Studies on Reactive Extraction of Itaconic Acid from Fermentation Broths
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Culture Media
2.2. Fermentation Processes
2.3. Reactive Extraction Procedure
3. Results and Discussion
3.1. Fermentation Process
- (i)
- Fungi morphology and growth form: In this study, the dominant growth form of A. terreus was filamentous, characterized by short hyphae. This morphology was advantageous because it avoids high viscosities that could otherwise influence the oxygen transfer rate from the gas phase to the cells;
- (ii)
- Bioreactor design and operational parameters: The successful production of itaconic acid hinges on a well-designed bioreactor and carefully controlled parameters during the fermentation process.
3.2. Reactive Extraction without Phase Modifier
3.3. Reactive Extraction with Phase Modifier
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diankristanti, P.A.; Ng, I.S. Microbial itaconic acid bioproduction towards sustainable development: Insights, challenges and prospects. Bioresour. Technol. 2023, 384, 129280. [Google Scholar] [CrossRef] [PubMed]
- Hevekerl, A.; Kuenz, A.; Vorlop, K.D. Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl. Microbiol. Biotechnol. 2014, 98, 10005–10012. [Google Scholar] [CrossRef]
- Levinson, W.E.; Kurtzman, C.P.; Kuo, T.M. Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzym. Microb. Technol. 2006, 39, 824–827. [Google Scholar] [CrossRef]
- Tabuchi, T. Manufacture of Itaconic Acid with Ustilago. Japan Patent JP-H-03-357-85A, 15 September 1991. [Google Scholar]
- Kawamura, D.; Furuhashi, M.; Saito, O.; Matsui, H. Production of Itaconic Acid by Fermentation. Japan Patent JP-A-56 137 861, 28 October 1981. [Google Scholar]
- Saha, B.C.; Kennedy, G.J.; Bowman, M.J.; Qureshi, N.; Nichols, N.N. Itaconic acid production by Aspergillus terreus from glucose up to pilot scale and from corn stover and wheat straw hydrolysates using new manganese tolerant medium. Biocatal. Agric. Biotechnol. 2022, 43, 102418. [Google Scholar] [CrossRef]
- Yıldız, E.; Lalikoglu, M.; Aşçı, Y.S.; Tarım, B.S. Investigation of reactive extraction of monocarboxylic acids with menthol-based hydrophobic deep eutectic solvent by response surface methodology. Sep. Sci. Technol. 2023, 58, 1450–1459. [Google Scholar] [CrossRef]
- Kaur, G.; Elst, K. Development of reactive extraction systems for itaconic acid: A step towards in situ product recovery for itaconic acid fermentation. RSC Adv. 2014, 4, 45029–45039. [Google Scholar] [CrossRef]
- Poştaru, M.; Cârlescu, A.; Galaction, A.I.; Caşcaval, D. Direct separation of propionic acid from Propionibacterium acidipropionici broths by reactive extraction 1. Interfacial mechanism and influencing factors. Environ. Eng. Manag. J. 2012, 11, 709–7016. [Google Scholar]
- Hano, T.; Matsumoto, M.; Ohtake, T.; Sasaki, K.; Hori, F.; Kawano, Y. Extraction equilibria of organic acids with tri-n-octylphosphineoxide. J. Chem. Eng. Jpn. 1990, 6, 734–738. [Google Scholar] [CrossRef]
- Bressler, E.; Braun, S. Separation mechanisms of citric and itaconic acids by water-immiscible amines. J. Chem. Technol. Biot. 1999, 74, 891–896. [Google Scholar] [CrossRef]
- Kloetzer, L.; Poştaru, M.; Galaction, A.I.; Blaga, A.C.; Caşcaval, D. Comparative study on rosmarinic acid separation by reactive extraction with Amberlite LA-2 and D2EHPA. 1. Interfacial reaction mechanism and influencing factors. Ind. Eng. Chem. Res. 2013, 52, 13785–13794. [Google Scholar] [CrossRef]
