Utilization of Flotation Wastewater for Metal Xanthate Gel Synthesis and Its Role in Polyaniline-Based Supercapacitor Electrode Fabrication
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Data
2.1.1. XRD Analysis of the Precursor Gel
2.1.2. XRD Analysis of the Polymer Nanocomposite
2.2. Electrochemical Results
2.3. Comparative Assessment with Conventional Remediation Strategies
- (a)
- Adsorption-Based Methods
- (b)
- Precipitation and Coagulation
- (c)
- Membrane-Based Technologies
- (d)
- Circularity and Functional Integration
- (e)
- Summary of Comparative Advantages
3. Conclusions
4. Materials and Methods
Materials and Reagents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PANI | Polyanyline |
PANI-MX | PANI–metal xanthate composite |
References
- Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer: Boston, MA, USA, 1999. [Google Scholar]
- Miller, J.R.; Simon, P. Materials science: Electrochemical capacitors for energy management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Mendhe, A.B.; Rakhade, H.M.; Barse, N.S.; Roy, M.; Rosaiah, P.; Park, T.; Lee, H.S.; Mendhe, A.C.; Kim, D. Recent advancement and design in supercapacitor hybrid electrode materials: Bridging the gap between energy and power density. Chem. Eng. J. Adv. 2025, 21, 100690. [Google Scholar] [CrossRef]
- An, C.; Zhang, Y.; Guo, H.; Wang, Y. Metal oxide-based supercapacitors: Progress and challenges. Nanoscale Adv. 2019, 1, 4644–4658. [Google Scholar] [CrossRef]
- Kamal, N.; Choudhury, A.; Mahapatra, S.S. Advances in conducting polymer-Based electrodes for supercapacitors: A focus on binder-free integration. J. Macromol. Sci. Part A 2025, 1–18. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, D.; Maiyalagan, T.; Jiang, Z.A. Review on Recent Progress in Ruthenium Oxide-Based Composites for Supercapacitor Applications. ChemElectroChem 2019, 6, 4343–4372. [Google Scholar] [CrossRef]
- Subramanian, V.; Zhu, H.; Wei, B. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. J. Power Sources 2006, 159, 361–364. [Google Scholar] [CrossRef]
- Chime, U.K.; Nkele, A.C.; Ezugwu, S.; Nwanya, A.C.; Shinde, N.; Kebede, M.; Ejikeme, P.M.; Maaza, M.; Ezema, F.I. Recent progress in nickel oxide-based electrodes for high-performance supercapacitors. Curr. Opin. Electrochem. 2020, 21, 175–181. [Google Scholar] [CrossRef]
- Kore, R.M.; Lokhande, B.J. A robust solvent deficient route synthesis of mesoporous Fe2O3 nanoparticles as supercapacitor electrode material with improved capacitive performance. J. Alloys Compd. 2017, 725, 129–138. [Google Scholar] [CrossRef]
- Majumdar, D.; Ghosh, S. Recent advancements of copper oxide based nanomaterials for supercapacitor applications. J. Energy Storage 2021, 34, 101995. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, X.; Xue, H.; Pang, H. Zinc Oxide Based Composite Materials for Advanced Supercapacitors. ChemistrySelect 2018, 3, 550–565. [Google Scholar] [CrossRef]
- Wang, J.G.; Yang, Y.; Huang, Z.H.; Kang, F. Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors. J. Power Sources 2012, 204, 236–243. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhao, X. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef] [PubMed]
