Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = n-octanol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2536 KiB  
Article
The Interplay of Inter- and Intramolecular Hydrogen Bonding in Ether Alcohols Related to n-Octanol
by Markus M. Hoffmann, Troy N. Smith and Gerd Buntkowsky
Molecules 2025, 30(11), 2456; https://doi.org/10.3390/molecules30112456 - 4 Jun 2025
Viewed by 819
Abstract
n-Octanol and related ether alcohols are studied via molecular dynamics (MD) simulations using the two classical all-atom force fields OPLS-AA and CHARMM. The ether alcohols studied possess one ether functionality separated by varying n carbon atoms from the hydroxy group to elucidate how [...] Read more.
n-Octanol and related ether alcohols are studied via molecular dynamics (MD) simulations using the two classical all-atom force fields OPLS-AA and CHARMM. The ether alcohols studied possess one ether functionality separated by varying n carbon atoms from the hydroxy group to elucidate how the positioning of the ether functionality affects intra- and intermolecular hydrogen bonding and, in turn, the physical properties of the studied alcohols. Important general trends observed from simulations with both force fields include the following: Intramolecular hydrogen bonding is majorly present in 3-butoxypropanol and 4-propoxybutanol (n = 3 and 4) while being only marginally present for 5-ethoxypentanol and 6-methoxyhexanol (n = 5 and 6) and absent in 1-hexyloxymethanol and 2-pentyloxyethanol (n = 1 and 2). The intramolecular hydrogen bonds formed by 3-butoxypropanol and 4-propoxybutanol are among the most stable ones of all present hydrogen bonds. Intermolecular hydrogen bonding is stronger between hydroxy groups (OH-OH) than between hydroxy and ether groups (OH-OE). An increased temperature causes a reduction in intermolecular OH-OH and OH-OE hydrogen bonding but a slight increase in intramolecular hydrogen bonding. A reduction in end-to-end distances at a higher temperature is also observed for all studied alcohols, which is likely a reflection of increased dihedral bond rotations. Hydrogen bonding extends mostly between just two molecules while hydrogen bonding networks are rare but do exist, involving, in some instances, up to 30 hydrogen bonds. Regardless of force field and temperature, the obtained radial distribution functions (RDFs) mostly show the same features at same distances that only vary in their intensity. 1-hexyloxymethanol forms a very specific and stable intermolecular double OH-OE hydrogen-bonded dimer. Similar double-hydrogen-bonded dimers can be found for the ether alcohols but are only significantly present for 2-pentyloxyethanol. Overall, the main difference between OPLS-AA and CHARMM is their quantitative prediction of the present hydrogen bonding speciation largely due to the stiffer dihedral potentials in OPLS-AA compared to the CHARMM force field. The simulations indicate that (a) the variations in densities are correlated to the reduced packing efficiency caused by intramolecular hydrogen bonding, (b) self-diffusion correlates with the stability of the intermolecular hydrogen bonds, and (c) the presence of hydrogen-bonded networks, although small in numbers, affect the viscosity. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

