Impact of Using n-Octanol/Diesel Blends on the Performance and Emissions of a Direct-Injection Diesel Engine
Abstract
:1. Introduction
2. Experimental Setup
2.1. Research Engine and Equipment
2.2. Unit Conversion for Exhaust Gases
2.3. Tested Fuels
2.4. Test Conditions and Procedure
3. Results and Discussion
3.1. Variable-Speed Tests at Full Load
3.1.1. Brake Torque
3.1.2. Brake Power
3.1.3. Brake Thermal Efficiency
3.1.4. Brake Specific Fuel Consumption
3.2. Fixed-Speed Tests at Part Load
3.2.1. Brake Thermal Efficiency
3.2.2. Brake-Specific Fuel Consumption
3.2.3. NOx Emissions
3.2.4. CO Emission
3.2.5. HC Emissions
3.2.6. Smoke Emissions
3.2.7. PM-NOx Trade-Off
3.3. Economic and Environmental Evaluation
3.3.1. Economic Considerations
3.3.2. Environmental Impact and Sustainability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silverman, D.T.; Samanic, C.M.; Lubin, J.H.; Blair, A.E.; Stewart, P.A.; Vermeulen, R.; Coble, J.B.; Rothman, N.; Schleiff, P.L.; Travis, W.D.; et al. The diesel exhaust in miners study: A nested case–control study of lung cancer and diesel exhaust. J. Natl. Cancer. Inst. 2012, 104, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Grahame, T.J.; Schlesinger, R.B. Cardiovascular health and particulate vehicular emissions: A critical evaluation of the evidence. Air. Qual. Atmos. Health 2010, 3, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, L.; Al-Thukair, A.A. Environmental Assessments in the Oil and Gas Industry. Water Air Soil Pollut. Focus 2009, 9, 99–105. [Google Scholar] [CrossRef]
- EU: Heavy-Duty Truck and Bus Engines. Available online: https://dieselnet.com/standards/eu/hd.php (accessed on 28 May 2024).
- Regulation (EU) 2024/1257 of the European Parliament and of the Council of 24 April 2024 on Type-Approval of Motor Vehicles and Engines and of Systems, Components and Separate Technical Units Intended for Such Vehicles, with Respect to Their Emissions and Battery Durability (Euro 7), Amending Regulation (EU) 2018/858 and Repealing Regulations (EC) No 715/2007 and (EC) No 595/2009, Commission Regulation (EU) No 582/2011, Commission Regulation (EU) 2017/1151, Commission Regulation (EU) 2017/2400 and Commission Implementing Regulation (EU) 2022/1362. Official Journal of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401257 (accessed on 28 May 2024).
- Singh, A.P.; Agarwal, A.K. Low-temperature combustion: An advanced technology for internal combustion engines. In Advances in Internal Combustion Engine Research; Srivastava, D.K., Agarwal, A.K., Datta, A., Maurya, R.K., Eds.; Springer: Singapore, 2018; pp. 9–41. [Google Scholar]
- Ayodhya, A.S.; Narayanappa, K.G. An overview of after-treatment systems for diesel engines. Environ. Sci. Pollut. Res. 2018, 25, 35034–35047. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zheng, Z.; Wang, H.; Wang, X.; Sun, H.; Li, J.; Yao, M. Thermal Efficiency Enhancement of a Turbocharged Diesel Engine Dedicated for Hybrid Commercial Vehicle Application; SAE Technical Paper, No. 2022-01-7053; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Li, J.; Ge, Y.; Wang, H.; Yu, C.; Yan, X.; Hao, L.; Tan, J. Effects of different diesel particulate filter on emission characteristics of in-use diesel vehicles. Energy Sources Part A-Recovery Util. Environ. Eff. 2019, 41, 2989–3000. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Cheung, C.S.; Chan, T.L.; Yao, C.D. Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst. Sci. Total Environ. 2009, 407, 4497–4505. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Jo, S.; Kwon, S.; Lee, J.T.; Park, S. NOX emission analysis according to after-treatment devices (SCR, LNT+ SCR, SDPF), and control strategies in Euro-6 light-duty diesel vehicles. Fuel 2022, 310, 122297. [Google Scholar] [CrossRef]
