Phase Shift Cavity Ring-Down (PS-CRD) Absorption of Esters in the Near-Infrared and Visible Regions: Agricultural Detection and Environmental Implications
Abstract
Highlights
- Optical pathlengths of 25 km are achieved with our PS-CRD technique.
- Absorption coefficients as low as 10−10 cm−1 are measured.
- Vibrational overtones of organic esters are recorded.
- Emissions of esters in the field can be detected and identified by the CRD technique.
Abstract
1. Introduction
1.1. Organic Esters
1.2. Background on Cavity Ring-Down Spectroscopy
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Gas Injection System
2.2.2. Optical Cavity Cell
2.2.3. Instrumental Setup for PS-CRD Spectroscopy
3. Results
Vibrational C-H Fundamental and Overtone Detection
4. Discussion
4.1. Laboratory and Agricultural Detection of Esters
4.2. Environmental Implications of Ester Reactions
- Ethyl trimethyl acetate: (CH3)3C-COOCH2CH3 + hν → (CH3)3C-COOH + CH2=CH2
- Tert-butyl acetate: CH3-COOC(CH3)3 + hν → CH3COOH + CH3-CH=CH-CH3
- Ethyl acetate: CH3COOCH2CH3 + hν → CH3COOH + CH2=CH2
4.3. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lens, C.; Malet, G.; Cupferman, S. Antimicrobial activity of Butyl acetate, Ethyl acetate and Isopropyl alcohol on undesirable microorganisms in cosmetic products. Int. J. Cosmet. Sci. 2016, 38, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Zabetakis, I.; Holden, M.A. Strawberry flavour: Analysis and biosynthesis. J. Sci. Food. Agric. 1997, 74, 421–434. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 4th ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Dudareva, N.; Raguso, R.A.; Wang, J.; Ross, J.R.; Pichersky, E. Floral scent production in Clarkia breweri. III. Enzymatic synthesis and emission of benzenoid esters. Plant Physiol. 1998, 116, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Mattiacci, L.; Rocca, B.A.; Scascighini, N.; D’Alessandro, M.; Hern, A.; Dorn, S. Systemically induced plant volatiles emitted at the time of “danger”. J. Chem. Ecol. 2001, 27, 2233–2252. [Google Scholar] [CrossRef]
- Anderson, D.Z.; Frisch, J.C.; Masser, C.S. Mirror reflectometer based on optical cavity decay time. Appl. Opt. 1984, 23, 1238–1245. [Google Scholar] [CrossRef]
- O’Keefe, A.; Deacon, D.A.G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 1988, 59, 2544–2551. [Google Scholar] [CrossRef]
- Herbelin, J.M.; McKay, J.A.; Kwok, M.A.; Ueunten, R.H.; Urevig, D.S.; Spencer, D.J.; Bernard, D.J. Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method. Appl. Opt. 1980, 19, 144–147. [Google Scholar] [CrossRef]
- Engeln, R.; Von Helden, G.; Berden, G.; Meijer, G. Phase shift cavity ring down absorption spectroscopy. Chem. Phys. Lett. 1996, 262, 105–109. [Google Scholar] [CrossRef]
- Lewis, E.K.; Reynolds, D.; Li, X.; de Villele, G.; Leduca, L.; Cedeño, D.L.; Manzanares, I.C. Phase shift cavity ring-down measurement of C–H (Δv = 6) vibrational overtone absorptions. Chem. Phys. Lett. 2001, 334, 357–364. [Google Scholar] [CrossRef]