28 pages, 6794 KiB  
Article
Diastereoselective Transfer Hydrogenation of Cyclic and Bicyclic Ketones over Selected Metal Oxides as Catalysts
by Marek Gliński, Dorota Armusiewicz, Karolina Łukasik-Kwaśniewska, Michał Materowski, Adam Rułka, Ewa M. Iwanek (nee Wilczkowska) and Monika Kucharska
Molecules 2025, 30(10), 2153; https://doi.org/10.3390/molecules30102153 - 14 May 2025
Viewed by 671
Abstract
The diastereoselectivity of the liquid- and vapor-phase Catalytic Transfer Hydrogenation (CTH) of cyclic ketones: x-methylcyclohexanones (x = 2, 3 or 4), 4-t-butylcyclohexanone, and bicyclic ketones: 2-norbornanone, camphor, fenchone, and a tricyclic ketone (2-adamantanone) with secondary alkanols (2-propanol, 2-butanol, 2-pentanol, or 2-octanol) [...] Read more.
The diastereoselectivity of the liquid- and vapor-phase Catalytic Transfer Hydrogenation (CTH) of cyclic ketones: x-methylcyclohexanones (x = 2, 3 or 4), 4-t-butylcyclohexanone, and bicyclic ketones: 2-norbornanone, camphor, fenchone, and a tricyclic ketone (2-adamantanone) with secondary alkanols (2-propanol, 2-butanol, 2-pentanol, or 2-octanol) as hydrogen donors in the presence of ten metal oxides as the catalysts was studied. Among the oxides, only four, namely, MgO, ZrO2·nH2O, ZrO2, and Al2O3, exhibited good or high activity. The reaction products are diastereoisomeric alcohols, the relative ratio of which depends on the structure of the ketone, mode of reaction, temperature, and, in the liquid-phase mode, reaction time. The results of vapor-phase CTH revealed that, in this mode of reaction, the diastereoselectivity to the trans isomer is lower than in the liquid phase. For the three x-methylcyclohexanones, the most pronounced difference between the experimental values and reference values was noted for x = 3. For bicyclic ketones, the implementation of heterogeneous catalysts allowed us to obtain a substantial excess of the less favorable diastereomer. In the case of 2-norbornanone, the thermodynamic equilibrium mixture contains 21% endo and 79% exo alcohols, whereas our product mixtures contained up to 79% of the endo isomer. Full article
Show Figures

Graphical abstract

22 pages, 4879 KiB  
Article
Experimental Evaluation of the Impact on Turbo Engine’s Performance and Gaseous Emissions While Using n-Heptane Octanol/Jet-A Blends
by Valentin Silivestru, Grigore Cican, Radu Mirea, Sibel Osman and Razvan Ene
Sustainability 2025, 17(9), 3924; https://doi.org/10.3390/su17093924 - 27 Apr 2025
Viewed by 398
Abstract
This paper investigates how octanol, used as a renewable additive in Jet A fuel, influences the performance and emissions of aviation micro-turbo engines. Blends containing 10%, 20%, and 30% octanol, with an additional 5% n-heptane, were tested to closely replicate Jet A’s physical–chemical [...] Read more.
This paper investigates how octanol, used as a renewable additive in Jet A fuel, influences the performance and emissions of aviation micro-turbo engines. Blends containing 10%, 20%, and 30% octanol, with an additional 5% n-heptane, were tested to closely replicate Jet A’s physical–chemical properties. Mathematical models validated using density and viscosity data achieved accurate predictions, with maximum absolute errors of 0.0018 g/cm3 for density and 0.4020 mm2/s for viscosity. Performance assessments showed that fuel consumption increased due to octanol’s lower calorific value, requiring higher fuel flow to sustain engine speed. Combustion temperature variations ranged from a decrease of 5.38% in Regime 1 (30% octanol) to increases of up to 1.47% and 1.13% in Regimes 2 and 3, respectively, without compromising engine stability. Thrust variations were minimal, with decreases up to 0.72% observed at 30% octanol concentration. Emission analysis indicated significant reductions in CO and NOx levels with increased octanol content, attributed to enhanced combustion completeness and additional oxygen availability. SO2 emissions also decreased slightly due to the lower sulfur content. Thermal efficiency marginally declined from 5.04% (Jet A) to approximately 4.92–4.97% for octanol blends. These findings support octanol as a viable sustainable additive, offering substantial emission benefits with only minor efficiency trade-offs. Full article
(This article belongs to the Special Issue Promising Alternative Fuels and Sustainability)
Show Figures