- Wu, G.; Feng, G.; Li, Y.; Ling, T.; Peng, X.; Su, Z.; Zhao, X. A Review of Thermal Energy Management of Diesel Exhaust after-Treatment Systems Technology and Efficiency Enhancement Approaches. Energies 2024, 17, 584. [Google Scholar] [CrossRef]
- Farag, M.; Kosaka, H.; Bady, M.; Abdel-Rahman, A.K. Effects of intake and exhaust manifold water injection on combustion and emission characteristics of a DI diesel engine. J. Therm. Sci. Tech.-Jpn. 2017, 12, JTST0014. [Google Scholar] [CrossRef]
- Al Cheikh Mohamad Ahmad, M.; Keskin, A.; Özarslan, H.; Keskin, Z. Properties of ethyl alcohol-water mixtures as a reductant in a SCR system at low exhaust gas temperatures. Energy Sources Part A-Recovery Util. Environ. Eff. 2020, 42, 1–12. [Google Scholar] [CrossRef]
- Herreros, J.M.; George, P.; Umar, M.; Tsolakis, A. Enhancing selective catalytic reduction of NOx with alternative reactants/promoters. Chem. Eng. J. 2014, 252, 47–54. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, J.O.; Kim, K.T.; Song, Y.H.; Kim, E.; Han, H.S. Hydrogen in plasma-assisted hydrocarbon selective catalytic reduction. Int. J. Hydrogen Energy 2012, 37, 3225–3233. [Google Scholar] [CrossRef]
- Xue, J.; Grift, T.E.; Hansen, A.C. Effect of biodiesel on engine performances and emissions. Renew. Sustain. Energy Rev. 2011, 15, 1098–1116. [Google Scholar] [CrossRef]
- Ghazali, W.N.M.W.; Mamat, R.; Masjuki, H.H.; Najafi, G. Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Renew. Sustain. Energy Rev. 2015, 51, 585–602. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, C.S. Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel. Energy Convers. Manag. 2014, 86, 848–863. [Google Scholar] [CrossRef]
- Hänggi, S.; Elbert, P.; Bütler, T.; Cabalzar, U.; Teske, S.; Bach, C.; Onder, C. A review of synthetic fuels for passenger vehicles. Energy Rep. 2019, 5, 555–569. [Google Scholar] [CrossRef]
- Verma, S.; Suman, A.; Das, L.M.; Kaushik, S.C.; Tyagi, S.K. A renewable pathway towards increased utilization of hydrogen in diesel engines. Int. J. Hydrogen Energy 2020, 45, 5577–5587. [Google Scholar] [CrossRef]
- Karagöz, Y.; Sandalcı, T.; Yüksek, L.; Dalkılıç, A.S.; Wongwises, S. Effect of hydrogen–diesel dual-fuel usage on performance, emissions and diesel combustion in diesel engines. Adv. Mech. Eng. 2016, 8, 1687814016664458. [Google Scholar] [CrossRef]
- Iodice, P.; Cardone, M. Ethanol/gasoline blends as alternative fuel in last generation spark-ignition engines: A review on CO and HC engine out emissions. Energies 2021, 14, 4034. [Google Scholar] [CrossRef]
- Speth, R.L.; Chow, E.W.; Malina, R.; Barrett, S.R.; Heywood, J.B.; Green, W.H. Economic and environmental benefits of higher-octane gasoline. Environ. Sci. Technol. 2014, 48, 6561–6568. [Google Scholar] [CrossRef]
- French, R.; Malone, P. Phase equilibria of ethanol fuel blends. Fluid Phase Equilib. 2005, 228, 27–40. [Google Scholar] [CrossRef]
- Amine, M.; Awad, E.N.; Ibrahim, V.; Barakat, Y. Effect of ethyl acetate addition on phase stability, octane number and volatility criteria of ethanol-gasoline blends. Egypt. J. Pet. 2018, 27, 567–572. [Google Scholar] [CrossRef]
- Tephly, T.R. The toxicity of methanol. Life Sci. 1991, 48, 1031–1041. [Google Scholar] [CrossRef]
