Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (467)

Search Parameters:
Keywords = nano fillers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3156 KiB  
Article
Study on Gel–Resin Composite for Losting Circulation Control to Improve Plugging Effect in Fracture Formation
by Jinzhi Zhu, Tao Wang, Shaojun Zhang, Yingrui Bai, Guochuan Qin and Jingbin Yang
Gels 2025, 11(8), 617; https://doi.org/10.3390/gels11080617 (registering DOI) - 7 Aug 2025
Abstract
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a [...] Read more.
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a high-performance gel–resin composite plugging material resistant to HTHP environments. By optimizing the formulation of bisphenol-A epoxy resin (20%), hexamethylenetetramine (3%), and hydroxyethyl cellulose (1%), and incorporating fillers such as nano-silica and walnut shell particles, a controllable high-strength plugging system was constructed. Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed the structural stability of the resin, with an initial decomposition temperature of 220 °C and a compressive strength retention of 14.4 MPa after 45 days of aging at 140 °C. Rheological tests revealed shear-thinning behavior (initial viscosity: 300–350 mPa·s), with viscosity increasing marginally to 51 mPa·s after 10 h of stirring at ambient temperature, demonstrating superior pumpability. Experimental results indicated excellent adaptability of the system to drilling fluid contamination (compressive strength: 5.04 MPa at 20% dosage), high salinity (formation water salinity: 166.5 g/L), and elevated temperatures (140 °C). In pressure-bearing plugging tests, the resin achieved a breakthrough pressure of 15.19 MPa in wedge-shaped fractures (inlet: 7 mm/outlet: 5 mm) and a sand-packed tube sealing pressure of 11.25 MPa. Acid solubility tests further demonstrated outstanding degradability, with a 97.69% degradation rate after 24 h in 15% hydrochloric acid at 140 °C. This study provides an efficient, stable, and environmentally friendly solution for mitigating drilling fluid loss in complex formations, exhibiting significant potential for engineering applications. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
17 pages, 2269 KiB  
Article
Photocurable Resin Composites with Silica Micro- and Nano-Fillers for 3D Printing of Dental Restorative Materials
by Pirat Karntiang, Hiroshi Ikeda, Yuki Nagamatsu and Hiroshi Shimizu
J. Compos. Sci. 2025, 9(8), 405; https://doi.org/10.3390/jcs9080405 - 1 Aug 2025
Viewed by 285
Abstract
This study aimed to develop experimental filler-reinforced resin composites for vat-photopolymerization 3D printing and to evaluate the effects of filler addition on their mechanical, physicochemical, and bonding properties for dental restorative applications. Silanized nano- and/or micro-fillers were incorporated into acrylic resin monomers to [...] Read more.
This study aimed to develop experimental filler-reinforced resin composites for vat-photopolymerization 3D printing and to evaluate the effects of filler addition on their mechanical, physicochemical, and bonding properties for dental restorative applications. Silanized nano- and/or micro-fillers were incorporated into acrylic resin monomers to formulate photocurable resins suitable for vat-photopolymerization. The rheological behavior of these liquid-state resins was assessed through viscosity measurements. Printed resin composites were fabricated and characterized for mechanical properties—including flexural strength, flexural modulus, and Vickers hardness—both before and after 8 weeks of water immersion. Physicochemical properties, such as water sorption, water solubility, and degree of conversion, were also evaluated. Additionally, shear bond strength to a resin-based luting agent was measured before and after artificial aging via thermocycling. A commercial dental CAD-CAM resin composite served as a reference material. Filler incorporation significantly improved the mechanical properties of the printed composites. The highest performance was observed in the composite containing 60 wt% micro-fillers, with a flexural strength of 168 ± 10 MPa, flexural modulus of 6.3 ± 0.4 GPa, and Vickers hardness of 63 ± 1 VHN, while the commercial CAD-CAM composite showed values of 152 ± 8 MPa, 7.9 ± 0.3 GPa, and 66 ± 2 VHN, respectively. Filler addition did not adversely affect the degree of conversion, although the relatively low conversion led to the elution of unpolymerized monomers and increased water solubility. The shear bond strength of the optimal printed composite remained stable after aging without silanization, demonstrating superior bonding performance compared with the CAD-CAM composite. These findings suggest that the developed 3D-printed resin composite is a promising candidate for dental restorative materials. Full article
(This article belongs to the Special Issue Innovations in Direct and Indirect Dental Composite Restorations)
Show Figures