- Anilkumar, K.R.; Parveen, A.; Badiger, G.R.; Prasad, M.A. Effect of molybdenum trioxide (MoO3) on the electrical conductivity of polyaniline. Phys. B Condens. Matter 2009, 404, 1664–1667. [Google Scholar] [CrossRef]
- Nor, Z.M.; Al-Qwairi, F.O.; Mirghni, A.A.; Al-Fakih, A.; Ahmad, S.; Al-Osta, M.A.; Alzahrani, A.S.; Budaiwi, I.M.; Aziz, A. From Waste to Power: Developing Structural Supercapacitors with Red Mud and Jute Stick. Chem. Asian J. 2025, 20, e202401222. [Google Scholar] [CrossRef]
- Soulamidis, G.; Kourmousi, M.; Mitsopoulou, C.A.; Stouraiti, C. Electrochemical Behavior of Natural Manganese Oxides: Transforming Mining Waste into Energy Storage Materials. Minerals 2024, 14, 455. [Google Scholar] [CrossRef]
- Ragossnig, A.M.; Schneider, D.R. Circular economy, recycling and end-of-waste. Waste Manag. Res. 2019, 37, 109–111. [Google Scholar] [CrossRef]
- Duarte, D.; Hoondert, R.; Amato, E.; Dingemans, M.; Kools, S. Making waves: Xanthates on the radar—Environmental risks and water quality impact. Water Res. X 2024, 24, 100232. [Google Scholar] [CrossRef]
- Yuan, J.; Li, S.; Ding, Z.; Li, J.; Yu, A.; Wen, S.; Bai, S. Treatment Technology and Research Progress of Residual Xanthate in Mineral Processing Wastewater. Minerals 2023, 13, 435. [Google Scholar] [CrossRef]
- García-Leiva, B.; Teixeira, L.A.; Torem, M.L. Degradation of xanthate in waters by hydrogen peroxide, fenton and simulated solar photo-fenton processes. J. Mater. Res. Technol. 2019, 8, 5698–5706. [Google Scholar] [CrossRef]
- Yan, P.; Chen, G.; Ye, M.; Sun, S.; Ma, H.; Lin, W. Oxidation of potassium n-butyl xanthate with ozone: Products and pathways. J. Clean. Prod. 2016, 139, 287–294. [Google Scholar] [CrossRef]
- Falconi, I.B.A.; Baltazar, M.d.P.G.; Espinosa, D.C.R.; Tenório, J.A.S. Degradation of surfactant used in iron mining by oxidation technique: Fenton, photo-Fenton, and H2O2/UV—A comparative study. Can. J. Chem. Eng. 2020, 98, 1069–1083. [Google Scholar] [CrossRef]
- Bao, H.; Wu, M.; Meng, X.; Lin, S.; Kang, J.; Sun, W. Electrochemical oxidation degradation of xanthate and its mechanism: Effects of carbon chain length and electrolyte type. J. Clean. Prod. 2024, 448, 141626. [Google Scholar] [CrossRef]
- Raj, A.; Tembhurkar, A.R. Evolution of photocatalysis process for degradation of residual xanthate in wastewater from mineral processing industry—A review. J. Water Process Eng. 2024, 67, 106130. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, Z.; Yang, X.; Ren, Z. Xanthate modified magnetic activated carbon for efficient removal of cationic dyes and tetracycline hydrochloride from aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp. 2021, 615, 126273. [Google Scholar] [CrossRef]
- Štulović, M.; Radovanović, D.; Dikić, J.; Gajić, N.; Djokić, J.; Kamberović, Ž.; Jevtić, S. Utilization of Copper Flotation Tailings in Geopolymer Materials Based on Zeolite and Fly Ash. Materials 2024, 17, 6115. [Google Scholar] [CrossRef]
- Shan, T.; Wang, B.; Tu, W.; Huang, F.; Yang, W.; Xiang, M.; Luo, X. Adsorption and biodegradation of butyl xanthate in mine water by Pseudomonas sp. immobilized on yak dung biochar. Environ. Res. 2025, 264, 120300. [Google Scholar] [CrossRef]
