a decrease in catechin and caffeine with UV-C irradiation, which is consistent with the natural aging trend. An efficient and safe rapid aging technology of Pu’er raw tea has been successfully established. Full article
(This article belongs to the Special Issue Production, Quality and Function of Tea)
Show Figures

Figure 1

14 pages, 4310 KiB  
Article
Effect of Different Gelling Agents on the Properties of Wine Jellies Prepared from Aromatic Grape Varieties
by Radek Sotolář, Petr Bača, Vladimír Mašán, Petr Vanýsek, Patrik Burg, Tomáš Binar and Oldřiška Sotolářová
Processes 2025, 13(6), 1893; https://doi.org/10.3390/pr13061893 - 15 Jun 2025
Viewed by 458
Abstract
Wine jelly is regarded as a delicacy in many countries and is commonly utilized in grande cuisine. Recently, its popularity has increased among consumers due to its dietary properties and the presence of health-promoting compounds such as antioxidants. Its natural origin and the [...] Read more.
Wine jelly is regarded as a delicacy in many countries and is commonly utilized in grande cuisine. Recently, its popularity has increased among consumers due to its dietary properties and the presence of health-promoting compounds such as antioxidants. Its natural origin and the ability to reflect local traditions and consumer preferences further enhance its appeal. This study aimed to compare the compositional and sensory characteristics of wine jellies prepared using three different gelling agents and four aromatic grape varieties, with the goal of preserving varietal aroma in the final products. White wines from Pálava and Moravian Muscat and red wines from Agni and Rosa were used. The selected gelling agents were agar, vegan gelatin, and traditional gelatin. Basic analytical parameters were assessed in both the wines and the resulting jellies. Sensory evaluation was conducted by trained panelists, assessing consistency, appearance (clarity), taste, and bouquet. Confectionery-grade jelly from red wines demonstrated the best consistency, while gelatin jellies from white wines showed superior clarity. Due to a preference for sweeter flavors, jellies from red wines were favored across all variants. The strongest varietal bouquet was observed in Moravian Muscat samples, irrespective of the gelling agent used. The optimal choice of gelling agent depends on the target quality attributes. Gelatin is preferred for firmness and clarity, while vegan gelatin is ideal for preserving aroma and achieving a balanced sensory profile. Full article
Show Figures

Figure 1

19 pages, 1032 KiB  
Article
Red Beetroot Skin Powder Addition as a Multifunctional Ingredient in Nougat
by Oana Emilia Constantin, Silvia Lazăr (Mistrianu), Florina Stoica, Roxana Nicoleta Rațu, Doina Georgeta Andronoiu, Nicoleta Stănciuc, Marija Banožić, Nada Ćujić Nikolić, Zorana Mutavski and Gabriela Râpeanu
Antioxidants 2025, 14(6), 676; https://doi.org/10.3390/antiox14060676 - 1 Jun 2025
Viewed by 958
Abstract
Beetroot (Beta vulgaris L.) is a plant grown for its roots, which are used to obtain sugar, feed animals, and for human use. Beetroot skin, a by-product of food processing, is a significant source of bioactive compounds, including dietary fiber and antioxidants. [...] Read more.
Beetroot (Beta vulgaris L.) is a plant grown for its roots, which are used to obtain sugar, feed animals, and for human use. Beetroot skin, a by-product of food processing, is a significant source of bioactive compounds, including dietary fiber and antioxidants. The primary objective of this work was to utilize beetroot skin powder to produce value-added nougat. Analytical methods, like antioxidant activity tests, proximate analysis, and sensory assessments, are used to determine the impact of beetroot skin powder on the final product. The beetroot skin powder extract had a remarkable content of phytochemicals and antioxidant activity. The inhibitory effect of the extract was tested on enzymes linked to metabolic syndrome, oxidative stress, and inflammation. The beetroot skin powder extract inhibited α-glucosidase, α-amylase, lipase, and lipoxygenase enzymes. The characterization of value-added nougat illustrates the multifunctionality of beetroot peel powder within its composition, serving as a significant source of natural compounds with antioxidant, coloring, and flavoring properties. This enhances sensory attributes, including color, aroma, and texture, augmenting product diversity and consumer appeal. This is evidenced by the increase in the total content of betalains (3.77 ± 0.09 mg/g DW.) and polyphenols (69.48 ± 2.88 mg GAE/100 g DW.), which lead to high antioxidant activity (73.89 ± 3.65 mM Trolox/100 g DW.) for the nougat sample with 6% added beetroot powder. Thus, beetroot skin powder replaced chemically synthesized additives with antioxidants and natural pigments, improving life quality and implicitly capitalizing on beetroot processing by-products, supporting circular economy principles at the global level. Full article
(This article belongs to the Special Issue Valorization of the Antioxidant Power of Natural Compounds)
Show Figures

