Physicochemical Properties of Jet-A/n-Heptane/Alcohol Blends for Turboengine Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Mixtures
2.3. Apparatus and Procedure
2.4. Regression Equations
- Regression with composition
- Regression with temperature
2.5. Correlations Between Properties
- Density correlations with refractive index
- Viscosity correlations with refractive index
2.6. Evaluation of Equations
3. Results and Discussion
3.1. Physical–Chemical Properties
Properties | Units | Test Method | ASTM D1655 Limits | Jet-A | |
---|---|---|---|---|---|
Min. | Max. | ||||
Flash point | °C | ASTM D92 [29] | 38 | - | 34.6 |
Density at 288.15 K | kg·m−3 | ASTM D7042 [28] | 775 | 840 | 788.7 |
Sulfur, mercaptan | % (m/m) | ASTM D3227-23 [32] | - | 0.0030 | ˂0.0003 |
Sulfur, total | % (m/m) | ASTM D2622-21 [33] | - | 0.30 | 0.0003 |
Lower heating value | MJ/kg | ASTM D3338 [34] | 42.8 | - | 43.337 |
Copper corrosion | - | ASTM D130-19 [35] | Class 1 | 1b | |
Distillation temperature | ASTM D86-23 [36] | ||||
Initial boiling point | °C | - | - | 149.9 | |
10% recovered | °C | - | 205 | 165.9 | |
50% recovered | °C | - | - | 187.8 | |
90% recovered | °C | - | - | 220.5 | |
Final boiling point | °C | - | 300 | 239.5 | |
Distillation residue | % (m/m) | ASTM D86-23 [36] | - | 1.5 | 1.3 |
Sample | Temperature/K | ||||||||
---|---|---|---|---|---|---|---|---|---|
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
Ke | 0.8050 | 0.8012 | 0.7972 | 0.7939 | 0.7908 | 0.7865 | 0.7822 | 0.7785 | 0.7747 |
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
PR10 | 0.8075 | 0.8036 | 0.7997 | 0.7958 | 0.7919 | 0.7880 | 0.7841 | 0.7801 | 0.7761 |
PR20 | 0.8093 | 0.8053 | 0.8014 | 0.7975 | 0.7935 | 0.7895 | 0.7857 | 0.7816 | 0.7776 |
PR30 | 0.8114 | 0.8073 | 0.8034 | 0.7994 | 0.7954 | 0.7913 | 0.7873 | 0.7832 | 0.7794 |
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
BU10 | 0.8083 | 0.8044 | 0.8006 | 0.7967 | 0.7928 | 0.7889 | 0.7852 | 0.7812 | 0.7773 |
BU20 | 0.8105 | 0.8067 | 0.8028 | 0.7989 | 0.7950 | 0.7911 | 0.7872 | 0.7832 | 0.7792 |
BU30 | 0.8128 | 0.8092 | 0.8053 | 0.8013 | 0.7974 | 0.7934 | 0.7895 | 0.7854 | 0.7814 |
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
PE10 | 0.8091 | 0.8052 | 0.8014 | 0.7977 | 0.7938 | 0.7899 | 0.7861 | 0.7822 | 0.7783 |
PE20 | 0.8117 | 0.8079 | 0.8042 | 0.8004 | 0.7965 | 0.7927 | 0.7886 | 0.7849 | 0.7808 |
PE30 | 0.8146 | 0.8108 | 0.8070 | 0.8033 | 0.7993 | 0.7955 | 0.7914 | 0.7877 | 0.7835 |
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
HE10 | 0.8097 | 0.8057 | 0.802 | 0.7982 | 0.7943 | 0.7904 | 0.7866 | 0.7827 | 0.7788 |
HE20 | 0.8125 | 0.8086 | 0.8049 | 0.8012 | 0.7972 | 0.7934 | 0.7895 | 0.7857 | 0.7818 |
HE30 | 0.8157 | 0.8118 | 0.808 | 0.8045 | 0.8005 | 0.7967 | 0.7928 | 0.7891 | 0.7850 |
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
HP10 | 0.8103 | 0.8064 | 0.8026 | 0.7987 | 0.795 | 0.791 | 0.7872 | 0.7832 | 0.7794 |
HP20 | 0.8134 | 0.8095 | 0.8057 | 0.8020 | 0.7981 | 0.7942 | 0.7904 | 0.7864 | 0.7827 |
HP30 | 0.8171 | 0.8131 | 0.8093 | 0.8058 | 0.8019 | 0.798 | 0.7943 | 0.7904 | 0.7865 |
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
OC10 | 0.8115 | 0.8077 | 0.8039 | 0.8001 | 0.7963 | 0.7925 | 0.7886 | 0.7848 | 0.7810 |
OC20 | 0.8147 | 0.8109 | 0.8072 | 0.8034 | 0.7997 | 0.7960 | 0.7919 | 0.7882 | 0.7843 |
OC30 | 0.8187 | 0.8149 | 0.8112 | 0.8075 | 0.8038 | 0.8000 | 0.7962 | 0.7924 | 0.7886 |
3.2. Regression Equations
- Regression with composition
- Regression with temperature
3.3. Correlations Between Properties
- Density Correlations with refractive index
- Viscosity Correlations with refractive index