- Qi, Y.; Zhao, S.; Shen, Y.; Jiang, X.; Lv, H.; Han, C.; Liu, W.; Zhao, Q. A Critical Review of Clay Mineral-Based Photocatalysts for Wastewater Treatment. Catalysts 2024, 14, 575. [Google Scholar] [CrossRef]
- Rezaei, R.; Massinaei, M.; Moghaddam, A.Z. Removal of the residual xanthate from flotation plant tailings using modified bentonite. Miner. Eng. 2018, 119, 1–10. [Google Scholar] [CrossRef]
- Palomino, J.M.; Tran, D.T.; Hauser, J.L.; Dong, H.; Oliver, S.R.J. Mesoporous silica nanoparticles for high capacity adsorptive desulfurization. J. Mater. Chem. A 2014, 2, 14890–14895. [Google Scholar] [CrossRef]
- Zhao, S.; Xiao, H.; Chen, Y.; Qi, Y.; Yan, C.; Ma, R.; Zhao, Q.; Liu, W.; Shen, Y. Photocatalytic degradation of xanthates under visible light using heterogeneous CuO/TiO2/montmorillonite composites. Green Smart Min. Eng. 2024, 1, 67–75. [Google Scholar] [CrossRef]
- Ozturk, Y. Electrochemical advanced oxidation for removal of xanthate from flotation process water. Miner. Eng. 2023, 202, 108308. [Google Scholar] [CrossRef]
- Tanveer, M.; Guyer, G.T. Solar assisted photo degradation of wastewater by compound parabolic collectors: Review of design and operational parameters. Renew. Sustain. Energy Rev. 2013, 24, 534–543. [Google Scholar] [CrossRef]
- Giudice, A.L.; Bruni, V.; Domenico, M.; Michaud, L. Psychrophiles—Cold-Adapted Hydrocarbon-Degrading Microorganisms. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Fadhil, H.; Abbas, S.H.; Al-Sheikh, F. Electrocoagulation-Assisted Fenton Reagent as Advanced Oxidation Processes used for Degradation of Organic Pollutants from Industrial Wastewater: A Review. Chem. Afr. 2025, 8, 437–446. [Google Scholar] [CrossRef]
- Qin, Z.; Deng Huang, H.R.; Tong, S. 3D MXene hybrid architectures for the cold-resistant, rapid and selective capture of precious metals from electronic waste and mineral. J. Chem. Eng. 2022, 428, 132493. [Google Scholar] [CrossRef]
- Mushtaq, F.; Wang, L.; Tu, H.; Wang, J.; Wang, Y.; Sun, A.; Zhu, F.; Wang, M.; Zhang, Y.; Liu, M. Status of fly ash-derived sustainable nanomaterials for batteries and supercapacitors. Sustain. Energy Fuels 2024, 8, 2798–2823. [Google Scholar] [CrossRef]
- López-López, E.E.; López-Jiménez, S.J.; Barroso-Flores, J.; Rodríguez-Cárdenas, E.; Tapia-Tapia, M.; López-Téllez, G.; Miranda, L.D.; Frontana-Uribe, B.A. Electrochemical reactivity of S-phenacyl-O-ethyl-xanthates in hydroalcoholic (MeOH/H2O 4:1) and anhydrous acetonitrile media. Electrochim. Acta 2021, 380, 138239. [Google Scholar] [CrossRef]
- Perotti, M.; Iacoviello, F.; Marian, N.M.; Indelicato, C.; Capitani, G.; Salvini, R.; Zampini, M.; Viti, C. Flotation Sludges from Precious Metal Recovery Processes: From Waste to Secondary Raw Material in Ceramics. Recycling 2023, 8, 35. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef]
- Gupta, S.; Carrizosa, S.B.; Aberg, B. Designing high-performance asymmetric and hybrid energy devices via merging supercapacitive/pseudopcapacitive and Li-ion battery type electrodes. Sci. Rep. 2024, 14, 29277. [Google Scholar] [CrossRef]
- Okhawilai, M.; Pattananuwat, P. Sustainable electroactive materials for energy storage. Curr. Opin. Green Sustain. Chem. 2021, 28, 100431. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Strong, V.; Dubin, S.; Kaner, R.B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330. [Google Scholar] [CrossRef]