Figure 1

15 pages, 3148 KiB  
Article
Elucidating the Role of Graphene Oxide Surface Architecture and Properties in Loess Soil Remediation Efficacy
by Zirui Wang, Haotian Lu, Zhigang Li, Yuwei Wu and Junping Ren
Nanomaterials 2025, 15(14), 1098; https://doi.org/10.3390/nano15141098 - 15 Jul 2025
Viewed by 272
Abstract
Loess Plateau is the region with the most concentrated loess distribution and the deepest loess soil layer in the world, and it is facing serious problems of soil erosion and ecological degradation. The nano carbon modification of soil surface properties is a novel [...] Read more.
Loess Plateau is the region with the most concentrated loess distribution and the deepest loess soil layer in the world, and it is facing serious problems of soil erosion and ecological degradation. The nano carbon modification of soil surface properties is a novel strategy for soil improvement and enhancing the soil’s capacity to sequester carbon, which has been extensively researched. However, the mechanisms underlying the influence of carbon surface structure on the efficacy of loess soil remediation remain unclear. Herein, graphene oxide (GO) with a unique two-dimensional structure and adjustable surface properties was optimized as a model carbon filler to investigate the modification effect on loess. As a result, the addition amount of 0.03% GO significantly reduced the disintegration amount of loess, but, if inhibited for a long time, the disintegration effect would weaken. The highly reduced GO can delay the loess disintegration rate due to its enhanced hydrophobicity, but the inhibitory effect fails over a long period of time. After adjusting the reduce degree with a 50% SA (sodium ascorbate), the water-holding capacity of the modified soil in the high suction range is enhanced. This study reveals the synergistic mechanism of the sheet structure and surface properties of GO on the water stability of loess, providing a reference for the prevention and control of soil erosion and ecological restoration in the Loess Plateau. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

21 pages, 4000 KiB  
Article
Structure-Properties Correlations of PVA-Cellulose Based Nanocomposite Films for Food Packaging Applications
by Konstantinos Papapetros, Georgios N. Mathioudakis, Dionysios Vroulias, Nikolaos Koutroumanis, George A. Voyiatzis and Konstantinos S. Andrikopoulos
Polymers 2025, 17(14), 1911; https://doi.org/10.3390/polym17141911 - 10 Jul 2025
Viewed by 400
Abstract
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations [...] Read more.
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations in these macroscopic properties, which are critical for food packaging applications, are correlated with structural information at the molecular level. Strong interactions between the fillers and polymer host matrix were observed, while the PVA crystallinity exhibited a maximum at ~1% loading. Finally, the orientation of the PVA nanocrystals in the uniaxially stretched samples was found to depend non-monotonically on the CNC loading and draw ratio. Concerning the macroscopic properties of the composites, the swelling properties were reduced for the D1 food simulant, while for water, a considerable decrease was observed only when high NLC loadings were involved. Furthermore, although the water vapor transmission rates are roughly similar for all samples, the CO2, N2, and O2 gas permeabilities are low, exhibiting further decrease in the 1% and 1–5% loading for CNC and NLC composites, respectively. The mechanical properties were considerably altered as a consequence of the good dispersion of the filler, increased crystallinity of the polymer matrix, and morphology of the filler. Thus, up to ~50%/~170% enhancement of the Young’s modulus and up to ~20%/~50% enhancement of the tensile strength are observed for the CNC/NLC composites. Interestingly, the elongation at break is also increased by ~20% for CNC composites, while it is reduced by ~40% for the NLC composites, signifying the favorable/unfavorable interactions of cellulose/lignin with the matrix. Full article
(This article belongs to the Special Issue Cellulose and Its Composites: Preparation and Applications)
Show Figures