Figure 1

15 pages, 6223 KiB  
Article
Antifungal Volatile Organic Compounds from Talaromyces purpureogenus CEF642N: Insights from One Strain Many Compounds (OSMAC) Strategy for Controlling Verticillium dahliae in Cotton
by Peng Li, Yalin Zhang, Hongjie Feng, Jinglong Zhou, Lihong Zhao, Heqin Zhu, Feng Wei and Zili Feng
J. Fungi 2025, 11(5), 332; https://doi.org/10.3390/jof11050332 - 22 Apr 2025
Viewed by 595
Abstract
Verticillium wilt is a devastating soil-borne disease that significantly impacts cotton production, necessitating the development the effective biofumigants for its control. In this study, the inhibitory effect of total volatile organic compounds (VOCs) produced by Talaromyces purpureogenus CEF642N against Verticillium dahliae were [...] Read more.
Verticillium wilt is a devastating soil-borne disease that significantly impacts cotton production, necessitating the development the effective biofumigants for its control. In this study, the inhibitory effect of total volatile organic compounds (VOCs) produced by Talaromyces purpureogenus CEF642N against Verticillium dahliae were evaluated using the one strain many compounds (OSMAC) strategy and analyzed through volatile metabolome. CEF642N was found to produce two primary VOCs, 3-octanol and 2-octenal, (E)-, both of which demonstrated significant antifungal activity. Transcriptome analysis of mycelium grown on various solid media revealed notable differences in the expression of genes associated with arachidonic acid metabolism, lipoxygenase (LOX), and lytic enzymes. These findings provide a foundation for future research aimed at identifying key genes involved in the eight-carbon volatile biosynthetic pathway. Full article
Show Figures

Figure 1

15 pages, 1256 KiB  
Article
Pesticides’ Cornea Permeability—How Serious Is This Problem?
by Anna W. Sobańska, Andrzej M. Sobański and Karolina Wanat
Pharmaceutics 2025, 17(2), 156; https://doi.org/10.3390/pharmaceutics17020156 - 24 Jan 2025
Viewed by 760
Abstract
Background: A total of 348 pesticides from different chemical families (carbamates, organochlorines organophosphorus compounds, pyrethroids, triazines and miscellaneous) were investigated in the context of their cornea permeability and potential to cause eye corrosion. Methods: Multivariate models of cornea permeability based on compounds whose [...] Read more.
Background: A total of 348 pesticides from different chemical families (carbamates, organochlorines organophosphorus compounds, pyrethroids, triazines and miscellaneous) were investigated in the context of their cornea permeability and potential to cause eye corrosion. Methods: Multivariate models of cornea permeability based on compounds whose cornea permeability has been determined experimentally were proposed. The models, applicable to compounds across a relatively broad lipophilicity range (e.g., pesticides with octanol–water partition coefficient log P up to ca. 8), assume a reverse-parabolic relationship between cornea permeability and lipophilicity, expressed as XLOGP3; other main descriptors present in the models are log D at pH 7.4 and polar surface area (PSA). Results: It appears that the trans-corneal transport of all studied pesticides is possible to some degree; however, it is more difficult for the majority of highly lipophilic pesticides from the organochlorine and pyrethroid families. The same set of 348 pesticides was also evaluated for their eye-corrosive potential using novel artificial neural network models involving simple physico-chemical properties of the compounds (lipophilicity, aqueous solubility, polar surface area, H-bond donor and acceptor count and the count of atoms such as N, NH, O, P, S and halogens). Conclusions: It was concluded that eye corrosion is an issue, especially among the pesticides from organochlorine and organophosphorus families. Full article
(This article belongs to the Special Issue Transport of Drugs through Biological Barriers—an Asset or Risk)
Show Figures

Figure 1

17 pages, 1815 KiB  
Article
Physicochemical Properties of Jet-A/n-Heptane/Alcohol Blends for Turboengine Applications
by Sibel Osman, Laurentiu Ceatra, Grigore Cican and Radu Mirea
Inventions 2025, 10(1), 3; https://doi.org/10.3390/inventions10010003 - 12 Jan 2025
Cited by 2 | Viewed by 1126
Abstract
This work investigated the physical properties of Jet-A blended with n-heptane and various n-alcohols. The mixtures contained 10%, 20%, and 30% n-alcohols, including n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, and n-octanol. These alcohols are either derived from biomass or have significant potential for bio-based [...] Read more.
This work investigated the physical properties of Jet-A blended with n-heptane and various n-alcohols. The mixtures contained 10%, 20%, and 30% n-alcohols, including n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, and n-octanol. These alcohols are either derived from biomass or have significant potential for bio-based production. The blends were assessed against American Society for Testing and Materials (ASTM) D1655 standards for Jet-A in terms of the density, viscosity, and flash point. Additionally, the refractive index and Fourier Transform Infrared Spectroscopy (FTIR) analysis were employed to gain insights into the blend chemical composition. Density measurements for the blends fell within the ASTM specifications (0.7939 to 0.8075 g·cm−3). Viscosity measurements at −20 °C were not directly conducted due to technical limitations. However, extrapolating viscosity–temperature data suggests that the blends would meet the ASTM standard. Flash point measurements revealed that all mixtures exhibited values below the ASTM specification of 38 °C. Regression equations were developed to estimate the density, kinematic viscosity, and refractive index of the studied mixtures as a function of alcohol volume. Furthermore, a correlation study was conducted to estimate density and viscosity from refractive index measurements, given their simplicity, and minimal sample volume requirements. The R2 values for these correlations exceeded 0.99, indicating a strong relationship between the refractive index and the other properties. Full article
(This article belongs to the Section Inventions and Innovation in Applied Chemistry and Physics)
Show Figures