- Sac-Epée, N.; Palacin, M.R.; Delahaye-Vidal, A.; Chabre, Y.; Tara, J.M. Evidence for Direct γ-NiOOH↔ β-Ni (OH)2 Transitions during Electrochemical Cycling of the Nickel Hydroxide Electrode. J. Electrochem. Soc. 1998, 145, 1434. [Google Scholar] [CrossRef]
- Sharma, S.; Kadyan, P.; Sharma, R.K.; Kumar, N.; Grover, S. Progressive updates on nickel hydroxide and its nanocomposite for electrochemical electrode material in asymmetric supercapacitor device. J. Energy Storage 2024, 87, 111368. [Google Scholar] [CrossRef]
- Lu, Y.; Qin, Y.; Chen, M.; Liu, G.; Qi, P.; Wu, H.; Tang, Y. Multi-dimensional Ni(OH)2/(Ni(OH)2(NiOOH).167).857@Ni3S2 hierarchical structure for high-performance asymmetric supercapacitor. Appl. Surf. Sci. 2023, 611, 155625. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, M.; Ge, M.H.; Zhang, H.; Li, S.K.; Li, S.H. Design and construction of three-dimensional CuO/polyaniline/rGO ternary hierarchical architectures for high performance supercapacitors. J. Power Sources 2016, 306, 593–601. [Google Scholar] [CrossRef]
- Wang, D.W.; Li, F.; Zhao, J.; Ren, W.; Chen, Z.G.; Tan, J.; Wu, Z.S.; Gentle, I.; Lu, G.Q.; Cheng, H.M. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 2009, 3, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yang, C.; Li, X.; Wang, G. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl. Mater. Interfaces 2013, 17, 8467–8476. [Google Scholar] [CrossRef]
- Yang, Y.; Xi, Y.; Li, J. Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes. Nanoscale Res. Lett. 2017, 12, 394. [Google Scholar] [CrossRef]
- Rey-Raap, N.; Angel Menéndez, J.; Arenillas, A. RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater. 2014, 195, 266–275. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, J.; Young, N.P.; Snaith, H.J.; Grant, P.S. Solid-State Supercapacitors with Rationally Designed Heterogeneous Electrodes Fabricated by Large Area Spray Processing for Wearable Energy Storage Applications. Sci. Rep. 2016, 6, 25684. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, X.; Wang, C.; Xiang, K.; Deng, M.; Yin, H. PAMPS/MMT composite hydrogel electrolyte for solid-state supercapacitors. J. Alloys Compd. 2017, 709, 596–601. [Google Scholar] [CrossRef]
- Atta, N.F.; Galal, A.; El-Ads, E.H. Polyaniline nanofibers composite for high performance supercapacitor. Int. J. Electrochem. Sci. 2015, 10, 4000–4018. [Google Scholar]
- Zhang, H.; Bidini, H.; Campanari, S.; Discepoli, G.; Spinelli, M. High performance asymmetric supercapacitors based on polyaniline/reduced graphene oxide composite and activated carbon electrodes. J. Power Sources 2016, 320, 202–210. [Google Scholar] [CrossRef]
- Kuo, S.L.; Wu, N.L. Investigation of Pseudocapacitive Charge-Storage Reaction of MnO2 nH2O Supercapacitors in Aqueous Electrolytes. J. Electrochem. Soc. 2006, 153, A1317–A1324. [Google Scholar] [CrossRef]
- Zheng, J.P.; Cygan, P.J.; Jow, T.R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 1995, 142, 2699–2703. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2013, 113, 8261–8323. [Google Scholar] [CrossRef]
