Ultrasensitive Analysis of BRCA-1 Based on Gold Nanoparticles and Molybdenum Disulfide Electrochemical Immunosensor with Enhanced Signal Amplification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Apparatus
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Morphological Characterization
3.2. Electrochemical Characterization of the Modified Electrodes
3.3. Optimization of Experimental Conditions
3.4. Analytical Performance of the Immunosensor
3.5. Selectivity, Stability, and Real Sample Analysis
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahmoud, M.H.; Samir Abd AL-Rahman, A. Electrochemical Immunosensors, Electrochemical Detection Techniques, Methods and Application of Microfluidics in Immunoassay. Curr. Clin. Med. Educ. 2025, 3, 6–22. [Google Scholar]
- Noreen, S.; Ishaq, I.; Saleem, M.H.; Ali, B.; Ali, S.M.; Iqbal, J. Electrochemical biosensing in oncology: A review advancements and prospects for cancer diagnosis. Cancer Biol. Ther. 2025, 26, 2475581. [Google Scholar] [CrossRef]
- Mahalakshmi, D.; Nandhini, J.; Meenaloshini, G.; Karthikeyan, E.; Karthik, K.; Sujaritha, J.; Vandhana; Ragavendran, C. Graphene nanomaterial-based electrochemical biosensors for salivary biomarker detection: A translational approach to oral cancer diagnostics. Nano TransMed 2025, 4, 100073. [Google Scholar] [CrossRef]
- Cao, Y.; Xia, J.; Li, L.; Zeng, Y.; Zhao, J.; Li, G. Electrochemical Biosensors for Cancer Diagnosis: Multitarget Analysis to Present Molecular Characteristics of Tumor Heterogeneity. JACS Au 2024, 4, 4655–4672. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, S.; Dai, Y.; Zhang, H.; Luo, C. An electrochemical biosensor for the detection of BRCA1 based on MOF-derived CeO2@CuS nanosheets with high electrocatalytic H2O2 reduction performance. Anal. Chim. Acta 2025, 1345, 343765. [Google Scholar] [CrossRef]
- Agar, M.; Laabei, M.; Leese, H.S.; Estrela, P. Multi-Template Molecularly Imprinted Polymeric Electrochemical Biosensors. Chemosensors 2025, 13, 11. [Google Scholar] [CrossRef]
- Yazdani, Y.; Jalali, F.; Tahmasbi, H.; Akbari, M.; Talebi, N.; Shahrtash, S.A.; Mobed, A.; Alem, M.; Ghazi, F.; Dadashpour, M. Recent advancements in nanomaterial-based biosensors for diagnosis of breast cancer: A comprehensive review. Cancer Cell Int. 2025, 25, 1–12. [Google Scholar] [CrossRef]
- Zeng, R.; Qiu, M.; Wan, Q.; Huang, Z.; Liu, X.; Tang, D.; Knopp, D. Smartphone-Based Electrochemical Immunoassay for Point-of-Care Detection of SARS-CoV-2 Nucleocapsid Protein. Anal. Chem. 2022, 94, 15155–15161. [Google Scholar] [CrossRef]
- Zeng, R.; Xu, J.; Liang, T.; Li, M.; Tang, D. Photocurrent-Polarity-Switching Photoelectrochemical Biosensor for Switching Spatial Distance Electroactive Tags. ACS Sens. 2023, 8, 317–325. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Alabbosh, K.F.; Manan, S.; Khan, S.; Ahmad, F.; Ullah, M.W. Chitosan-based nanostructured biomaterials: Synthesis, properties, and biomedical applications. Adv. Ind. Eng. Polym. Res. 2024, 7, 79–99. [Google Scholar] [CrossRef]
- Khaleque, M.A.; Hossain, M.I.; Ali, M.R.; Bacchu, M.S.; Aly, M.A.S.; Khan, M.Z.H. Nanostructured wearable electrochemical and biosensor towards healthcare management: A review. RSC Adv. 2023, 13, 22973–22997. [Google Scholar] [CrossRef]
- Hassani, C.E.I.E.; Daoudi, H.; El Achaby, M.; Kassab, Z. Biomedical Applications of Chitosan-Based Nanostructured Composite Materials. In Chitosan Nanocomposites. Biological and Medical Physics, Biomedical Engineering; Springer: Singapore, 2023; pp. 81–107. [Google Scholar] [CrossRef]
- Shu, J.; Tang, D. Recent Advances in Photoelectrochemical Sensing: From Engineered Photoactive Materials to Sensing Devices and Detection Modes. Anal. Chem. 2019, 92, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, J.; Zeng, R.; Li, L.; Li, M.; Tang, D. Target-induced photocurrent-polarity-switching photoelectrochemical aptasensor with gold nanoparticle-ZnIn2S4 nanohybrids for the quantification of 8-hydroxy-2′-deoxyguanosine. Sens. Actuators B Chem. 2022, 368, 132141. [Google Scholar] [CrossRef]
- Cai, G.; Yu, Z.; Ren, R.; Tang, D. Exciton–Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS Quantum Dots/TiO2 for Photoelectrochemical Aptasensing of Prostate-Specific Antigen. ACS Sens. 2018, 3, 632–639. [Google Scholar] [CrossRef]
- Mahobiya, S.K.; Balayan, S.; Chauhan, N.; Rosario, W.; Kuchhal, N.K.; Islam, S.; Jain, U. Fabricating a rapid and low-cost electrochemical biosensor with imprints of glycated albumin molecules to detect diabetes using bimetallic Au-Pt nanoparticles on μSPE. Appl. Surf. Sci. Adv. 2023, 16, 100425. [Google Scholar] [CrossRef]