Figure 1

15 pages, 4188 KiB  
Article
Role of the Solvent and Ultrasound Irradiation in the Preparation of TiO2 for the Photocatalytic Degradation of Sulfamethoxazole in Water
by Alessandro Di Michele, Paola Sassi, Riccardo Vivani, Alessandro Minguzzi, Laura Prati and Carlo Pirola
Catalysts 2024, 14(12), 910; https://doi.org/10.3390/catal14120910 - 11 Dec 2024
Viewed by 911
Abstract
The preparation of titania-based photocatalysts has been largely investigated in the literature. Nevertheless, the study of the influence of different solvents in the synthesis mixture requires further analysis. Addressing this issue, we explored the potential of heterogeneous photocatalysis with nano-sized titanium dioxide (TiO [...] Read more.
The preparation of titania-based photocatalysts has been largely investigated in the literature. Nevertheless, the study of the influence of different solvents in the synthesis mixture requires further analysis. Addressing this issue, we explored the potential of heterogeneous photocatalysis with nano-sized titanium dioxide (TiO2) synthesized via the sol–gel method with and without ultrasound for the degradation of sulfamethoxazole (SMX) in water. Specifically, we engineered TiO2 nanoparticles within the 20–30 nm range, in order to work in the same particle size range of Evonik P25. The synthesis was conducted in five distinct solvents, n-hexane, decane, isopropanol, ethanol, and 1-octanol, and it was evaluated with the presence and absence of ultrasound. Following synthesis, the powders were thoroughly characterized. When nonpolar solvents were used, the photocatalysts were characterized by the presence of both anatase and brookite phases, while with polar solvents, the only polymorph present was anatase. A different behavior was shown by 1-octanol, where the role of the solvent was so important that US did not affect the final sample features. The samples prepared in ethanol and isopropanol exhibited superior activity compared to those synthesized in other solvents in the SMX photodegradation (about 35% after 6 h), and the effect of US during preparation resulted positive for all solvents (an average increase of SMX photodegradation in the range of 5–10% for the different photocatalysts for each degradation time). Full article
Show Figures

Graphical abstract

18 pages, 1549 KiB  
Article
A Simple HPLC-DAD Method for the Therapeutic Monitoring of Clozapine and Related Metabolites in Human Plasma and Urine Samples
by Mircea-Alexandru Comănescu, Dana-Maria Preda, Dalia-Simona Miron, Flavian-Ștefan Rădulescu, Victor Voicu and Andrei-Valentin Medvedovici
Molecules 2024, 29(21), 5039; https://doi.org/10.3390/molecules29215039 - 25 Oct 2024
Viewed by 8438
Abstract
Clozapine and its metabolites require close therapeutic monitoring (TDM) in patients due to poor correlation between the administrated doses and resulting plasma concentrations, the narrow therapeutic interval, high inter-individual variability, and the risk of serious side effects once toxic levels are exceeded. The [...] Read more.
Clozapine and its metabolites require close therapeutic monitoring (TDM) in patients due to poor correlation between the administrated doses and resulting plasma concentrations, the narrow therapeutic interval, high inter-individual variability, and the risk of serious side effects once toxic levels are exceeded. The aim of the study was to develop a simple (relatively cheap) LC-UV method for the quantification of clozapine and its metabolites in plasma and urine samples. For sample preparation, liquid-liquid extraction (LLE) in n-octanol was more efficient and less limiting in injection volumes compared to the in-situ formation of SUPRAS. When analyzing urine, an alkalinization step before extraction was required. The proposed method produced linear concentration responses with/without internal standard (IS) for the target analytes, with LLOQs within the targeted range of 50 ppb and %RSD within the acceptable 15% range. Furthermore, sample stability studies proved that pre-extracted samples were stable for the short term at room temperature and long-term when frozen. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

