Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (791)

Search Parameters:
Keywords = nanocomposite electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3298 KiB  
Article
High-Performance Catalytic Oxygen Evolution with Nanocellulose-Derived Biocarbon and Fe/Zeolite/Carbon Nanotubes
by Javier Hernandez-Ortega, Chamak Ahmed, Andre Molina, Ronald C. Sabo, Lorena E. Sánchez Cadena, Bonifacio Alvarado Tenorio, Carlos R. Cabrera and Juan C. Noveron
Catalysts 2025, 15(8), 719; https://doi.org/10.3390/catal15080719 - 28 Jul 2025
Viewed by 395
Abstract
The oxygen evolution reaction (OER) plays a central role as an anode in electrocatalytic processes such as energy conversion and storage and the generation of molecular oxygen from the electrolysis of water. Currently, precious metal oxides such as IrO2 and RuO2 [...] Read more.
The oxygen evolution reaction (OER) plays a central role as an anode in electrocatalytic processes such as energy conversion and storage and the generation of molecular oxygen from the electrolysis of water. Currently, precious metal oxides such as IrO2 and RuO2 are recognized as reference OER electrocatalysts with reasonably high activity; however, their widespread use in practical devices has been severely hindered by their high cost and scarcity. It is essential to design alternative OER electrocatalysts made of low-cost and abundant earth elements with significant activity and robustness. We report four new nanocellulose-derived Fe–zeolite nanocomposites, namely Fe/Zeolite@CCNC (1), Fe/Zeolite@CCNF (2), Fe/Zeolite/CNT@CCNC (3), and Fe/Zeolite/CNT@CCNF (4). Two different types of nanocellulose were investigated: nanocellulose nanofibrils and nanocellulose nanocrystals. Characterization with TEM, SEM-EDS, PXRD, and XPS is reported. The nanocomposites exhibited electrocatalytic activity for OER that varies based on the origin of biocarbon and the composition content. The effect of adding carbon nanotubes to the nanocomposites was studied, and an improvement in OER catalysis was observed. The electrochemical double-layer capacitance and electrochemical impedance spectroscopy of the nanocomposites are reported. The nanocomposite 3 exhibited the highest performance, with an onset potential value of 1.654 V and an overpotential of 551 mV, which exceeds the activity of RuO2 for OER catalysis at 10 mA/cm2 in the glassy carbon electrode. A 24 h chronoamperometry study revealed that the catalyst is active for ~2 h under continuous operating conditions. BET surface analysis showed that the crystalline nanocellulose-derived composite exhibited 301.47 m2/g, and the fibril nanocellulose-derived composite exhibited 120.39 m2/g, indicating that the increased nanoporosity of the former contributes to the increase in OER catalysis. Full article
Show Figures

Graphical abstract

2 pages, 434 KiB  
Correction
Correction: Barbosa et al. Production of rGO-Based Electrospinning Nanocomposites Incorporated in Recycled PET as an Alternative Dry Electrode. Polymers 2022, 14, 4288
by Michelle Chizzolini Barbosa, Claudia do Amaral Razzino, Thiago Domingues Stocco, Moisés das Virgens Santana, Anupama Ghosh, Luiz Fernando Pereira, Carlos Julio Tierra-Criollo and Anderson Oliveira Lobo
Polymers 2025, 17(15), 2056; https://doi.org/10.3390/polym17152056 - 28 Jul 2025
Viewed by 126
Abstract
During the final review of our manuscript [...] Full article
(This article belongs to the Special Issue Advanced Electrospinning Technology)
Show Figures