- Matsumoto, M.; Otono, T.; Kondo, K. Synergistic extraction of organic acids with tri-n-octylamine and tri-n-butylphosphate. Sep. Purif. Technol. 2001, 24, 337–342. [Google Scholar] [CrossRef]
- Aşçi, Y.S.; Inci, I. A novel approach for itaconic acid extraction: Mixture of trioctylamine and tridodecylamine in different diluents. J. Ind. Eng. Chem. 2012, 18, 1705–1709. [Google Scholar] [CrossRef]
- Wasewar, K.L.; Shende, D.; Keshav, A. Reactive extraction of itaconic acid using quaternary amine Aliquat 336 in ethyl acetate, toluene, hexane, and kerosene. Ind. Eng. Chem. Res. 2011, 50, 1003–1011. [Google Scholar] [CrossRef]
- Wasewar, K.L.; Shende, D.; Keshav, A. Reactive extraction of itaconic acid using tri-n-butyl phosphate and aliquat 336 in sunflower oil as a non-toxic diluent. J. Chem. Technol. Biotechnol. 2011, 86, 319–323. [Google Scholar] [CrossRef]
- Datta, D.; Kumar, S.; Uslu, H. Status of the reactive extraction as a method of separation. J. Chem. 2015, 2015, 853789. [Google Scholar] [CrossRef]
- Uslu, H.; Datta, D. Experimental and theoretical investigations on the reactive extraction of itaconic (2-methylidenebutanedioic) acid using trioctylamine (N,N-dioctyloctan-1-amine). J. Chem. Eng. Data 2015, 60, 1426–1433. [Google Scholar] [CrossRef]
- Pal, S.; Shende, D.Z.; Anjum, S.; Rathore, A.K. Reactive extraction of itaconic acid using tri-n-butyl phosphate in 1-butanol, 1-octanol and 1-dodecanol. Int. J. Innov. Sci. Eng. Technol. 2016, 5, 1425–1433. [Google Scholar]
- Magalhães, A.I.; de Carvalho, J.C.; Medina, J.D.C.; Soccol, C.R. Downstream process development in biotechnological itaconic acid manufacturing. Appl. Microbiol. Biotechnol. 2017, 101, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rózsenberszki, T.; Komáromy, P.; Kőrösi, E.; Bakonyi, P.; Nemestóthy, N.; Bélafi-Bakó, K. Investigation of itaconic acid separation by operating a commercialized electrodialysis unit with bipolar membranes. Processes 2020, 8, 1031. [Google Scholar] [CrossRef]
- Blaga, A.C.; Ciobanu, C.; Cascaval, D.; Galaction, A.I. Enhancement of ergosterol production by Saccharomyces cerevisiae in batch and fed-batch fermentation processes using n-dodecane as oxygen-vector. Biochem. Eng. J. 2018, 131, 70–76. [Google Scholar] [CrossRef]
- Elnaghy, M.A.; Megalla, S.E. Itaconic-acid production by a local strain of Aspergillus terreus. Eur. J. Appl. Microbiol. 1975, 1, 159–172. [Google Scholar] [CrossRef]
- Kautola, H.; Rymowicz, W.; Linko, Y.Y.; Linko, P. Itaconic acid production by immobilized Aspergillus terreus with varied metal additions. Appl. Microbiol. Biot. 1991, 35, 154–158. [Google Scholar] [CrossRef]
- Kloetzer, L.; Tucaliuc, A.; Galaction, A.-I.; Caşcaval, D. Fractionation of dicarboxylic acids produced by Rhizopus oryzae using reactive extraction. Sci. Rep. 2022, 12, 2020. [Google Scholar] [CrossRef] [PubMed]
- Cordes, T.; Michelucci, A.; Hiller, K. Itaconic Acid: The surprising role of an industrial compound as a mammalian antimicrobial metabolite. Annu. Rev. Nutr. 2015, 35, 451–473. [Google Scholar] [CrossRef] [PubMed]