12 pages, 785 KiB  
Article
Evaluation of the Robustness Under Alkanol Stress and Adaptability of Members of the New Genus Halopseudomonas
by Simone Bertoldi, Pedro D. M. A. S. Mattos, Carla C. C. R. de Carvalho, Luzie Kruse, Stephan Thies, Hermann J. Heipieper and Christian Eberlein
Microorganisms 2024, 12(11), 2116; https://doi.org/10.3390/microorganisms12112116 - 22 Oct 2024
Viewed by 1271
Abstract
Many species of the genus Pseudomonas are known to be highly tolerant to solvents and other environmental stressors. Based on phylogenomic and comparative genomic analyses, several Pseudomonas species were recently transferred to a new genus named Halopseudomonas. Because of their unique enzymatic [...] Read more.
Many species of the genus Pseudomonas are known to be highly tolerant to solvents and other environmental stressors. Based on phylogenomic and comparative genomic analyses, several Pseudomonas species were recently transferred to a new genus named Halopseudomonas. Because of their unique enzymatic machinery, these strains are being discussed as novel biocatalysts in biotechnology. In order to test their growth parameters and stress tolerance, five Halopseudomonas strains were assessed regarding their tolerance toward different n-alkanols (1-butanol, 1-hexanol, 1-octanol, 1-decanol), as well as to salt stress and elevated temperatures. The toxicity of the solvents was investigated by their effects on bacterial growth rates and presented as EC50 concentrations. Hereby, all Halopseudomonas strains showed EC50 values up to two-fold lower than those previously detected for Pseudomonas putida. In addition, the activity of the cis-trans isomerase of unsaturated fatty acids (Cti), which is an urgent stress response mechanism known to be present in all Pseudomonas species, was monitored in the five Halopseudomonas strains. Although several of the tested species were known to contain the cti gene, no significant phenotypic activity could be detected in the presence of the assayed stressors. A bioinformatic analysis of eight cti-carrying Halopseudomonas strains examining promotor binding sites, binding motifs and signal peptides showed that most of the cti genes have a lipoprotein signal peptide and promotor regions and binding motifs that do not coincide with those of Pseudomonas. These insights represent putative reasons for the absence of the expected Cti activity in Halopseudomonas, which in turn has always been observed in cti-carrying Pseudomonas. The lack of Cti activity under membrane stress conditions when the cti gene is present has never been documented, and this could represent potential negative implications on the utility of the genus Halopseudomonas for some biotechnological applications. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