Figure 6

11 pages, 1778 KiB  
Communication
Ultra-Sensitive Detection of Chloramphenicol by CdS@NiMoS Nanorods-Based Photoelectrochemical Aptasensor
by Hebin Sun, Yimeng Sun, Tong Qi, Zhenyu Wang, Jianlong Zhao and Lijuan Liang
Biosensors 2025, 15(7), 454; https://doi.org/10.3390/bios15070454 - 14 Jul 2025
Viewed by 374
Abstract
A novel nanomaterial photoelectrochemical aptamer sensor based on CdS@NiMoS heterojunction nanocomposites was constructed for highly sensitive detection of chloramphenicol (CAP) in antibiotic residues. Through optimization of the material synthesis process, the optimal doping ratio of MoS2 to Ni3+ (70% MoS2 [...] Read more.
A novel nanomaterial photoelectrochemical aptamer sensor based on CdS@NiMoS heterojunction nanocomposites was constructed for highly sensitive detection of chloramphenicol (CAP) in antibiotic residues. Through optimization of the material synthesis process, the optimal doping ratio of MoS2 to Ni3+ (70% MoS2 and 10% Ni3+) was identified, which significantly enhanced the photogenerated carrier separation efficiency. In thin-film preparation, comparative analysis of four film-forming methods led to the determination of an optimal process with stability. To achieve highly specific CAP detection, the nanocomposite chip was integrated with nucleic acid aptamer biorecognition elements within a standard three-electrode detection system. Experimental results demonstrated a linear response (R2 = 0.998) in the 0.1–2 μM concentration range, with a detection limit of 3.69 nM (3σ/S). Full article
(This article belongs to the Special Issue Nanotechnology Biosensing in Bioanalysis and Beyond)
Show Figures

Figure 1

14 pages, 2441 KiB  
Article
Reduced Graphene Oxide/β-Cyclodextrin Nanocomposite for the Electrochemical Detection of Nitrofurantoin
by Al Amin, Gajapaneni Venkata Prasad, Venkatachalam Vinothkumar, Seung Joo Jang, Da Eun Oh and Tae Hyun Kim
Chemosensors 2025, 13(7), 247; https://doi.org/10.3390/chemosensors13070247 - 10 Jul 2025
Viewed by 461
Abstract
In this work, a glassy carbon electrode (GCE) modified with reduced graphene oxide and β-cyclodextrin (rGO/β-CD) nanocomposite was developed for the electrochemical detection of nitrofurantoin (NFT). The structural and morphological characteristics of the synthesized nanocomposite were determined using scanning electron microscopy (SEM), Raman [...] Read more.
In this work, a glassy carbon electrode (GCE) modified with reduced graphene oxide and β-cyclodextrin (rGO/β-CD) nanocomposite was developed for the electrochemical detection of nitrofurantoin (NFT). The structural and morphological characteristics of the synthesized nanocomposite were determined using scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Moreover, the electrochemical behavior of the modified electrodes was thoroughly examined using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), with the rGO/β-CD-modified glassy carbon electrode (GCE) demonstrating superior electron transfer capability. Key experimental parameters, including scan rate, material loading, and solution pH, were systematically optimized. After optimizing the experimental conditions, the modified sensor showed excellent electrocatalytic performance and selectivity toward NFT, achieving a broad linear detection range from 0.5 to 120 μM, a low limit of detection (LOD) of 0.048 μM, and a high sensitivity of 12.1 µA µM–1 cm–2 using differential pulse voltammetry (DPV). Furthermore, the fabricated electrode exhibited good anti-interference ability, stability, precision, and real-time applicability for NFT detection in a wastewater sample. These results highlight the potential of the rGO/β-CD nanocomposite as a high-performance platform for electrochemical sensing applications. Full article
Show Figures