Figure 1

14 pages, 2684 KiB  
Article
Phase Shift Cavity Ring-Down (PS-CRD) Absorption of Esters in the Near-Infrared and Visible Regions: Agricultural Detection and Environmental Implications
by David Camejo and Carlos E. Manzanares
Sensors 2025, 25(11), 3448; https://doi.org/10.3390/s25113448 - 30 May 2025
Viewed by 408
Abstract
A detailed description of the components of the CRD technique is presented and applied to the detection of organic esters. These molecules typically have a pleasant smell resembling the aroma of flowers and fruits and are responsible for many distinct odors in plants. [...] Read more.
A detailed description of the components of the CRD technique is presented and applied to the detection of organic esters. These molecules typically have a pleasant smell resembling the aroma of flowers and fruits and are responsible for many distinct odors in plants. They are emitted into the atmosphere by natural sources and human production. The weak absorption spectrum of the fifth vibrational overtone of ethyl, ethyl trimethyl, and tert-butyl acetate are recorded to show the sensitivity of the CRD technique. A description of a compact instrument to be used in the near-IR and visible regions will be presented for measurements of ester detection in the field. Potential chemical reactions of esters induced by visible light absorption in the atmosphere are discussed. Full article
Show Figures

Graphical abstract

24 pages, 1270 KiB  
Article
Multi-Criteria Decision-Making for Assessing and Evaluating Health and Wellness Tourism Destination Potential Using the 6AsTD Framework: A Case Study of Nakhon Ratchasima Province, Thailand
by Phongchai Jittamai, Sovann Toek, Kritsada Phengarree, Kingkan Kongkanjana and Natdanai Chanlawong
Sustainability 2025, 17(11), 4995; https://doi.org/10.3390/su17114995 - 29 May 2025
Viewed by 999
Abstract
Health and wellness tourism is a rapidly expanding segment of the global tourism industry, driven by increasing consumer awareness of well-being and lifestyle enhancement. As the demand for wellness travel grows, destinations are expected to offer high standards of safety, hygiene, rehabilitation, and [...] Read more.
Health and wellness tourism is a rapidly expanding segment of the global tourism industry, driven by increasing consumer awareness of well-being and lifestyle enhancement. As the demand for wellness travel grows, destinations are expected to offer high standards of safety, hygiene, rehabilitation, and holistic experiences. This study aims to identify and evaluate the key attributes and determinants for developing health and wellness tourism destinations by applying the 6As Tourism Development framework: Attractions, Accessibility, Amenities, Activities, Available Packages, and Ancillary Services. A multi-criteria decision-making approach, specifically the TOPSIS, was employed to assess destination potential through a case study of Nakhon Ratchasima Province, Thailand. The results indicate that Attractions, Accessibility, and Amenities are the top three priorities for wellness tourists. Sub-criteria such as natural scenery, cultural significance, accessibility for all, safety, and accommodation quality are particularly influential. Three districts in Nakhon Ratchasima were found to exhibit distinct strengths—Pak Chong is best suited for rehabilitative tourism (e.g., aroma and water therapy), aligning with mind and nutrition wellness components; Wang Nam Khiao is ideal for ecotourism and cultural experiences, supporting environmental and nutritional dimensions; while Mueang Nakhon Ratchasima excels in sports tourism, supporting physical and nutritional well-being. The study offers practical insights for policymakers and tourism stakeholders to design sustainable, visitor-centered wellness destinations. The proposed framework supports strategic planning and resource allocation for health-focused tourism development. Full article
(This article belongs to the Special Issue Health and Sustainable Lifestyle: Balancing Work and Well-Being)
Show Figures

Figure 1

Back to TopTop