19 pages, 2457 KiB  
Article
Influences of Lactiplantibacillus plantarum dy-1 Fermentation on the Bitterness of Bitter Melon Juice, the Composition of Saponin Compounds, and Their Bioactivities
by Juan Bai, Zihan Yang, Wei Luo, Ying Zhu, Yansheng Zhao, Beibei Pan, Jiayan Zhang, Lin Zhu, Shiting Huang and Xiang Xiao
Foods 2024, 13(20), 3341; https://doi.org/10.3390/foods13203341 - 21 Oct 2024
Cited by 2 | Viewed by 1984
Abstract
Lactic acid bacteria fermentation is a beneficial bioprocessing method that can improve the flavor, transform nutrients, and maintain the biological activity of foods. The aim of this study is to investigate the effects of Lactiplantibacillus plantarum dy-1 fermentation on the nutritional components, flavor [...] Read more.
Lactic acid bacteria fermentation is a beneficial bioprocessing method that can improve the flavor, transform nutrients, and maintain the biological activity of foods. The aim of this study is to investigate the effects of Lactiplantibacillus plantarum dy-1 fermentation on the nutritional components, flavor and taste properties, and composition of saponin compounds and their hypolipidemic and antioxidant activities. The results suggested that the total polyphenol content increased, and the soluble polysaccharides and total saponin contents decreased in fermented bitter melon juice (FJ) compared with those in non-fermented bitter melon juice (NFJ). The determination of volatile flavor substances by GC-MS revealed that the response values of acetic acid, n-octanol, sedumol, etc., augmented significantly, and taste analysis with an electronic tongue demonstrated lower bitterness and higher acidity in FJ. Furthermore, UPLC-Q-TOF-MS/MS testing showed a significant decrease in bitter compounds, including momordicines I and II, and a significant increase in the active saponin momordicine U in the fermented bitter melon saponin group (FJBMS). The in vitro assays indicated that FJBMS exhibited similar antioxidant activities as the non-fermented bitter melon saponin group (NFBMS). The in vitro results show that both NFBMS and FJBMS, when used at 50 μg/mL, could significantly reduce fat accumulation and the malondialdehyde (MDA) content and increased the catalase (CAT) activity, while there was no significant difference in the bioactivities of NFBMS and FJBMS. In conclusion, Lactiplantibacillus plantarum dy-1 fermentation is an effective means to lower the bitterness value of bitter melon and preserve the well-known bioactivities of its raw materials, which can improve the edibility of bitter melon. Full article
(This article belongs to the Special Issue Fermented Foods: Microbiology, Technology, and Health Benefits)
Show Figures

Figure 1

19 pages, 1506 KiB  
Article
The Optimisation of Ultrasound-Assisted Extraction for the Polyphenols Content and Antioxidant Activity on Sanguisorba officinalis L. Aerial Parts Using Response Surface Methodology
by Anna Muzykiewicz-Szymańska, Edyta Kucharska, Robert Pełech, Anna Nowak, Karolina Jakubczyk and Łukasz Kucharski
Appl. Sci. 2024, 14(20), 9579; https://doi.org/10.3390/app14209579 - 21 Oct 2024
Cited by 4 | Viewed by 2213
Abstract
The aim of this study was to optimise ultrasound-assisted extraction (UAE) of the herb Sanguisorba officinalis L. in terms of the antioxidant activity (DPPH and FRAP method) and total polyphenol content (TPC). Optimisation was performed using the response surface methodology (RSM) with a [...] Read more.
The aim of this study was to optimise ultrasound-assisted extraction (UAE) of the herb Sanguisorba officinalis L. in terms of the antioxidant activity (DPPH and FRAP method) and total polyphenol content (TPC). Optimisation was performed using the response surface methodology (RSM) with a third-degree (33) Central Composite Design (CCD) approach. The RSM was applied to obtain the optimal combination of (1) raw material content (2.25–7.5 g raw material/100 mL of solvent), (2) ethanol concentration (20–60% v/v), and (3) extraction time (1–15 min). The optimal conditions for the extraction of polyphenols and antioxidant potential were a raw material content of 7.5 g/100 mL of solvent (solid/solvent ratio 13.3 mL/g), an ethanol concentration of 47% v/v, and an extraction time of 10 min. At these optimal extraction parameters, the maximum extraction of polyphenols and antioxidant activity obtained experimentally was found to be very close to its predicted value and was 12.9 mmol Trolox/L (DPPH method), 19.4 mmol FeSO4/L (FRAP method), and 2.1 g GA/L (TPC). The mathematical model developed was found to fit with the experimental data on the antioxidant potential and polyphenol extraction. The n-octanol/water partition coefficient of the optimised extract was used to determine their lipophilicity. Our studies have shown that the optimised extract is highly hydrophilic (log P < 0). Optimal parameters can be used for the industrial extraction of the S. officinalis herb for the needs of, among others, the pharmaceutical or cosmetic industry. Full article
Show Figures