Figure 1

20 pages, 3918 KiB  
Article
Engineered Cu0.5Ni0.5Al2O4/GCN Spinel Nanostructures for Dual-Functional Energy Storage and Electrocatalytic Water Splitting
by Abdus Sami, Sohail Ahmad, Ai-Dang Shan, Sijie Zhang, Liming Fu, Saima Farooq, Salam K. Al-Dawery, Hamed N. Harharah, Ramzi H. Harharah and Gasim Hayder
Processes 2025, 13(7), 2200; https://doi.org/10.3390/pr13072200 - 9 Jul 2025
Viewed by 356
Abstract
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, [...] Read more.
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, addressing environmental challenges while meeting rising energy needs. In this study, the fabrication of a novel bifunctional catalyst, copper nickel aluminum spinel (Cu0.5Ni0.5Al2O4) supported on graphitic carbon nitride (GCN), using a solid-state synthesis process is reported. Because of its effective interface design and spinel cubic structure, the Cu0.5Ni0.5Al2O4/GCN nanocomposite, as synthesized, performs exceptionally well in electrochemical energy conversion, such as the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and energy storage. In particular, compared to noble metals, Pt/C- and IrO2-based water-splitting cells require higher voltages (1.70 V), while for the Cu0.5Ni0.5Al2O4/GCN nanocomposite, a voltage of 1.49 V is sufficient to generate a current density of 10 mA cm−2 in an alkaline solution. When used as supercapacitor electrode materials, Cu0.5Ni0.5Al2O4/GCN nanocomposites show a specific capacitance of 1290 F g−1 at a current density of 1 A g−1 and maintain a specific capacitance of 609 F g−1 even at a higher current density of 5 A g−1, suggesting exceptional rate performance and charge storage capacity. The electrode’s exceptional capacitive properties were further confirmed through the determination of the roughness factor (Rf), which represents surface heterogeneity and active area enhancement, with a value of 345.5. These distinctive characteristics render the Cu0.5Ni0.5Al2O4/GCN composite a compelling alternative to fossil fuels in the ongoing quest for a viable replacement. Undoubtedly, the creation of the Cu0.5Ni0.5Al2O4/GCN composite represents a significant breakthrough in addressing the energy crisis and environmental concerns. Owing to its unique composition and electrocatalytic characteristics, it is considered a feasible choice in the pursuit of ecologically sustainable alternatives to fossil fuels. Full article
Show Figures

Graphical abstract

19 pages, 3235 KiB  
Article
Electrochemical Detection of Bisphenol S Based on Molecularly Imprinted Polymers Grafted on Functionalized Multiwalled Carbon Nanotubes: A Facile Sensor Fabrication Approach
by Christopher Mwanza, Lin Zhao, Qing Zhang and Shou-Nian Ding
Chemosensors 2025, 13(7), 236; https://doi.org/10.3390/chemosensors13070236 - 30 Jun 2025
Viewed by 436
Abstract
Bisphenol S (BPS), a key ingredient in polycarbonate plastics and epoxy resins, is a known endocrine-disrupting compound that poses significant risks to human health and the environment. As such, the development of rapid and reliable analytical techniques for its detection is essential. In [...] Read more.
Bisphenol S (BPS), a key ingredient in polycarbonate plastics and epoxy resins, is a known endocrine-disrupting compound that poses significant risks to human health and the environment. As such, the development of rapid and reliable analytical techniques for its detection is essential. In this work, we present a newly engineered electrochemical sensor designed for the sensitive and selective detection of BPS using a straightforward and effective fabrication approach. The sensor was constructed by grafting molecularly imprinted polymers (MIPs) onto vinyl-functionalized multiwalled carbon nanotubes (f-MWCNTs). Ethylene glycol dimethacrylate and acrylamide were used as the cross-linker and functional monomer, respectively, in the synthesis of the MIP layer. The resulting MIP@f-MWCNT nanocomposite was characterized using Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The MIP@f-MWCNT material was then combined with chitosan, a biocompatible binder, to fabricate the final MIP@f-MWCNT/chitosan-modified glassy carbon electrode (GCE). Electrochemical evaluation showed a broad linear detection range from 1 to 60 µM (R2 = 0.992), with a sensitivity of 0.108 µA/µM and a detection limit of 2.00 µM. The sensor retained 96.0% of its response after four weeks and exhibited high selectivity against structural analogues. In spiked plastic extract samples, recoveries ranged from 95.6% to 105.0%. This robust, cost-effective, and scalable sensing platform holds strong potential for environmental monitoring, food safety applications, and real-time electrochemical detection of endocrine-disrupting compounds like BPS. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electrochemical Sensing)
Show Figures