- Moriarty, K. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2013. [Google Scholar]
- Jamrozik, A.; Tutak, W.; Grab-Rogaliński, K. Combustion stability, performance and emission characteristics of a CI engine fueled with diesel/n-butanol blends. Energies 2021, 14, 2817. [Google Scholar] [CrossRef]
- D’andrea, T.; Henshaw, P.F.; Ting, D.K. The addition of hydrogen to a gasoline-fuelled SI engine. Int. J. Hydrogen Energy 2004, 29, 1541–1552. [Google Scholar] [CrossRef]
- Du, Y.; Yu, X.; Liu, L.; Li, R.; Zuo, X.; Sun, Y. Effect of addition of hydrogen and exhaust gas recirculation on characteristics of hydrogen gasoline engine. Int. J. Hydrogen Energy 2017, 42, 8288–8298. [Google Scholar] [CrossRef]
- Shamsul, N.S.; Kamarudin, S.K.; Rahman, N.A.; Kofli, N.T. An overview on the production of bio-methanol as potential renewable energy. Renew. Sustain. Energy Rev. 2014, 33, 578–588. [Google Scholar] [CrossRef]
- Mielenz, J.R. Ethanol production from biomass: Technology and commercialization status. Curr. Opin. Microbiol. 2001, 4, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, Y.; Saka, S. Chemical conversion of cellulose as treated in supercritical methanol. Cellulose 2001, 8, 189–195. [Google Scholar] [CrossRef]
- Güllü, D.; Demirbaş, A. Biomass to methanol via pyrolysis process. Energy Convers. Manag. 2001, 42, 1349–1356. [Google Scholar] [CrossRef]
- Jones, C. Advanced Development of Rotary Stratified Charge 750 and 1500 HP Military Multi-Fuel Engines at Curtiss-Wright; SAE Technical Paper, No. 840460; SAE International: Warrendale, USA, 1984. [Google Scholar]
- Singh, R.; McChesney, R. Development of Multi-Fuel Spark Ignition Engine; SAE Technical Paper, No. 2004-32-0038; SAE International: Warrendale, USA, 2004. [Google Scholar]
- Yilmaz, N.; Vigil, F.M.; Atmanli, A.; Donaldson, B. Detailed analysis of PAH formation, toxicity and regulated pollutants in a diesel engine running on diesel blends with n-propanol, n-butanol and n-pentanol. Energies 2022, 15, 6487. [Google Scholar] [CrossRef]
- Wyman, C.E. Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annu. Rev. Energy Environ. 1999, 24, 189–226. [Google Scholar] [CrossRef]
- Lapuerta, M.; García-Contreras, R.; Campos-Fernández, J.; Dorado, M.P. Stability, lubricity, viscosity, and cold-flow properties of alcohol− diesel blends. Energy Fuels 2010, 24, 4497–4502. [Google Scholar] [CrossRef]
- Yilmaz, N.; Ileri, E.; Atmanli, A. Performance of biodiesel/higher alcohols blends in a diesel engine. Int. J. Energy Res. 2016, 40, 1134–1143. [Google Scholar] [CrossRef]
- Algayyim, S.J.M.; Wandel, A.P.; Yusaf, T.; Hamawand, I. The impact of n-butanol and iso-butanol as components of butanol-acetone (BA) mixture-diesel blend on spray, combustion characteristics, engine performance and emission in direct injection diesel engine. Energy 2017, 140, 1074–1086. [Google Scholar] [CrossRef]
- Heufer, K.A.; Sarathy, S.M.; Curran, H.J.; Davis, A.C.; Westbrook, C.K.; Pitz, W.J. Detailed kinetic modeling study of n-pentanol oxidation. Energy Fuels 2012, 26, 6678–6685. [Google Scholar] [CrossRef]
- Devarajan, Y.; Munuswamy, D.B.; Nagappan, B.; Pandian, A.K. Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine. Heat Mass Transf. 2018, 54, 1803–1811. [Google Scholar] [CrossRef]
- Kumar, B.R.; Saravanan, S.; Rana, D.; Anish, V.; Nagendran, A. Effect of a sustainable biofuel–n-octanol–on the combustion, performance and emissions of a DI diesel engine under naturally aspirated and exhaust gas recirculation (EGR) modes. Energy Convers. Manag. 2016, 118, 275–286. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Wang, Z.; Liu, H. Combustion and emissions of compression ignition in a direct injection diesel engine fueled with pentanol. Energy 2015, 80, 575–581. [Google Scholar] [CrossRef]