Graphical abstract

15 pages, 2316 KiB  
Article
Enhancement of Ethylene-Butene Terpolymer Performance via Carbon Nanotube-Induced Nanodispersion of Montmorillonite Layers
by Li Zhang, Jianming Liu, Duanjiao Li, Wenxing Sun, Zhi Li, Yongchao Liang, Qiang Fu, Nian Tang, Bo Zhang, Fei Huang, Xuelian Fan, Yuansi Wei, Pengxiang Bai and Yuqi Wang
Crystals 2025, 15(7), 612; https://doi.org/10.3390/cryst15070612 - 30 Jun 2025
Viewed by 250
Abstract
In this study, the enhancement mechanism of the nano-dispersion of stearic acid-modified montmorillonite (SMMT) induced by carbon nanotubes (CNTs) in ethylene-butene terpolymer (EBT) was comprehensively investigated, and the regulation effect of composite fillers on EBT properties was revealed. Scanning electron microscopy (SEM) confirmed [...] Read more.
In this study, the enhancement mechanism of the nano-dispersion of stearic acid-modified montmorillonite (SMMT) induced by carbon nanotubes (CNTs) in ethylene-butene terpolymer (EBT) was comprehensively investigated, and the regulation effect of composite fillers on EBT properties was revealed. Scanning electron microscopy (SEM) confirmed that SMMT achieved homogeneous nanoscale dispersion after CNT addition, and the size of aggregates was greatly reduced. Four-cycle strain-scanning analysis revealed a 200% increase in rubber–filler (R-F) interaction strength due to CNT incorporation. At the optimal CNT/SMMT ratio of 1:5, the EBT composites exhibited a 40.4% increase in Young’s modulus, 71.4% enhancement in tensile strength, and maintained 250% elongation at break, effectively addressing the strength–toughness trade-off of traditional rigid fillers. Thermogravimetric analysis (TGA) showed near 20 °C elevation in EBT composites’ maximum decomposition temperature, while water contact angle measurements indicated a hydrophobicity increase to 117.5° and water absorption rate below 0.2%. The quantitative improvement in thermal oxidation stability and hydrophobic barrier performance was achieved simultaneously. Full article
Show Figures

Figure 1

17 pages, 3303 KiB  
Article
Research on High-Performance Underwater-Curing Polymer Composites for Offshore Oil Riser Pipes
by Xuan Zhao, Jun Wan, Xuefeng Qv, Yajun Yu and Huiyan Zhao
Polymers 2025, 17(13), 1827; https://doi.org/10.3390/polym17131827 - 30 Jun 2025
Viewed by 466
Abstract
In offshore oil and gas extraction, riser pipes serve as the first isolation barrier for wellbore integrity, playing a crucial role in ensuring operational safety. Protective coatings represent an effective measure for corrosion prevention in riser pipes. To address issues such as electrochemical [...] Read more.
In offshore oil and gas extraction, riser pipes serve as the first isolation barrier for wellbore integrity, playing a crucial role in ensuring operational safety. Protective coatings represent an effective measure for corrosion prevention in riser pipes. To address issues such as electrochemical corrosion and poor adhesion of existing coatings, this study developed an underwater-curing composite material based on a polyisobutylene (PIB) and butyl rubber (IIR) blend system. The material simultaneously exhibits high peel strength, low water absorption, and stability across a wide temperature range. First, the contradiction between material elasticity and strength was overcome through the synergistic effect of medium molecular weight PIB internal plasticization and IIR crosslinking networks. Second, stable peel strength across a wide temperature range (−45 °C to 80 °C) was achieved by utilizing the interfacial effects of nano-fillers. Subsequently, an innovative solvent-free two-component epoxy system was developed, combining medium molecular weight PIB internal plasticization, nano-silica hydrogen bond reinforcement, and latent curing agent regulation. This system achieves rapid surface drying within 30 min underwater and pull-off strength exceeding 3.5 MPa. Through systematic laboratory testing and field application experiments on offshore oil and gas well risers, the material’s fundamental properties and operational performance were determined. Results indicate that the material exhibits a peel strength of 5 N/cm on offshore oil risers, significantly extending the service life of the riser pipes. This research provides theoretical foundation and technical support for improving the efficiency and reliability of repair processes for offshore oil riser pipes. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites: 2nd Edition)
Show Figures