Graphical abstract

13 pages, 6776 KiB  
Article
Bimetallic Ir-Sn Non-Carbon Supported Anode Catalysts for PEM Water Electrolysis
by Iveta Boshnakova, Elefteria Lefterova, Galin Borisov, Denis Paskalev and Evelina Slavcheva
Inorganics 2025, 13(7), 210; https://doi.org/10.3390/inorganics13070210 - 20 Jun 2025
Viewed by 412
Abstract
Nanostructured bimetallic IrSn composites deposited on the natural aluminosilicate montmorillonite were synthesized and evaluated as anode electrocatalysts for polymer electrolyte membrane electrolysis cells (PEMECs). The test series prepared via the sol–gel method consisted of samples with 30 wt. % total metal content and [...] Read more.
Nanostructured bimetallic IrSn composites deposited on the natural aluminosilicate montmorillonite were synthesized and evaluated as anode electrocatalysts for polymer electrolyte membrane electrolysis cells (PEMECs). The test series prepared via the sol–gel method consisted of samples with 30 wt. % total metal content and varying Ir:Sn ratio. The performed X-ray diffraction analysis and high-resolution transmission electron icroscopy registered very fine nanostructure of the composites with metal particles size of 2–3 nm homogeneously dispersed on the support surface and also intercalated in the basal space of its layered structure. The electrochemical behavior was investigated by cyclic voltammetry and steady-state polarization techniques. The initial screening was performed in 0.5 M H2SO4. Then, the catalysts were integrated as anodes in membrane electrode assemblies (MEAs) and tested in a custom-made PEMEC. The electrochemical tests revealed that the catalysts with Ir:Sn ratio 15:15 and 18:12 wt. % demonstrated high efficiency toward the oxygen evolution reaction during repetitive potential cycling and sustainable performance with current density in the range 140–120 mA cm−2 at 1.6 V vs. RHE during long-term stability tests. The results obtained give credence to the studied IrSn/MMT nanocomposites to be considered promising, cost-efficient catalysts for the oxygen evolution reaction (OER). Full article
Show Figures

Graphical abstract

23 pages, 4811 KiB  
Article
In2S3/C3N4 Nanocomposite and Its Photoelectric Properties in the Broadband Light Spectrum Range
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(6), 718; https://doi.org/10.3390/coatings15060718 - 14 Jun 2025
Viewed by 388
Abstract
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response [...] Read more.
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response to light sources with wavelengths of 405, 532, 650, 780, 808, 980, and 1064 nm were investigated using Au electrodes and the carbon electrodes with 5B pencil drawings. This study shows that the aggregation states of the In2S3/C3N4 nanocomposite possess photocurrent switching responses in the broadband region of the light spectrum. Combining two types of partially visible light-absorbing material extends utilisation to the near-infrared region. Impurities or defects embody an electron-donating effect. Since the energy levels of defects or impurities with an electron-donating effect are close to the conduction band, low-energy lights (especially NIR) can be utilised. The non-equilibrium carrier concentration (photogenerated electrons) of the nanocomposites increases significantly under NIR photoexcitation conditions. Thus, photoconductive behaviour is manifested. A good photoelectric signal was still measured when zero bias was applied. This demonstrates self-powered photoelectric response characteristics. Different sulphur sources significantly affect the photoelectric performance, suggesting that they create different defects that affect charge transport and base current noise. It is believed that interfacial interactions in the In2S3/C3N4 nanocomposite create a built-in electric field that enhances the separation and transfer of electrons and holes produced by light stimulation. The presence of the built-in electric field also leads to energy band bending, which facilitates the utilisation of the light with longer wavelengths. This study provides a reference for multidisciplinary applications. Full article
Show Figures

Figure 1

17 pages, 2382 KiB  
Article
Hydrothermally Synthesized PPy/VO2 Nanorod Composites for High-Performance Aqueous Zinc-Ion Battery Cathodes
by Taoyun Zhou, Shilin Li, Dong Xie, Yi Liu, Yun Cheng and Xinyu Li
Micromachines 2025, 16(6), 705; https://doi.org/10.3390/mi16060705 - 13 Jun 2025
Viewed by 514
Abstract
The rapid development of energy storage technologies has led to an increasing demand for high-performance electrode materials that can enhance both the energy density and the cycling stability of batteries. In this study, polypyrrole (PPy) nanorods with partial hollow features are utilized as [...] Read more.
The rapid development of energy storage technologies has led to an increasing demand for high-performance electrode materials that can enhance both the energy density and the cycling stability of batteries. In this study, polypyrrole (PPy) nanorods with partial hollow features are utilized as a conductive and flexible framework for the in situ growth of VO2 nanospheres via a simple hydrothermal method, forming a well-defined core–shell PPy/VO2 nanocomposite. This hierarchical nanostructure combines the excellent electrical conductivity and mechanical flexibility of PPy with the high theoretical capacity of VO2, creating a synergistic effect that significantly enhances the electrochemical performance. The well-integrated interface between PPy and VO2 reduces interfacial resistance, promotes efficient electron and ion transport, and improves the overall energy conversion efficiency. Electrochemical testing reveals that the PPy/VO2 nanocomposite delivers a high specific capacity of 413 mAh g−1 at 100 mA g−1 and retains 87.2% of its initial capacity after 1200 cycles, demonstrating exceptional rate capability and long-term cycling stability. This work provides a versatile strategy for designing high-performance cathode materials and highlights the promising potential of PPy/VO2 nanocomposites for next-generation high-energy-density aqueous zinc-ion batteries. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