- Lewis, E.K.; Moehnke, C.J.; Navea, J.G.; Manzanares, C.E. Low temperature cell for cavity ring down absorption studies. Rev. Sci. Instrum. 2006, 77, 073107. [Google Scholar] [CrossRef]
- Busch, K.W.; Busch, M.A. Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique. ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1999; p. 269. [Google Scholar] [CrossRef]
- Berden, G.; Peeters, R.; Meijer, G. Cavity ring-down spectroscopy: Experimental schemes and applications. Int. Rev. Phys. Chem. 2000, 19, 564–607. [Google Scholar] [CrossRef]
- Perez-Delgado, Y.Z. Off-Axis cavity ring down spectroscopy with exponential and phase shift detection: Absorption spectra of weak transitions at low temperatures. Ph.D. Dissertation, Baylor University, Department of Chemistry and Biochemistry, Waco, TX, USA, August 2009. [Google Scholar]
- Nyaupane, P.R.; Diaz, M.; Sunuwar, S.; Manzanares, C.E. Low temperature cavity enhanced spectroscopy with a diode laser: Vibration-rotation absorption of CO (3n) at 80 K and CH3CC-H (2n1) at 165 K. Appl. Spectrosc. Pract. 2023, 1, 1–8. [Google Scholar] [CrossRef]
- Li, Z.; Hu, R.; Xie, P.; Chen, H.; Wu, S.; Wang, F.; Wang, Y.; Ling, L.; Liu, J.; Liu, W. Development of a portable cavity ring down spectroscopy instrument for simultaneous, in situ measurement of NO3 and N2O5. Opt. Express 2018, 26, A433–A449. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Mahaffy, P.; Holmes, V.; Burris, J.; Morey, P.; Lehmann, K.K.; Lollar, B.S.; Lacrampe-Couloume, G.; Onstott, T.C. Near infrared cavity ring-down spectroscopy for isotopic analyses of CH4 on future Martian surface missions. Planet. Space Sci. 2015, 105, 117–122. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, W.; Fang, B.; Yang, N.; Cheng, F.; Hu, X.; Chen, Y.; Zhang, W.; Fittschen, C.; Chen, W. Portable cavity ring-down spectrometer for an HO2 radical measurement: Instrument’s performance and potential improvement using a narrow linewidth laser. Opt. Express 2022, 30, 37446–37456. [Google Scholar] [CrossRef]
- Sun, M.; Jiang, C.; Gong, Z.; Zhao, X.; Chen, Z.; Wang, Z.; Kang, M.; Li, Y.; Wang, C. A fully integrated standalone portable cavity ringdown breath acetone analyzer. Rev. Sci. Instrum. 2015, 86, 095003. [Google Scholar] [CrossRef]
- Zhang, R.; Suh, I.; Zhao, J.; Zhang, D.; Fortner, E.C.; Tie, X.; Molina, L.T.; Molina, M.J. Atmospheric new particle formation enhanced by organic acids. Science 2004, 304, 1487–1490. [Google Scholar] [CrossRef]
- McGraw, R.; Zhang, R. Multivariate analysis of homogeneous nucleation rate measurements. Nucleation in the p-Toluic acid/sulfuric acid/water system. J. Chem. Phys. 2008, 128, 064508. [Google Scholar] [CrossRef]
- Kulmala, M.; Vehkamaki, H.; Petaja, T.; Dal Maso, M.; Lauri, A.; Kerminen, V.-M.; Birmili, W.; McMurry, P.H. Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol. Sci. 2004, 35, 143–176. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef]
- Smith, I.W.M. Laboratory studies of atmospheric reactions at low temperatures. Chem. Rev. 2003, 103, 4549–4564. [Google Scholar] [CrossRef] [PubMed]