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peeters, P.M.; Eijgelaar, E. Tourism’s climate mitigation dilemma: Flying between rich and poor countries. Tour. Manag. 2014, 40, 15–26. [Google Scholar] [CrossRef]
- Luning Prak, D.J.; Hope Jones, M.; Trulove, P.; Dickerson, T.; Jim, S. Cowart Physical and Chemical Analysis of Alcohol-to-Jet (ATJ) Fuel and Development of Surrogate Fuel Mixtures. Energy Fuels 2015, 29, 3760–3769. [Google Scholar] [CrossRef]
- Landera, A.; Bambha, R.P.; Hao, N.; Puneet, D.S.; Moore, C.M.; Sutton, A.D.; George, A. Building Structure-Property Relationships of Cycloalkanes in Support of Their Use in Sustainable Aviation Fuels. Front. Energy Res. 2022, 9, 771697. [Google Scholar] [CrossRef]
- Yao, G.; Staples, M.D.; Malina, R.; Wallace Tyner, E. Stochastic techno-economic analysis of alcohol-to-jet fuel production. Biotechnol. Biofuels 2017, 10, 17. [Google Scholar] [CrossRef]
- Pires, A.; Han, Y.; Kramlich, J.; Garcia-Perez, M. Chemical Composition and Fuel Properties of alternative Jet Fuels. BioResources 2018, 13, 2632–2657. [Google Scholar] [CrossRef]
- Cican, G.; Deaconu, M.; Mirea, R.; Ceatra, L.; Cretu, M.; Dobre, T. Investigating the Use of Recycled Pork Fat-Based Biodiesel in Aviation Turbo Engines. Processes 2020, 8, 1196. [Google Scholar] [CrossRef]
- Mirea, R.; Cican, G. Lab Scale Investigation of Gaseous Emissions, Performance and Stability of an Aviation Turbo-Engine While Running on Biodiesel Based Sustainable Aviation Fuel. Inventions 2024, 9, 16. [Google Scholar] [CrossRef]
- Cican, G.; Crunteanu, D.E.; Mirea, R.; Ceatra, L.C.; Leventiu, C. Biodiesel from Recycled Sunflower and Palm Oil—A Sustainable Fuel for Microturbo-Engines Used in Airside Applications. Sustainability 2023, 15, 2079. [Google Scholar] [CrossRef]
- Yilmaz, N.; Atmanli, A. Sustainable alternative fuels in aviation. Energy 2017, 140, 1378–1386. [Google Scholar] [CrossRef]
- Graver, B.; Zheng, X.S.; Daniel, R.; Mukhopadhaya, J.; Pronk, E. Vision 2050 Aligning Aviation with the Paris Agreement; International Council on Clean Transportation: Washington, DC, USA, 2022. [Google Scholar]
- Yaşar, F. Investigation of the Effects of Alcohol and Anti-Icing Additives on the Properties of Jet Fuel. J. Turk. Chem. Soc. Sect. A Chem. 2024, 11, 945–958. [Google Scholar] [CrossRef]
- Prussi, M.; O’Connell, A.; Lonza, L. Analysis of current aviation biofuel technical production potential in EU28. Biomass Bioenergy 2019, 130, 105371. [Google Scholar] [CrossRef]
- Mohsin, R.; Kumar, T.; Majid, Z.A.; Kumar, I.; Wash, M.A. Assessment of Usage of Biofuel in Aviation Industry in Malaysia. Chem. Eng. Trans. 2017, 56, 277–282. [Google Scholar] [CrossRef]
- Cabrera, E.; Melo de Sousa, J.M. Use of Sustainable Fuels in Aviation—A Review. Energies 2022, 15, 2440. [Google Scholar] [CrossRef]
- Yilmaz, N.; Atmanli, A. Investigation of Alternative Fuel Utilization in Aviation. J. Sustain. Aviat. Res. 2016, 1, 3–10. [Google Scholar]
- Prak, D.L.; Cowart, J. Physical properties and diesel engine combustion of blends of alcohols with military jet fuel JP-5. Fuel 2024, 371, 132070. [Google Scholar] [CrossRef]
- Cican, G.; Mirea, R. An Experimental Insight into the Use of N-Butanol as a Sustainable Aviation Fuel. Fire 2024, 7, 313. [Google Scholar] [CrossRef]
- Cican, G.; Deaconu, M.; Mirea, R.; Cucuruz, A.T. Influence of Bioethanol Blends on Performances of a Micro Turbojet Engine. Rev. Chim. 2020, 71, 229–238. [Google Scholar] [CrossRef]
- Cican, G.; Mirea, R.; Rimbu, G. Experimental Evaluation of Methanol/Jet-A Blends as Sustainable Aviation Fuels for Turbo-Engines: Performance and Environmental Impact Analysis. Fire 2024, 7, 155. [Google Scholar] [CrossRef]