Figure 1

46 pages, 5055 KiB  
Review
Innovations and Applications in Lightweight Concrete: Review of Current Practices and Future Directions
by Diptikar Behera, Kuang-Yen Liu, Firmansyah Rachman and Aman Mola Worku
Buildings 2025, 15(12), 2113; https://doi.org/10.3390/buildings15122113 - 18 Jun 2025
Viewed by 1428
Abstract
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while [...] Read more.
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while reducing density by up to 30% compared to conventional concrete. Fiber incorporation enhances flexural strength and fracture toughness by 20–40%, concurrently mitigating brittleness and improving ductility. The synergistic interaction between SCMs and lightweight aggregates optimizes matrix densification and interfacial transition zones, curtailing shrinkage and bolstering durability against chemical and environmental aggressors. Integration of recycled and bio-based aggregates substantially diminishes the embodied carbon footprint by approximately 40%—aligning LWC with circular economy principles. Nanomaterials such as nano-silica and carbon nanotubes augment early-age strength development by 25% and refine microstructural integrity. Thermal performance is markedly enhanced through advanced lightweight fillers, including expanded polystyrene and aerogels, achieving up to a 50% reduction in thermal conductivity, thereby facilitating energy-efficient building envelopes. Although challenges persist in cost and workability, the convergence of hybrid fiber systems, optimized mix designs, and sophisticated multi-scale modeling is expanding the applicability of LWC across demanding structural, marine, and prefabricated contexts. In essence, LWC’s holistic development embodies a paradigm shift toward resilient, low-carbon infrastructure, cementing its role as a pivotal material in the evolution of next-generation sustainable construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 6159 KiB  
Article
Laser Sintering of Nano-Graphite-Reinforced Polyamide Composites for Next-Generation Smart Materials: A Preliminary Investigation of Processability and Electromechanical Properties
by Stefano Guarino, Emanuele Mingione, Gennaro Salvatore Ponticelli, Alfio Scuderi, Simone Venettacci and Vittorio Villani
Appl. Sci. 2025, 15(10), 5708; https://doi.org/10.3390/app15105708 - 20 May 2025
Viewed by 613
Abstract
Multifunctional reinforced polymer composites provide an ideal platform for next-generation smart materials applications, enhancing matrix properties like electrical and thermal conductivity. Reinforcements are usually based on functional metal alloys, inorganic compounds, polymers, and carbon nanomaterials. The latter have drawn significant interest in developing [...] Read more.
Multifunctional reinforced polymer composites provide an ideal platform for next-generation smart materials applications, enhancing matrix properties like electrical and thermal conductivity. Reinforcements are usually based on functional metal alloys, inorganic compounds, polymers, and carbon nanomaterials. The latter have drawn significant interest in developing high-performance smart composites due to their exceptional mechanical, electrical, and thermal properties. The increasing demand for highly complex functional structures has led additive manufacturing to become a reference technology for the production of smart material components. In this study, laser sintering technology was adopted to manufacture nano-graphite/nylon-12 composites with a carbon-based particle reinforcement content of up to 10% in weight. The results showed that the addition of the filler led to the fabrication of samples that reached an electrical conductivity of around 4·10−4 S/cm, in contrast to the insulating behavior of a bare polymeric matrix (i.e., lower than 10−10 S/cm), while maintaining a low production cost, though at the expense of mechanical performance under both tensile and bending loads. Full article
Show Figures

Figure 1

21 pages, 7002 KiB  
Article
The Effect of Nano-Biochar Derived from Olive Waste on the Thermal and Mechanical Properties of Epoxy Composites
by Muhammed İhsan Özgün, Vildan Erci, Emrah Madenci and Fatih Erci
Polymers 2025, 17(10), 1337; https://doi.org/10.3390/polym17101337 - 14 May 2025
Viewed by 584
Abstract
The increasing demand for the development of environmentally friendly alternatives to petroleum-derived materials has increased research efforts on sustainable polymer composites. This study systematically examined the effect of nano-biochar derived from agricultural wastes such as olive pulp on the mechanical and thermal properties [...] Read more.
The increasing demand for the development of environmentally friendly alternatives to petroleum-derived materials has increased research efforts on sustainable polymer composites. This study systematically examined the effect of nano-biochar derived from agricultural wastes such as olive pulp on the mechanical and thermal properties of epoxy-resin-based composites. First, the biochar from olive pulp was produced by pyrolysis at 450 °C and turned to nano-biochar using ball milling. Composite samples containing nano-biochar at different rates between 0 and 10% were prepared. The nano-biochar and composite samples were characterized by using different techniques such as SEM-EDS, BET, FTIR, XRD, Raman, TGA, and DMA analyses. Also, the tensile strength, elastic modulus, Shore D hardness, thermal stability, and static toughness of the composite samples were evaluated. The best performance was observed in the sample containing 6% nano-biochar; the ultimate tensile strength increased from 17.37 MPa to 23.46 MPa compared to pure epoxy, and the elastic modulus and hardness increased. However, a decrease in brittleness and toughness was observed at higher additive rates. FTIR and DMA analyses indicated that the nano-biochar interacted strongly with the epoxy matrix and increased its thermal stability. The results showed that the olive-pulp-derived nano-biochar could be used to improve the structural and thermal properties of the epoxy composites as an inexpensive and environmentally friendly filler. As a result, this study contributes to the production of new polymer-based materials that will encourage the production of environmentally friendly composites with nano-scale biochar obtained from olive waste, which is an easily accessible, renewable by-product. Full article
Show Figures