Figure 1

19 pages, 3995 KiB  
Article
Identification of Volatile Organic Compounds and Analysis of Aroma Characteristics in Ten Pear Syrups
by Yang Wang, Wei Tong, Wenhui Wang, Yanmin Du, Xiaohui Jia, Zhihua Wang, Jianyi Zhang and Hailong Sun
Foods 2024, 13(20), 3223; https://doi.org/10.3390/foods13203223 - 10 Oct 2024
Cited by 1 | Viewed by 2389
Abstract
Aroma in food plays an important role in food perception and acceptance, which depends on various mixtures of volatile organic compounds (VOCs). Moreover, VOCs are of great significance for aroma identification. In this study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography–mass spectrometry [...] Read more.
Aroma in food plays an important role in food perception and acceptance, which depends on various mixtures of volatile organic compounds (VOCs). Moreover, VOCs are of great significance for aroma identification. In this study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography–mass spectrometry (GC-MS) technology was used to determine the VOCs in 10 pear syrups. A total of 127 VOCs were quantitatively determined, including 9 common VOCs and 46 characteristic VOCs of 10 pear syrups. The pear syrups were divided into three categories by cluster analysis, and thirty-eight differential VOCs were obtained using orthogonal partial least squares discrimination analysis (OPLS-DA) and fourteen key VOCs were selected by odor activity value (OAV). It was revealed that the key and common aroma components of pear syrups were butanoic acid, methyl ester, 2-methyl-, methyl ester and Hexanoic acid, and ethyl ester. The characteristic and differential VOCs were 10-Undecen-1-ol, Hexadecanal, n-Propylacetate, Cyclohexanol, 5-methyl-2-(1-methylethyl)-, (1S,2R,5S)-, Methional, Disulfide, dimethyl, 8-Nonenoic acid, ethyl ester, Naphthalene, 1,2-dihydro-1,1,6-trimethyl-, 3H-Purin-6-amine, N,N,3-trimethyl-, 2-Octanol,2,6-dimethyl-, Furyl hydroxymethyl ketone, Heptane, 2,2,4,6,6-pentamethyl-, and Butanoic acid,2-methyl-,methyl ester. The above results showed that different pear syrups had rich diversity in aroma compounds, with some components being shared among them while others are exclusive to specific syrups. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

16 pages, 2563 KiB  
Article
Optimization of Liquid Crystalline Mixtures Enantioseparation on Polysaccharide-Based Chiral Stationary Phases by Reversed-Phase Chiral Liquid Chromatography
by Magdalena Urbańska
Int. J. Mol. Sci. 2024, 25(12), 6477; https://doi.org/10.3390/ijms25126477 - 12 Jun 2024
Cited by 3 | Viewed by 1705
Abstract
Enantioseparation of nineteen liquid crystalline racemic mixtures obtained based on (R,S)-2-octanol was studied in reversed-phase mode on an amylose tris(3-chloro-5-methylphenylcarbamate) (ReproSil Chiral-MIG) and a cellulose tris(3,5-dichlorophenylcarbamate) (ReproSil Chiral-MIC). These polysaccharide-based chiral stationary phase (CSP) columns for High-Performance Liquid Chromatography (HPLC) were highly effective [...] Read more.
Enantioseparation of nineteen liquid crystalline racemic mixtures obtained based on (R,S)-2-octanol was studied in reversed-phase mode on an amylose tris(3-chloro-5-methylphenylcarbamate) (ReproSil Chiral-MIG) and a cellulose tris(3,5-dichlorophenylcarbamate) (ReproSil Chiral-MIC). These polysaccharide-based chiral stationary phase (CSP) columns for High-Performance Liquid Chromatography (HPLC) were highly effective in recognizing isomers of minor structural differences. The mobile phase (MP), which consists of acetonitrile (ACN)/water (H2O) at different volume ratios, was used. The mobile phases were pumped at a flow rate of 0.3, 0.5, or 1 mL·min−1 with a column temperature of 25 °C, using a UV detector at 254 nm. The order of the elution was also determined. The chromatographic parameters, such as resolution (Rs), selectivity (α), and the number of theoretical plates, i.e., column efficiency (N), were determined. The polysaccharide-based CSP columns have unique advantages in separation technology, and this study has shown the potential usefulness of the CSP columns in separating liquid crystalline racemic mixtures belonging to the same homologous series. Full article
(This article belongs to the Special Issue Molecular Novelties in Chiral Enantioseparation and Discrimination)
Show Figures