- de Burgh Norfolk, S.; Taylor, R. The mechanism of the gas-phase pyrolysis of esters. Part IV. Effects of substituents at the β-Carbon atom. J. Chem. Soc. Perkin Trans. 1976, 2, 280–285. [Google Scholar] [CrossRef]
- Blades, A.T.; Gilderson, P.W. Kinetics of the thermal decomposition of ethyl propionate. Can. J. Chem. 1960, 38, 1412. [Google Scholar] [CrossRef]
- Cross, J.T.; Stimson, V.R. The thermal decomposition of ethyl trimethylacetate. Aust. J. Chem. 1967, 20, 177–181. [Google Scholar] [CrossRef]
- Taylor, R. The nature of the transition state in ester pyrolysis. Part II. The relative rates of pyrolysis of ethyl, isopropyl, and t-butyl acetates, phenylacetates, benzoates, phenyl carbonates, and N-phenylcarbamates. J. Chem. Soc. Perkin Trans. 1975, 2, 1025–1029. [Google Scholar] [CrossRef]
Ethyl Acetate | |||||||
---|---|---|---|---|---|---|---|
Transition | ν/cm−1 | P/Torr | c/M | /cm | A | α/cm−1 | ε/cm−1M−1 |
Fundamental (∆υ = 1) | 2995 | 0.2 | 1.1 × 10−5 | 660 | 1.04 | 1.6 × 10−3 | 147.6 |
First overtone (∆υ = 2) | 5826 | 60 | 3.3 × 10−3 | 660 | 0.75 | 1.1 × 10−3 | 3.3 × 10−1 |
Fifth overtone (∆υ = 6) | 15,925 | 60 | 3.3 × 10−3 | 2.5 × 106 | 0.21 | 8.5 × 10−8 | 2.6 × 10−5 |
Ethyl Trimethyl Acetate | |||||||
Transition | ν/cm−1 | P/Torr | c/M | /cm | A | α/cm−1 | ε/cm−1M−1 |
Fundamental (∆υ = 1) | 2985 | 0.1 | 5.4 × 10−6 | 660 | 0.99 | 1.5 × 10−3 | 277.8 |
First overtone (∆υ = 2) | 5813 | 12.3 | 6.7 × 10−4 | 660 | 0.26 | 3.9 × 10−4 | 5.8 × 10−1 |
Fifth overtone (∆υ = 6) | 15,818 | 12.3 | 6.7 × 10−4 | 2.5 × 106 | 0.43 | 1.7 × 10−7 | 2.5 × 10−4 |
Tert-Butyl Acetate | |||||||
Transition | ν/cm−1 | P/Torr | c/M | /cm | A | α/cm−1 | ε/cm−1M−1 |
Fundamental (∆υ = 1) | 2987 | 0.1 | 5.4 × 10−6 | 660 | 0.83 | 1.3 × 10−3 | 240.7 |
First overtone (∆υ = 2) | 5790 | 23.6 | 1.3 × 10−3 | 660 | 0.47 | 7.1 × 10−4 | 5.5 × 10−1 |
Fifth overtone (∆υ = 6) | 15,914 | 10.0 | 5.4 × 10−4 | 2.5 × 106 | 0.70 | 2.8 × 10−7 | 5.2 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camejo, D.; Manzanares, C.E. Phase Shift Cavity Ring-Down (PS-CRD) Absorption of Esters in the Near-Infrared and Visible Regions: Agricultural Detection and Environmental Implications. Sensors 2025, 25, 3448. https://doi.org/10.3390/s25113448
Camejo D, Manzanares CE. Phase Shift Cavity Ring-Down (PS-CRD) Absorption of Esters in the Near-Infrared and Visible Regions: Agricultural Detection and Environmental Implications. Sensors. 2025; 25(11):3448. https://doi.org/10.3390/s25113448
Chicago/Turabian StyleCamejo, David, and Carlos E. Manzanares. 2025. "Phase Shift Cavity Ring-Down (PS-CRD) Absorption of Esters in the Near-Infrared and Visible Regions: Agricultural Detection and Environmental Implications" Sensors 25, no. 11: 3448. https://doi.org/10.3390/s25113448
APA StyleCamejo, D., & Manzanares, C. E. (2025). Phase Shift Cavity Ring-Down (PS-CRD) Absorption of Esters in the Near-Infrared and Visible Regions: Agricultural Detection and Environmental Implications. Sensors, 25(11), 3448. https://doi.org/10.3390/s25113448