- Sidharth; Kumar, N. Performance and emission studies of ternary fuel blends of diesel, biodiesel and octanol. Energy Sources Part A-Recovery Util. Environ. Eff. 2020, 42, 2277–2296. [Google Scholar]
- Gautam, M.; Martin, D.W. Combustion characteristics of higher-alcohol/gasoline blends. Proc. Instn. Mech. Engrs. Part A 2000, 214, 497–511. [Google Scholar] [CrossRef]
- Yesilyurt, M.K. A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol. Fuel 2020, 275, 117893. [Google Scholar] [CrossRef]
- Gautam, M.; Martin, D.W.; Carder, D. Emissions characteristics of higher alcohol/gasoline blends. Proc. Instn. Mech. Engrs. Part A 2000, 214, 165–182. [Google Scholar] [CrossRef]
- Kumar, B.R.; Saravanan, S. Use of higher alcohol biofuels in diesel engines: A review. Renew. Sustain. Energy Rev. 2016, 60, 84–115. [Google Scholar] [CrossRef]
- Milojević, S.; Savić, S.; Marić, D.; Stopka, O.; Krstić, B.; Stojanović, B. Correlation between emission and combustion characteristics with the compression ratio and fuel injection timing in tribologically optimized diesel engine. Teh. Vjesn. 2022, 29, 1210–1219. [Google Scholar]
- Milojević, S.; Glišović, J.; Savić, S.; Bošković, G.; Bukvić, M.; Stojanović, B. Particulate Matter Emission and Air Pollution Reduction by Applying Variable Systems in Tribologically Optimized Diesel Engines for Vehicles in Road Traffic. Atmosphere 2024, 15, 184. [Google Scholar] [CrossRef]
- Li, J.; Liang, Y.; Wang, S.; Wu, S.; Yang, W.; Liu, R. Blending n-octanol with biodiesel for more efficient and cleaner combustion in diesel engines: A modeling study. J. Clean. Prod. 2023, 403, 136877. [Google Scholar] [CrossRef]
- De Poures, M.V.; AP, S.; Rana, D.; Babu, R.K.; Subramani, S.; Sethuramasamyraja, B. Using renewable n-octanol in a non-road diesel engine with some modifications. Energy Sources Part A-Recovery Util. Environ. Eff. 2019, 41, 1194–1208. [Google Scholar] [CrossRef]
- Pilusa, T.J.; Mollagee, M.M.; Muzenda, E. Reduction of vehicle exhaust emissions from diesel engines using the whale concept filter. Aerosol Air Qual. Res. 2012, 12, 994–1006. [Google Scholar] [CrossRef]
- Homan, H.S. Conversion Factors among Smoke Measurements; SAE transactions; SAE International: Warrendale, PA, USA, 1985; pp. 533–547. [Google Scholar]
- Nour, M.; Attia, A.M.; Nada, S.A. Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends. Energy Convers. Manag. 2019, 185, 313–329. [Google Scholar] [CrossRef]
- Chen, C.; Yao, A.; Yao, C.; Wang, B.; Lu, H.; Feng, J.; Feng, L. Study of the characteristics of PM and the correlation of soot and smoke opacity on the diesel methanol dual fuel engine. Appl. Therm. Eng. 2019, 148, 391–403. [Google Scholar] [CrossRef]
- Gopal, K.; Sathiyagnanam, A.P.; Kumar, B.R.; Saravanan, S.; Rana, D.; Sethuramasamyraja, B. Prediction of emissions and performance of a diesel engine fueled with n-octanol/diesel blends using response surface methodology. J. Clean. Prod. 2018, 184, 423–439. [Google Scholar] [CrossRef]
- Clean Cities and Communities. Alternative Fuel Price Report April 2024; U.S. Department of Energy: Washington, DC, USA. Available online: https://afdc.energy.gov/fuels/prices.html (accessed on 28 May 2024).
- Avantor. Available online: https://us.vwr.com/store/catalog/product.jsp?product_id=39031710 (accessed on 28 May 2024).