Figure 1

36 pages, 11511 KiB  
Review
Recent Advances in Functional Biopolymer Films with Antimicrobial and Antioxidant Properties for Enhanced Food Packaging
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(9), 1257; https://doi.org/10.3390/polym17091257 - 5 May 2025
Cited by 10 | Viewed by 2551
Abstract
Food packaging plays a crucial role in preserving freshness and prolonging shelf life worldwide. However, traditional packaging primarily acts as a passive barrier, providing limited protection against spoilage. Packaged food often deteriorates due to oxidation and microbial growth, reducing its quality over time. [...] Read more.
Food packaging plays a crucial role in preserving freshness and prolonging shelf life worldwide. However, traditional packaging primarily acts as a passive barrier, providing limited protection against spoilage. Packaged food often deteriorates due to oxidation and microbial growth, reducing its quality over time. Moreover, the majority of commercial packaging relies on petroleum-derived polymers, which add to environmental pollution since they are not biodegradable. Growing concerns over sustainability have driven research into eco-friendly alternatives, particularly natural-based active packaging solutions. Among the various biopolymers, cellulose is the most abundant natural polysaccharide and has gained attention for its biodegradability, non-toxicity, and compatibility with biological systems. These qualities make it a strong candidate for developing sustainable packaging materials. However, pure cellulose films have limitations, as they lack antimicrobial and antioxidant properties, reducing their ability to actively preserve food. To tackle this issue, researchers have created cellulose-based active packaging films by integrating bioactive agents with antimicrobial and antioxidant properties. Recent innovations emphasize improving these films through the incorporation of natural extracts, polyphenols, nanoparticles, and microparticles. These enhancements strengthen their protective functions, leading to more effective food preservation. The films are generally classified into two types: (i) blend films, where soluble antimicrobial and antioxidant substances like plant extracts and polyphenols are incorporated into the cellulose solution, and (ii) composite films, which embed nano- or micro-sized bioactive fillers within the cellulose structure. The addition of these functional components enhances the antimicrobial and antioxidant efficiency of the films while also affecting properties like water resistance, vapor permeability, and mechanical strength. The continuous progress in cellulose-based active packaging highlights its potential as a viable alternative to conventional materials. These innovative films not only extend food shelf life but also contribute to environmental sustainability by reducing reliance on synthetic polymers. This review deals with the development of functional biopolymer films with antimicrobial and antioxidant properties towards sustainable food packaging. Full article
(This article belongs to the Special Issue Application of Polymers in Food Sciences (2nd Edition))
Show Figures

Figure 1

25 pages, 40746 KiB  
Article
Effect of Silane-Modified Nano-Al2O3-Reinforced Vinyl Ester Resin on the Flexural Properties of Basalt Fiber Composites
by Yuehai Wei, Yongda Miao, Leilei Ma, Wei Tian and Chenyan Zhu
Materials 2025, 18(8), 1727; https://doi.org/10.3390/ma18081727 - 10 Apr 2025
Viewed by 573
Abstract
This study incorporated silane coupling agent KH550-modified nano-alumina (KH550-Al2O3) into vinyl ester resin (VER) for modification. The effect of KH550-Al2O3 on the flexural properties of VER and basalt fiber-reinforced vinyl ester resin (BF/VER) composites was investigated. [...] Read more.
This study incorporated silane coupling agent KH550-modified nano-alumina (KH550-Al2O3) into vinyl ester resin (VER) for modification. The effect of KH550-Al2O3 on the flexural properties of VER and basalt fiber-reinforced vinyl ester resin (BF/VER) composites was investigated. In addition, dynamic mechanical analysis (DMA) and long-term elevated temperature aging of the composites were performed. The surface functionalization of KH550-Al2O3 was confirmed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and energy-dispersive X-ray spectroscopy (EDS). It was revealed by scanning electron microscopy (SEM) that the aggregation of KH550-Al2O3 had been reduced within the VER matrix, the resin was effectively enhanced, and the fiber–matrix interfacial bonding was improved. Based on the experimental results, the optimal filler loading of KH550-Al2O3 was 1.5 wt%. Compared with the control group, the resin matrix exhibited 18.1% and 22.7% improvements in flexural strength and modulus, respectively, while the composite showed increases of 9.3% and 7.6% in these properties. At 30 °C, the storage modulus of the composites increased by 11.5%, with the glass transition temperature rising from 111.0 °C to 112.5 °C. After 60 days of thermal aging at 120 °C, the retained flexural strength and modulus were 64.3% and 87.4%, respectively. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