- Barraza, F.P.; Thiyagarajan, D.; Ramadoss, A.; Manikandan, V.; Dhanabalan, S.S.; Abarzúa, C.V.; Soloaga, P.S.; Nazer, J.C.; Morel, M.J.; Thirumurugan, A. Unlocking the potential: Mining tailings as a source of sustainable nanomaterials. Renew. Sustain. Energy Rev. 2024, 202, 114665. [Google Scholar] [CrossRef]
- Bhattacharya, G.; Fishlock, S.J.; Roy, J.S.; Pritam, A.; Banerjee, D.; Deshmukh, S.; Ghosh, S.; McLaughlin, J.A.; Roy, S.S. Effective Utilization of Waste Red Mud for High Performance Supercapacitor Electrodes. Glob. Chall. 2018, 3, 1800066. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Islam, N.F.; Gogoi, B.; Saikia, R.; Yousaf, B.; Narayan, M.; Sarma, H. Encouraging circular economy and sustainable environmental practices by addressing waste management and biomass energy production. Reg. Sustain. 2024, 5, 100174. [Google Scholar] [CrossRef]
- Kumari, S.; Kumari, A.; Sharma, K.; Ahmed, J.; Jasrotia, R.; Kandwal, A.; Lakshmaiya, N.; Sillanpää, M.; Sharma, R. Enhanced Photocatalytic and Antimicrobial Performance of Divalent Metal Substituted Nickel Nanostructures for Wastewater Treatment and Biological Applications. J. Inorg. Organomet. Polym. Mater. 2024, 34, 5770–5790. [Google Scholar] [CrossRef]
- Alsawy, T.; Rashad, E.; El-Qelish, M.; Mohammed, R.H. A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment. Npj Clean Water 2022, 5, 29. [Google Scholar] [CrossRef]
- Liu, D.; Gu, W.; Zhou, L.; Wang, L.; Zhang, J.; Liu, Y.; Lei, J. Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. J. Chem. Eng. 2022, 427, 131503. [Google Scholar] [CrossRef]
- Das, P.P.; Sharma, M.; Purkait, M.K. Recent progress on electrocoagulation process for wastewater treatment: A review. Sep. Purif. Technol. 2022, 292, 121058. [Google Scholar] [CrossRef]
- El Batouti, M.; Alharby, N.F.; Elewa, M.M. Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications. Separations 2022, 9, 1. [Google Scholar] [CrossRef]
- Ayach, J.; El Malti, W.; Duma, L.; Lalevée, J.; Al Ajami, M.; Hamad, H.; Hijazi, A. Comparing Conventional and Advanced Approaches for Heavy Metal Removal in Wastewater Treatment: An In-Depth Review Emphasizing Filter-Based Strategies. Polymers 2024, 16, 1959. [Google Scholar] [CrossRef]
- Li, X.; Wang, B.; Zhang, W.; Zhang, X.; Wang, X. Adsorption of Aqueous Nickel Ion by Biomass Carboxymethyl Cellulose-Doped Boron Nitride Composites and Its Subsequent Energy Storage. Polymers 2025, 17, 567. [Google Scholar] [CrossRef]
- Banerjee, J.; Dutta, K.; Abdul Kader, M.; Nayak, S.K. An overview on the recent developments in polyaniline-based supercapacitors. Polym. Adv. Technol. 2019, 30, 1902–1921. [Google Scholar] [CrossRef]
- Hameed, A.M.S.; Shanmugam, G.; Kamaraj, S. Polymers and their Composites as Renewable and Flexible Materials for Boosting Energy Storage. In Materials for Boosting Energy Storage. Volume 2: Advances in Sustainable Energy Technologies; ACS Symposium Series: Washington, DC, USA, 2024; Chapter 5; Volume 1484, pp. 105–125. [Google Scholar] [CrossRef]
Map Sum Spectrum | |||||
---|---|---|---|---|---|
Element | Signal Type | Line | Wt% | Wt% Sigma | Atomic % |
C | EDS | K series | 7.28 | 0.20 | 13.33 |
O | EDS | K series | 41.12 | 0.12 | 56.54 |
Na | EDS | K series | 2.39 | 0.03 | 2.29 |
Mg | EDS | K series | 1.18 | 0.02 | 1.06 |