20 pages, 7474 KiB  
Article
Utilization of Flotation Wastewater for Metal Xanthate Gel Synthesis and Its Role in Polyaniline-Based Supercapacitor Electrode Fabrication
by Atanas Garbev, Elitsa Petkucheva, Galia Ivanova, Mariela Dimitrova, Antonia Stoyanova and Evelina Slavcheva
Gels 2025, 11(6), 446; https://doi.org/10.3390/gels11060446 - 10 Jun 2025
Viewed by 1228
Abstract
The aim of this study is to explore the feasibility of using flotation wastewater from copper–porphyry ore processing to synthesize a gel that serves as a precursor for a polymer nanocomposite used in supercapacitor electrode fabrication. These wastewaters—characterized by high acidity and elevated [...] Read more.
The aim of this study is to explore the feasibility of using flotation wastewater from copper–porphyry ore processing to synthesize a gel that serves as a precursor for a polymer nanocomposite used in supercapacitor electrode fabrication. These wastewaters—characterized by high acidity and elevated concentrations of metal cations (Cu, Ni, Zn, Fe), sulfates, and organic reagents such as xanthates, oil (20 g/t ore), flotation frother (methyl isobutyl carbinol), and pyrite depressant (CaO, 500–1000 g/t), along with residues from molybdenum flotation (sulfuric acid, sodium hydrosulfide, and kerosene)—are byproducts of copper–porphyry gold-bearing ore beneficiation. The reduction of Ni powder in the wastewater induces the degradation and formation of a gel that captures both residual metal ions and organic compounds—particularly xanthates—which play a crucial role in the subsequent steps. The resulting gel is incorporated during the oxidative polymerization of aniline, forming a nanocomposite with a polyaniline matrix and embedded xanthate-based compounds. An asymmetric supercapacitor was assembled using the synthesized material as the cathodic electrode. Electrochemical tests revealed remarkable capacitance and cycling stability, demonstrating the potential of this novel approach both for the valorization of industrial waste streams and for enhancing the performance of energy storage devices. Full article
Show Figures

Graphical abstract

14 pages, 2695 KiB  
Article
Synergistic MoS2–Gold Nanohybrids for Sustainable Hydrogen Production
by Shrouq H. Aleithan, Shroq S. Laradhi, Kawther Al-Amer and Hany M. Abd El-Lateef
Catalysts 2025, 15(6), 550; https://doi.org/10.3390/catal15060550 - 1 Jun 2025
Cited by 1 | Viewed by 598
Abstract
Extensive research has been conducted on the catalytic properties of molybdenum disulfide (MoS2) materials in the context of the hydrogen evolution reaction (HER). This study focuses on exploring hybrid MoS2/Au structures as a catalyst for HER, utilizing linear sweep [...] Read more.
Extensive research has been conducted on the catalytic properties of molybdenum disulfide (MoS2) materials in the context of the hydrogen evolution reaction (HER). This study focuses on exploring hybrid MoS2/Au structures as a catalyst for HER, utilizing linear sweep voltammetry as the experimental methodology. Firstly, 2D-MoS2 flakes were synthesized by the chemical vapor deposition (CVD) approach and directly added to gold nanoparticles during or after their preparation process. The prepared nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy with energy-dispersive X-ray analysis (SEM/EDX). The HER performance was tested for the two resulting samples to show that the preparation of gold nanoparticles with the coexistence of CVD-MoS2 flakes produces a superior electrocatalytic performance of the sample in a neutral medium. Notably, the onset potential was measured as −0.152 V (versus reversible hydrogen electrode (RHE)) with an exchange current density (j0) of 0.22 mA/cm2. Chronoamperometric data show that all composites retained initial current densities for 15 hours, confirming stable, efficient HER performance post-decay. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis)
Show Figures