18 pages, 4367 KiB  
Communication
Synergistic Incorporation of Boron Nitride Nanosheets and Fluoropolymers to Amplify Anti-Corrosion Attributes of Waterborne Epoxy Resin
by Hui Ma, Xuan Liu, Xiaofeng Han, Rui Yang, Zhaotie Liu and Jian Lv
Polymers 2025, 17(8), 1020; https://doi.org/10.3390/polym17081020 - 10 Apr 2025
Cited by 1 | Viewed by 547
Abstract
The corrosion of metal substrates is closely associated with the permeability of the corrosive medium in which they are immersed. To enhance the protection of metal materials and improve anti-corrosion performance from an epoxy resin perspective, the diffusion path complexity can be increased [...] Read more.
The corrosion of metal substrates is closely associated with the permeability of the corrosive medium in which they are immersed. To enhance the protection of metal materials and improve anti-corrosion performance from an epoxy resin perspective, the diffusion path complexity can be increased and porosity reduced within the epoxy resin coating to effectively block the invasion of corrosive media. Simultaneously, reducing the affinity between the corrosive media and the epoxy resin coating makes it difficult for corrosive substances to adhere. Based on this principle, this study introduces two-dimensional boron nitride nanosheets (BNNS) and fluoropolymers-modified one-dimensional nano-silica (SiO2) and organic tannic acid as fillers to jointly enhance the protective effect of waterborne epoxy-resin-based composites. Experimental results demonstrate that when the BNNS content is 0.5 wt.%, the 0.5-BNNS/WEP composite coating exhibits superior anti-corrosion performance, achieving an electrochemical impedance of 2.90 × 107 Ω∙cm2. Moreover, when BNNS is compounded with fluorinated SiO2 or fluorinated tannic acid as fillers and incorporated into waterborne epoxy resin, the resulting composite coatings maintain excellent long-term anti-corrosion performance even after 20 days of salt spray testing. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 3825 KiB  
Article
Influence of CNT Filler in Polymer Matrix on Impact Damage Propagation in the Volume of Carbon Fiber Laminates
by Egor Morokov, Pavel Shershak, Mikhail Burkov, Alexander Eremin, Elizaveta Popkova, Nikolay Yakovlev and Irina Zhiltsova
Polymers 2025, 17(7), 891; https://doi.org/10.3390/polym17070891 - 26 Mar 2025
Viewed by 371
Abstract
The addition of nano-sized fillers into the polymer matrix of carbon fiber laminates is considered today as one of the ways of increasing the strength and resistance of the material to mechanical loads. The paper considers the effect of the addition of single-walled [...] Read more.
The addition of nano-sized fillers into the polymer matrix of carbon fiber laminates is considered today as one of the ways of increasing the strength and resistance of the material to mechanical loads. The paper considers the effect of the addition of single-walled carbon nanotubes (CNTs) on the development of impact damage in laminates. Studies of the volume microstructure and its damage were carried out using high-resolution ultrasound imaging. The effect of damage propagation in laminates with an increase in the concentration of CNTs from 0 to 0.5 wt% was shown. The addition of CNTs decreased the area of damage in the upper and lower part of laminates but increased the area of damage in the middle plies. The results were discussed in combination with data on impact histories of laminates. Full article
Show Figures