Al | EDS | K series | 4.44 | 0.03 | 3.62 |
Si | EDS | K series | 11.98 | 0.04 | 9.39 |
S | EDS | K series | 2.37 | 0.02 | 1.63 |
Cl | EDS | K series | 0.51 | 0.01 | 0.31 |
K | EDS | K series | 2.95 | 0.02 | 1.66 |
Ca | EDS | K series | 2.61 | 0.02 | 1.43 |
Ti | EDS | K series | 0.22 | 0.01 | 0.10 |
Fe | EDS | K series | 1.63 | 0.02 | 0.64 |
Ni | EDS | K series | 21.34 | 0.07 | 8.00 |
Total | 100.00 | 100.00 |
Map Sum Spectrum | |||||
---|---|---|---|---|---|
Element | Signal Type | Line | Wt% | Wt% Sigma | Atomic % |
C | EDS | K series | 82.96 | 0.10 | 90.74 |
O | EDS | K series | 5.95 | 0.08 | 4.88 |
Na | EDS | K series | 0.10 | 0.01 | 0.06 |
Mg | EDS | K series | 0.10 | 0.01 | 0.05 |
Al | EDS | K series | 0.57 | 0.01 | 0.28 |
Si | EDS | K series | 2.17 | 0.01 | 1.02 |
Cl | EDS | K series | 7.52 | 0.03 | 2.79 |
K | EDS | K series | 0.34 | 0.01 | 0.11 |
Fe | EDS | K series | 0.29 | 0.01 | 0.07 |
Total | 100.00 | 100.00 |
Supercapacitor | Specific Discharge Capacitance | Capacitance Retention, % | Energy Density | |||
---|---|---|---|---|---|---|
At 360 mAg−1 | At 1000 mAg−1 | After 1000 GCD | After 10,000 GCD | At 100 Wkg−1 | At 1210 Wkg−1 | |
Asymmetric | 176.27 | 163.14 | 98% | 90% | 35.00 | 30.67 |
Symmetric | 122.21 | 113.06 | 99% | 95% | 30.46 | 21.25 |
Method | Typical Output | Reusability | Integration into Functional Devices | Energy/Resource Input | Waste Generation |
---|---|---|---|---|---|
Adsorption | Spent adsorbent | Low | Rarely | Moderate | High |
Precipitation | Metal-rich sludge | None | No | High | High |
Membrane Separation | Concentrate (brine/reject) | Limited | No | High | Moderate |
This Study | Functional gel composite | High | Yes—as electrode material | Low | Minimal |
Element | Before Gel Synthesis mg/dm3 | After mg/dm3 |
---|---|---|
Aluminum (Al) | 0.167 | 0.024 |
Arsenic (As) | 0.009 | 0.007 |
Copper (Cu) | 0.026 | 0.011 |
Iron (Fe) | 0.043 | 0.010 |
Manganese (Mn) | 0.012 | 0.003 |
Sulfur (S) | 505.9 | 440 |
Lead (Pb) | 0.003 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbev, A.; Petkucheva, E.; Ivanova, G.; Dimitrova, M.; Stoyanova, A.; Slavcheva, E. Utilization of Flotation Wastewater for Metal Xanthate Gel Synthesis and Its Role in Polyaniline-Based Supercapacitor Electrode Fabrication. Gels 2025, 11, 446. https://doi.org/10.3390/gels11060446
Garbev A, Petkucheva E, Ivanova G, Dimitrova M, Stoyanova A, Slavcheva E. Utilization of Flotation Wastewater for Metal Xanthate Gel Synthesis and Its Role in Polyaniline-Based Supercapacitor Electrode Fabrication. Gels. 2025; 11(6):446. https://doi.org/10.3390/gels11060446
Chicago/Turabian StyleGarbev, Atanas, Elitsa Petkucheva, Galia Ivanova, Mariela Dimitrova, Antonia Stoyanova, and Evelina Slavcheva. 2025. "Utilization of Flotation Wastewater for Metal Xanthate Gel Synthesis and Its Role in Polyaniline-Based Supercapacitor Electrode Fabrication" Gels 11, no. 6: 446. https://doi.org/10.3390/gels11060446
APA StyleGarbev, A., Petkucheva, E., Ivanova, G., Dimitrova, M., Stoyanova, A., & Slavcheva, E. (2025). Utilization of Flotation Wastewater for Metal Xanthate Gel Synthesis and Its Role in Polyaniline-Based Supercapacitor Electrode Fabrication. Gels, 11(6), 446. https://doi.org/10.3390/gels11060446