Figure 1

12 pages, 9594 KiB  
Article
An Electrochemical Sensor Based on AuNPs@Cu-MOF/MWCNTs Integrated Microfluidic Device for Selective Monitoring of Hydroxychloroquine in Human Serum
by Xuanlin Feng, Jiaqi Zhao, Shiwei Wu, Ying Kan, Honemei Li and Weifei Zhang
Chemosensors 2025, 13(6), 200; https://doi.org/10.3390/chemosensors13060200 - 1 Jun 2025
Viewed by 730
Abstract
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their [...] Read more.
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their large chambers and high sample consumption hinder point-of-care use. To address these challenges, we developed a microfluidic electrochemical sensing platform based on a screen-printed carbon electrode (SPCE) modified with a hierarchical nanocomposite of gold nanoparticles (AuNPs), copper-based metal–organic frameworks (Cu-MOFs), and multi-walled carbon nanotubes (MWCNTs). The Cu-MOF provided high porosity and analyte enrichment, MWCNTs established a 3D conductive network to enhance electron transfer, and AuNPs further optimized catalytic activity through localized plasmonic effects. Structural characterization (SEM, XRD, FT-IR) confirmed the successful integration of these components via π-π stacking and metal–carboxylate coordination. Electrochemical analyses (CV, EIS, DPV) revealed exceptional performance, with a wide linear range (0.05–50 μM), a low detection limit (19 nM, S/N = 3), and a rapid response time (<5 min). The sensor exhibited outstanding selectivity against common interferents, high reproducibility (RSD = 3.15%), and long-term stability (98% signal retention after 15 days). By integrating the nanocomposite-modified SPCE into a microfluidic chip, we achieved accurate HCQ detection in 50 μL of serum, with recovery rates of 95.0–103.0%, meeting FDA validation criteria. This portable platform combines the synergistic advantages of nanomaterials with microfluidic miniaturization, offering a robust and practical tool for real-time therapeutic drug monitoring in clinical settings. Full article
(This article belongs to the Special Issue Feature Papers on Luminescent Sensing (Second Edition))
Show Figures

Figure 1

20 pages, 2425 KiB  
Review
A Review of Electroactive Polymers in Sensing and Actuator Applications
by Diana Narvaez and Brittany Newell
Actuators 2025, 14(6), 258; https://doi.org/10.3390/act14060258 - 23 May 2025
Viewed by 3890
Abstract
Electroactive polymers (EAPs) represent a versatile class of smart materials capable of converting electrical stimuli into mechanical motion and vice versa, positioning them as key components in the next generation of actuators and sensors. This review summarizes recent developments in both electronic and [...] Read more.
Electroactive polymers (EAPs) represent a versatile class of smart materials capable of converting electrical stimuli into mechanical motion and vice versa, positioning them as key components in the next generation of actuators and sensors. This review summarizes recent developments in both electronic and ionic EAPs, highlighting their activation mechanisms, material architectures, and multifunctional capabilities. Representative systems include dielectric elastomers, ferroelectric and conducting polymers, liquid crystal elastomers, and ionic gels. Advances in fabrication methods, such as additive manufacturing, nanocomposite engineering, and patternable electrode deposition, are discussed with emphasis on miniaturization, stretchability, and integration into soft systems. Applications span biomedical devices, wearable electronics, soft robotics, and environmental monitoring, with growing interest in platforms that combine actuation and sensing within a single structure. Finally, the review addresses critical challenges such as long-term material stability and scalability, and outlines future directions toward self-powered, AI-integrated, and sustainable EAP technologies. Full article
(This article belongs to the Special Issue Electroactive Polymer (EAP) for Actuators and Sensors Applications)
Show Figures