Figure 1

24 pages, 8741 KiB  
Review
Graphene-Based Impregnation into Polymeric Coating for Corrosion Resistance
by Arti Yadav, Santosh Panjikar and R. K. Singh Raman
Nanomaterials 2025, 15(7), 486; https://doi.org/10.3390/nano15070486 - 24 Mar 2025
Cited by 2 | Viewed by 1172
Abstract
This review explores the development and application of the impregnation of graphene-based materials into polymeric coatings to enhance corrosion resistance. Derivatives of graphene, such as graphene oxide (GO) and reduced graphene oxide (rGO), have been increasingly integrated into polymer matrices to enhance polymers’ [...] Read more.
This review explores the development and application of the impregnation of graphene-based materials into polymeric coatings to enhance corrosion resistance. Derivatives of graphene, such as graphene oxide (GO) and reduced graphene oxide (rGO), have been increasingly integrated into polymer matrices to enhance polymers’ mechanical, thermal, and barrier properties. Various synthesis approaches, viz., electrochemical deposition, chemical reduction, and the incorporation of functionalised graphene derivatives, have been explored for improving the dispersion and stability of graphene within polymers. These graphene-impregnated coatings have shown promising results in improving corrosion resistance by enhancing impermeability to corrosive agents and reinforcing mechanical strength under corrosive conditions. While the addition of graphene notably enhances coating performance, challenges remain in achieving uniform graphene dispersion and addressing the trade-offs between thickness and flexibility. This review highlights current advancements, limitations, and future directions, with a particular emphasis on optimising the synthesis techniques to maximise corrosion resistance while maintaining coating durability and economic feasibility. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

29 pages, 9288 KiB  
Article
Machine Learning-Driven Prediction of Composite Materials Properties Based on Experimental Testing Data
by Khrystyna Berladir, Katarzyna Antosz, Vitalii Ivanov and Zuzana Mitaľová
Polymers 2025, 17(5), 694; https://doi.org/10.3390/polym17050694 - 5 Mar 2025
Cited by 4 | Viewed by 2249
Abstract
The growing demand for high-performance and cost-effective composite materials necessitates advanced computational approaches for optimizing their composition and properties. This study aimed at the application of machine learning for the prediction and optimization of the functional properties of composites based on a thermoplastic [...] Read more.
The growing demand for high-performance and cost-effective composite materials necessitates advanced computational approaches for optimizing their composition and properties. This study aimed at the application of machine learning for the prediction and optimization of the functional properties of composites based on a thermoplastic matrix with various fillers (two types of fibrous, four types of dispersed, and two types of nano-dispersed fillers). The experimental methods involved material production through powder metallurgy, further microstructural analysis, and mechanical and tribological testing. The microstructural analysis revealed distinct structural modifications and interfacial interactions influencing their functional properties. The key findings indicate that optimal filler selection can significantly enhance wear resistance while maintaining adequate mechanical strength. Carbon fibers at 20 wt. % significantly improved wear resistance (by 17–25 times) while reducing tensile strength and elongation. Basalt fibers at 10 wt. % provided an effective balance between reinforcement and wear resistance (by 11–16 times). Kaolin at 2 wt. % greatly enhanced wear resistance (by 45–57 times) with moderate strength reduction. Coke at 20 wt. % maximized wear resistance (by 9−15 times) while maintaining acceptable mechanical properties. Graphite at 10 wt. % ensured a balance between strength and wear, as higher concentrations drastically decreased mechanical properties. Sodium chloride at 5 wt. % offered moderate wear resistance improvement (by 3–4 times) with minimal impact on strength. Titanium dioxide at 3 wt. % enhanced wear resistance (by 11–12.5 times) while slightly reducing tensile strength. Ultra-dispersed PTFE at 1 wt. % optimized both strength and wear properties. The work analyzed in detail the effect of PTFE content and filler content on composite properties based on machine learning-driven prediction. Regression models demonstrated high R-squared values (0.74 for density, 0.67 for tensile strength, 0.80 for relative elongation, and 0.79 for wear intensity), explaining up to 80% of the variability in composite properties. Despite its efficiency, the limitations include potential multicollinearity, a lack of consideration of external factors, and the need for further validation under real-world conditions. Thus, the machine learning approach reduces the need for extensive experimental testing, minimizing material waste and production costs, contributing to SDG 9. This study highlights the potential use of machine learning in polymer composite design, offering a data-driven framework for the rational choice of fillers, thereby contributing to sustainable industrial practices. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

Back to TopTop