- Aroua, W.; Derbali, J.; Raaif, M.; AbdelMalek, F. Design of a new label free active biosensor based on metallic nanoparticles-doped graphene nanodisk platform. Opt. Commun. 2022, 515, 128220. [Google Scholar] [CrossRef]
- Li, W.; Bai, X.; Xiao, F.; Huang, J.; Zeng, X.; Xu, Q.; Song, Y.; Xu, X.; Xu, H. MXene@Au based electrochemical biosensor with pretreatment by magnetic nanoparticles for determination of MRSA from clinical samples. J. Hazard. Mater. 2023, 457, 131823. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.; Slaughter, G. PtNPs decorated chemically derived graphene and carbon nanotubes for sensitive and selective glucose biosensing. J. Electroanal. Chem. 2020, 861, 113990. [Google Scholar] [CrossRef]
- Rashidzadeh, H.; Seidi, F.; Ghaffarlou, M.; Salehiabar, M.; Charmi, J.; Yaray, K.; Nosrati, H.; Ertas, Y.N. Preparation of alginate coated Pt nanoparticle for radiosensitization of breast cancer tumor. Int. J. Biol. Macromol. 2023, 233, 123273. [Google Scholar] [CrossRef]
- Rhinehardt, K.L.; Srinivas, G.; Mohan, R.V. Molecular Dynamics Simulation Analysis of Anti-MUC1 Aptamer and Mucin 1 Peptide Binding. J. Phys. Chem. B 2015, 119, 6571–6583. [Google Scholar] [CrossRef]
- Wu, D.-M.; Guo, X.-L.; Wang, Q.; Li, J.-L.; Cui, J.-W.; Zhou, S.; Hao, S.-E. A Mini-electrochemical system with integrated micropipet tip and pencil graphite electrode for measuring cytotoxicity. Methods Mol. Biol. 2017, 1572, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-J.; Niu, D.-J.; Xie, W.-Z.; Wang, W. A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes–chitosans nanocomposite film modified glassy carbon electrode. Anal. Chim. Acta 2010, 659, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Liu, S.; Liu, Q.; Li, Y.; Zhao, Z. A dual-signal output electrochemical immunosensor based on Au–MoS2/MOF catalytic cycle amplification strategy for neuron-specific enolase ultrasensitive detection. Biosens. Bioelectron. 2022, 195, 113648. [Google Scholar] [CrossRef]
- Victor, R.D.S.; Santos, A.M.D.C.; De Sousa, B.V.; Neves, G.D.A.; Santana, L.N.D.L.; Menezes, R.R. A Review on Chitosan’s Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. Materials 2020, 13, 4995. [Google Scholar] [CrossRef]
- Torrinha, Á.; Amorim, C.G.; Montenegro, M.C.; Araújo, A.N. Biosensing based on pencil graphite electrodes. Talanta 2018, 190, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Altuntaş, D.B.; Nalkıran, H.S.; Aslan, S.; Yolcu, Z. Development of MoS2 and Au nanoparticle ıncluding disposable CEA-based immuno-cytosensor platforms. Chem. Pap. 2022, 76, 5217–5229. [Google Scholar] [CrossRef]
- Wu, J.; Tang, J.; Dai, Z.; Yan, F.; Ju, H.; El Murr, N. A disposable electrochemical immunosensor for flow injection immunoassay of carcinoembryonic antigen. Biosens. Bioelectron. 2006, 22, 102–108. [Google Scholar] [CrossRef]
- Altuntaş, D.B.; Kuralay, F. MoS2/Chitosan/GOx-Gelatin modified graphite surface: Preparation, characterization and its use for glucose determination. Mater. Sci. Eng. B 2021, 270, 115215. [Google Scholar] [CrossRef]
- Tolouei, N.E.; Ghamari, S.; Shavezipur, M. Development of circuit models for electrochemical impedance spectroscopy (EIS) responses of interdigitated MEMS biochemical sensors. J. Electroanal. Chem. 2020, 878, 114598. [Google Scholar] [CrossRef]
- Sandu, A.V.; Ciomaga, A.; Nemtoi, G.; Abdullah, M.M.A.B.; Sandu, I. Corrosion of Mild Steel by Urban River Water. Instrum. Sci. Technol. 2015, 43, 545–557. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
Sensor Matrix | LOD | RSD | Slope | Intercept | R2 | Concentration Range |
---|---|---|---|---|---|---|
PGE/MoS2/Cs/AuNp/Anti-BRCA-1/BSA/BRCA-1 | 0.04 ng/mL−1 | 3.59% | 34.226 | 55.034 | 0.9992 | 0.05–20 ng/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bal Altuntaş, D. Ultrasensitive Analysis of BRCA-1 Based on Gold Nanoparticles and Molybdenum Disulfide Electrochemical Immunosensor with Enhanced Signal Amplification. Biosensors 2025, 15, 330. https://doi.org/10.3390/bios15050330
Bal Altuntaş D. Ultrasensitive Analysis of BRCA-1 Based on Gold Nanoparticles and Molybdenum Disulfide Electrochemical Immunosensor with Enhanced Signal Amplification. Biosensors. 2025; 15(5):330. https://doi.org/10.3390/bios15050330
Chicago/Turabian StyleBal Altuntaş, Derya. 2025. "Ultrasensitive Analysis of BRCA-1 Based on Gold Nanoparticles and Molybdenum Disulfide Electrochemical Immunosensor with Enhanced Signal Amplification" Biosensors 15, no. 5: 330. https://doi.org/10.3390/bios15050330
APA StyleBal Altuntaş, D. (2025). Ultrasensitive Analysis of BRCA-1 Based on Gold Nanoparticles and Molybdenum Disulfide Electrochemical Immunosensor with Enhanced Signal Amplification. Biosensors, 15(5), 330. https://doi.org/10.3390/bios15050330