Figure 1

22 pages, 9357 KiB  
Article
A Zinc Oxide Interconnected Hydroxypropyl-Beta-Cyclodextrin/rGO Nanocomposite as an Electrocatalyst for Melatonin Detection: An Ultra-Sensitive Electrochemical Sensor
by Kuo-Yuan Hwa, Aravindan Santhan, Chun-Wei Ou and Cheng-Han Wang
Sensors 2025, 25(11), 3266; https://doi.org/10.3390/s25113266 - 22 May 2025
Viewed by 568
Abstract
Nanocomposite hydroxypropyl-beta-cyclodextrin functionalized reduced graphene oxide sheets (HpβCD@rGOs) with zinc oxide flaky structures (ZnOFs) were synthesized. The ZnOFs/HpβCD@rGOs were first characterized to examine their physicochemical characteristics. The ZnOFs exhibited a highly crystalline structure intertwined with HpβCD@rGO sheets. The electrocatalyst experienced excellent electrochemical oxidation [...] Read more.
Nanocomposite hydroxypropyl-beta-cyclodextrin functionalized reduced graphene oxide sheets (HpβCD@rGOs) with zinc oxide flaky structures (ZnOFs) were synthesized. The ZnOFs/HpβCD@rGOs were first characterized to examine their physicochemical characteristics. The ZnOFs exhibited a highly crystalline structure intertwined with HpβCD@rGO sheets. The electrocatalyst experienced excellent electrochemical oxidation current responses toward melatonin (MTN). The interaction between the catalyst and MTN improves electrochemical activity through a synergistic action, which can be measured by a glassy carbon electrode (GCE) modified with ZnOFs/HpβCD@rGOs. This modified electrode with the increased reactive sites and a large electrochemically active surface area allows the rapid oxidation reaction of MTN. The oxidation of MTN was detected and measured with a linearity range around 0.014–0.149 and 1.149–643.341 (µM), with a low detection limit (LOD) of around 0.0105 µM or 10.5 nM. The sensitivity was around 6.19 μA μM−1 cm−2. The constructed electrode demonstrated a notable level of selectivity to MTN when the interfering (biological) chemicals with a similar structure to MTN were introduced. The real samples were tested in order to examine whether the ZnOFs/HpβCD@rGOs/GCE can be developed for the biomedical monitoring of compounds. The results suggest that ZnOFs/HpβCD@rGOs/GCE can detect MTN in in vitro human samples. Furthermore, the cost-effectiveness, enhanced electrochemical capabilities, and easy fabrication of the electrode make the ZnOFs/HpβCD@rGOs composite a feasible solution for the future industrial development of monitoring tools as sensors. Full article
(This article belongs to the Special Issue Recent Advances in Nanomaterial-Based Electrochemical Sensors)
Show Figures

Graphical abstract

15 pages, 2152 KiB  
Article
Ultrasensitive Analysis of BRCA-1 Based on Gold Nanoparticles and Molybdenum Disulfide Electrochemical Immunosensor with Enhanced Signal Amplification
by Derya Bal Altuntaş
Biosensors 2025, 15(5), 330; https://doi.org/10.3390/bios15050330 - 21 May 2025
Viewed by 650
Abstract
The BRCA-1 protein, recognized for its diagnostic relevance in a wide spectrum of malignancies, has been the focus of extensive investigation. In this study, an electrochemical immunosensor specifically designed for BRCA-1 detection was fabricated. The sensing platform utilizes disposable pencil graphite electrodes modified [...] Read more.
The BRCA-1 protein, recognized for its diagnostic relevance in a wide spectrum of malignancies, has been the focus of extensive investigation. In this study, an electrochemical immunosensor specifically designed for BRCA-1 detection was fabricated. The sensing platform utilizes disposable pencil graphite electrodes modified with a nanocomposite composed of gold nanoparticles (AuNPs), molybdenum disulfide (MoS2), and chitosan (CS). This multifunctional nanostructure significantly promotes electron transfer efficiency and supports the effective immobilization of antibodies. The constructed immunosensor exhibited excellent analytical performance, with a linear detection range between 0.05 and 20 ng/mL for BRCA-1 and a notably low limit of detection at 0.04 ng/mL. The device maintained a relative standard deviation of 3.59% (n = 3), indicating strong reproducibility. In addition, a high recovery rate of 98 ± 3% was achieved in spiked serum samples, even in the presence of common electroactive interferents such as dopamine and ascorbic acid. These findings highlight the sensor’s promising applicability for the clinical detection of BRCA-1 and potentially other cancer-related biomarkers. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Figure 1

Back to TopTop