- Yahiro, K.; Takahama, T.; Park, Y.S.; Okabe, M. Breeding of Aspergillus terreus mutant TN-484 for itaconic acid production with high yield. J. Ferment. Bioeng. 1995, 79, 506–508. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, J.; Liu, L. Relationship between morphology and itaconic acid production by Aspergillus terreus. J. Microbiol. Biotechnol. 2014, 24, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Komáromy, P.; Bakonyi, P.; Kucska, A.; Tóth, G.; Gubicza, L.; Bélafi-Bakó, K.; Nemestóthy, N. Optimized pH and its control strategy lead to enhanced itaconic acid fermentation by Aspergillus terreus on glucose substrate. Fermentation 2019, 5, 31. [Google Scholar] [CrossRef]
- Kuenz, A.; Gallenmüller, Y.; Willke, T.; Vorlop, K.D. Microbial production of itaconic acid: Developing a stable platform for high product concentrations. Appl. Microbiol. Biotechnol. 2012, 9, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Rychtera, M.; Wase, D.J. The growth of Aspergillus terreus and the production of itaconic acid in batch and continuous cultures. The influence of pH. J. Chem. Technol. Biotechnol. 1981, 31, 509–521. [Google Scholar] [CrossRef]
- Park, Y.S.; Ohta, N.; Okabe, M. Effect of dissolved oxygen concentration and impeller tip speed on itaconic acid production by Aspergillus terreus. Biotechnol. Lett. 1993, 15, 583–586. [Google Scholar] [CrossRef]
- Molnár, Á.P.; Németh, Z.; Kolláth, I.S.; Fekete, E.; Flipphi, M.; Ág, N.; Soós, Á.; Kovács, B.; Sándor, E.; Kubicek, C.P.; et al. High oxygen tension increases itaconic acid accumulation, glucose consumption, and the expression and activity of alternative oxidase in Aspergillus terreus. Appl. Microbiol. Biotechnol. 2018, 102, 8799–8808. [Google Scholar] [CrossRef] [PubMed]
- Nolte, L.; Brandenbusch, C. Monitoring and investigating reactive extraction of dicarboxylic acids using online FTIR—Part II: Reaction equilibria, reaction kinetics and competition within the complex formation between itaconic acid and several amine extractants. J. Mol. Liq. 2022, 366, 120223. [Google Scholar] [CrossRef]
- Kyuchoukov, G.; Morales, A.F.; Albet, J.; Malmary, G.; Molinier, J. On the possibility of predicting the extraction of dicarboxylic acids with tributylphosphate dissolved in a diluent. J. Chem. Eng. Data 2008, 53, 639–647. [Google Scholar] [CrossRef]
- Kreyenschulte, D.; Heyman, B.; Eggert, A.; Maßmann, T.; Kalvelage, C.; Kossack, R.; Regestein, L.; Jupke, A.; Büchs, J. In situ reactive extraction of itaconic acid during fermentation of Aspergillus terreus. Biochem. Eng. J. 2018, 135, 133–141. [Google Scholar] [CrossRef]
- Krull, S.; Hevekerl, A.; Kuenz, A.; Prüße, U. Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers. Appl. Microbiol. Biotechnol. 2017, 101, 4063–4072. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaga, A.C.; Kloetzer, L.; Cascaval, D.; Galaction, A.-I.; Tucaliuc, A. Studies on Reactive Extraction of Itaconic Acid from Fermentation Broths. Processes 2024, 12, 725. https://doi.org/10.3390/pr12040725
Blaga AC, Kloetzer L, Cascaval D, Galaction A-I, Tucaliuc A. Studies on Reactive Extraction of Itaconic Acid from Fermentation Broths. Processes. 2024; 12(4):725. https://doi.org/10.3390/pr12040725
Chicago/Turabian StyleBlaga, Alexandra Cristina, Lenuta Kloetzer, Dan Cascaval, Anca-Irina Galaction, and Alexandra Tucaliuc. 2024. "Studies on Reactive Extraction of Itaconic Acid from Fermentation Broths" Processes 12, no. 4: 725. https://doi.org/10.3390/pr12040725
APA StyleBlaga, A. C., Kloetzer, L., Cascaval, D., Galaction, A.-I., & Tucaliuc, A. (2024). Studies on Reactive Extraction of Itaconic Acid from Fermentation Broths. Processes, 12(4), 725. https://doi.org/10.3390/pr12040725