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Karishma, S.; Vo, D.V.N. Recent advances and sustainable development of biofuels production from lignocellulosic biomass. Bioresour. Technol. 2022, 344, 126203. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Jiang, J.; Hse, C.Y.; Yang, Z.; Wang, K.; Ye, J.; Xu, J. Selective catalytic conversion of waste lignocellulosic biomass for renewable value-added chemicals via directional microwave-assisted liquefaction. Sustain. Energy Fuels 2018, 2, 1035–1047. [Google Scholar] [CrossRef]
- Julis, J.; Leitner, W. Synthesis of 1-octanol and 1, 1-dioctyl ether from biomass-derived platform chemicals. Angew. Chem. Int. Ed. 2012, 51, 8615–8619. [Google Scholar] [CrossRef]
- Phoon, L.Y.; Mustaffa, A.A.; Hashim, H.; Mat, R.; Manan, Z.A.; Yunus, N.A. Performance and emission characteristics of green diesel blends containing diethyl-succinate and 1-octanol. J. Clean. Prod. 2017, 161, 1192–1202. [Google Scholar] [CrossRef]
Stage | Date | CO | HC | NOx | PM | Smoke |
---|---|---|---|---|---|---|
g/kWh | 1/m | |||||
Euro I | 1992, ≤ 85 kW | 4.5 | 1.1 | 8.0 | 0.612 | |
1992, > 85 kW | 4.5 | 1.1 | 8.0 | 0.36 | ||
Euro II | 1996. 10 | 4.0 | 1.1 | 7.0 | 0.25 | |
1998. 10 | 4.0 | 1.1 | 7.0 | 0.15 | ||
Euro III | 1999. 10 (EEV only) | 1.5 | 0.25 | 2.0 | 0.02 | 0.15 |
2000. 10 | 2.1 | 0.66 | 5.0 | 0.10 | 0.8 | |
Euro IV | 2005. 10 | 1.5 | 0.46 | 3.5 | 0.02 | 0.5 |
Euro V | 2008. 10 | 1.5 | 0.46 | 2.0 | 0.02 | 0.5 |
Euro VI | 2013. 01 | 1.5 | 0.13 | 0.40 | 0.01 | |
Euro VII | 2028. 05 | 1.5 | 0.08 | 0.20 | 0.008 |
Parameter | Specifications |
---|---|
Model | MITSUKI MIT-178F |
Number of cylinders | 1 |
Ignition | Compression ignition |
Injection type | Direct injection |
Injector nozzle | Hole type |
Cooling system | Air-cooled |
Rated power | 5.22 kW @ 3000 rpm |
Swept volume | 298.6 cm3 |
Bore | 78 mm |
Stroke | 62.5 mm |
Compression ratio | 21 |
Lubrication oil | SAE 5W-30 API CF |
Emissions | Range | Accuracy | Resolution |
---|---|---|---|
NOx | 0–5000 ppm | ± 15 ppm | 1 ppm |
CO | 0–10% | ± 0.02% | 0.01% |
HC | 0–9999 ppm | ± 20 ppm | 1 ppm |
Smoke | 0–100% | ± 1% | 0.1% |
Properties | Diesel | n-Octanol |
---|---|---|
Lower heating value (MJ/kg) | 42.9 | 37.6 |
Latent heat of vaporization (MJ/kg) | 0.27 | 0.55 |
Cetane number | > 52 | 37 |
Self-ignition temperature (°C) | 260 | 253 |
Density (kg/m3) | 840 | 820 |
Kinematic viscosity at 20 °C (mm2/s) | 3.4 | 10.2 |
Oxygen (wt %) | 0 | 12.3 |
Stoichiometric air–fuel ratio (AFR) | 14.9 | 12.7 |
BMEP | AFRD100 | AFRD90O10 | AFRD70O30 | AFRD50O50 |
---|---|---|---|---|
0.247 | 23.0 | 21.6 | 21.4 | 21.6 |
0.330 | 20.3 | 19.4 | 19.0 | 19.6 |
0.412 | 17.2 | 16.3 | 15.8 | 15.9 |
0.494 | 14.5 | 13.7 | 13.6 | 13.8 |
Fuel Type | Price (USD) | Units of Measurement |
---|---|---|
Gasoline | 3.65 | per gallon |
Diesel | 4.07 | per gallon |
CNG | 2.90 | per gasoline gallon equivalent (GGE) |
LNG | 3.85 | per diesel gallon equivalent (DGE) |
Ethanol (E85) | 2.96 | per gallon |
Propane | 3.45 | per gallon |
Biodiesel (B20) | 3.94 | per gallon |
N-octanol | 111.4 | per gallon |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.; Jang, K.; Yang, J.; Kim, B.; Kwon, J. Impact of Using n-Octanol/Diesel Blends on the Performance and Emissions of a Direct-Injection Diesel Engine. Energies 2024, 17, 2691. https://doi.org/10.3390/en17112691
Ahn J, Jang K, Yang J, Kim B, Kwon J. Impact of Using n-Octanol/Diesel Blends on the Performance and Emissions of a Direct-Injection Diesel Engine. Energies. 2024; 17(11):2691. https://doi.org/10.3390/en17112691
Chicago/Turabian StyleAhn, Jongkap, Kwonwoo Jang, Jeonghyeon Yang, Beomsoo Kim, and Jaesung Kwon. 2024. "Impact of Using n-Octanol/Diesel Blends on the Performance and Emissions of a Direct-Injection Diesel Engine" Energies 17, no. 11: 2691. https://doi.org/10.3390/en17112691
APA StyleAhn, J., Jang, K., Yang, J., Kim, B., & Kwon, J. (2024). Impact of Using n-Octanol/Diesel Blends on the Performance and Emissions of a Direct-Injection Diesel Engine. Energies, 17(11), 2691. https://doi.org/10.3390/en17112691