Graphical abstract

21 pages, 4318 KiB  
Article
Impact of Using n-Octanol/Diesel Blends on the Performance and Emissions of a Direct-Injection Diesel Engine
by Jongkap Ahn, Kwonwoo Jang, Jeonghyeon Yang, Beomsoo Kim and Jaesung Kwon
Energies 2024, 17(11), 2691; https://doi.org/10.3390/en17112691 - 1 Jun 2024
Cited by 4 | Viewed by 1193
Abstract
This study evaluates the viability of n-octanol as an alternative fuel in a direct-injection diesel engine, aiming to enhance sustainability and efficiency. Experiments fueled by different blends of n-octanol with pure diesel were conducted to analyze their impacts on engine performance and emissions. [...] Read more.
This study evaluates the viability of n-octanol as an alternative fuel in a direct-injection diesel engine, aiming to enhance sustainability and efficiency. Experiments fueled by different blends of n-octanol with pure diesel were conducted to analyze their impacts on engine performance and emissions. The methodology involved testing each blend in a single-cylinder engine, measuring engine performance parameters such as brake torque and brake power under full-load conditions across a range of engine speeds. Comparative assessments of performance and emission characteristics at a constant engine speed were also conducted with varying loads. The results indicated that while n-octanol blends consistently improved brake thermal efficiency, they also increased brake-specific fuel consumption due to the lower energy content of n-octanol. Consequently, while all n-octanol blends reduced nitrogen oxide emissions compared to pure diesel, they also significantly decreased carbon monoxide, hydrocarbons, and smoke opacity, presenting a comprehensive reduction in harmful emissions. However, the benefits came with complex trade-offs: notably, higher concentrations of n-octanol led to a relative increase in nitrogen oxide emissions as the n-octanol ratio increased. The study concludes that n-octanol significantly improves engine efficiency and reduces diesel dependence, but optimizing the blend ratio is crucial to balance performance improvements with comprehensive emission reductions. Full article
Show Figures

Figure 1

13 pages, 1689 KiB  
Article
Studies on Reactive Extraction of Itaconic Acid from Fermentation Broths
by Alexandra Cristina Blaga, Lenuta Kloetzer, Dan Cascaval, Anca-Irina Galaction and Alexandra Tucaliuc
Processes 2024, 12(4), 725; https://doi.org/10.3390/pr12040725 - 3 Apr 2024
Cited by 6 | Viewed by 1799
Abstract
Itaconic acid is a high-value organic acid that serves as a platform molecule in different industries. This research focuses on the separation of itaconic acid using reactive extraction as a sustainable and efficient method for acid recovery from fermentation broth. Itaconic acid was [...] Read more.
Itaconic acid is a high-value organic acid that serves as a platform molecule in different industries. This research focuses on the separation of itaconic acid using reactive extraction as a sustainable and efficient method for acid recovery from fermentation broth. Itaconic acid was produced through fungal fermentation processes involving Aspergillus terreus ATCC® 32588™, obtaining a concentration of 47 g/L in the final broths. For the reactive extraction system, the organic phase included tri-n-octylamine as an extractant dissolved in dichloromethane or n-heptane and 1-octanol as a phase modifier. The effect of the main influencing factors (pH of the aqueous phase, extractant concentrations in the organic phase, and the addition of 1-octanol) on extraction efficiency was investigated. The highest extraction degree (97%) was achieved using an organic phase with tri-n-octylamine dissolved in dichloromethane and with 20% 1-octanol. Conversely, in the reactive extraction system with tri-n-octylamine dissolved in n-heptane and 20% 1-octanol, the extraction efficiency reached 67%. This finding suggests a promising separation system that is less toxic for microorganisms. The study results highlight the feasibility of employing reactive extraction systems for the direct separation of itaconic acid. Full article
Show Figures

Figure 1

Back to TopTop