- Vishwanath, R.B.; Carniglia, P.A.; Weber, J.K.; Gülder, Ö.L. Effects of n-pentanol blending on soot formation in swirl-stabilized turbulent spray flames of Jet A-1 in a laboratory gas turbine combustor. Fuel 2024, 357, 129971. [Google Scholar] [CrossRef]
- Suchocki, T.; Kazimierski, P.; Lampart, P.; Januszewicz, K.; Białecki, T.; Gawron, B.; Janicka, A. A comparative study of pentanol (C5 alcohol) and kerosene blends in terms of gas turbine engine performance and exhaust gas emission. Fuel 2023, 334, 126741. [Google Scholar] [CrossRef]
- Yea, C.; Pei, X.; Liu, J.C. Measurement and Modeling of Density and Viscosity of n-Octanol–Kerosene–Phosphoric Acid Solutions in a Temperature Range 293.15–333.15 K. Russ. J. Phys. Chem. A 2016, 90, 2397–2401. [Google Scholar] [CrossRef]
- Link, F.; Klerk, A. Viscosity and Density of Narrow Distillation Cuts from Refined Petroleum- and Synthetic-Derived Distillates in the −60 to +60 °C Range. Energy Fuels 2022, 36, 12563–12579. [Google Scholar] [CrossRef]
- Yang, J.; Xin, Z.; He, Q.S.; Corscadden, K.; Niu, H. An overview on performance characteristics of bio-jet fuels. Fuel 2019, 237, 916–936. [Google Scholar] [CrossRef]
- Raji, A.M.; Manescau, B.; Chetehouna, K.; Ango, S.E.; Ogabi, R. Performance and spray characteristics of fossil JET A-1 and bioJET fuel: A comprehensive review. Renew. Sustain. Energy Rev. 2025, 207, 114970. [Google Scholar] [CrossRef]
- Yesilyurt, M.K. A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol. Fuel 2020, 275, 117893. [Google Scholar] [CrossRef]
- Cano-Gómez, J.J.; Iglesias-Silva, G.A.; Rivas, P.; Díaz-Ovalle, C.O.; Cerino-Córdova, F.D.J. Densities and viscosities for binary liquid mixtures of biodiesel + 1–butanol, + isobutyl alcohol, or + 2–butanol from 293.15 to 333.15 K at 0.1 MPa. J. Chem. Eng. Data 2017, 62, 3391–3400. [Google Scholar] [CrossRef]
- ASTM-D7042; Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- ASTM D92-05a; Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2009.
- ASTM D1218-12; Standard Test Method for Refractive Index and Refractive Dispersion of Hydrocarbon Liquids. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2012.
- ASTM D1655-22a; Standard Specification for Aviation Turbine Fuels. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- ASTM D3227-23; Standard Test Method for (Thiol Mercaptan) Sulfur in Gasoline, Kerosine, Aviation Turbine, and Distillate Fuels (Potentiometric Method). ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2023.
- ASTM D2622-21; Standard Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-Ray Fluorescence Spectrometry. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- ASTM D3338/D3338M-20a; Standard Test Method for Estimation of Net Heat of Combustion of Aviation Fuels. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2020.
- ASTM D130-19; Standard Test Method for Corrosiveness to Copper from Petroleum Products by Copper Strip Test. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2019.
- ASTM D86-23; Standard Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2023.
- Chuck, C.J.; Donnelly, J. The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. Appl. Energy 2014, 118, 83–91. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, X.; Zhu, L.; Lu, X. Experimental studies on combustion and emissions of RCCI (reactivity controlled compression ignition) with gasoline/n-heptane and ethanol/n-heptane as fuels. Energy 2015, 88, 584–594. [Google Scholar] [CrossRef]
Properties | Unit | Propanol | Butanol | Pentanol | Hexanol | Heptanol | Octanol |
---|---|---|---|---|---|---|---|
Chemical formula | - | C3H7OH | C4H9OH | C5H11OH | C6H13OH | C7H15OH | C8H17OH |
CAS | 71-23-8 | 71-36-3 | 71-41-0 | 111-27-3 | 111-70-6 | 111-87-5 | |
Purity | % | ≥99.5 | 99.5 | ≥99 | 98 | 98 | ≥99 |
Molecular weight | g·mol−1 | 60.10 | 74.12 | 88.15 | 102.18 | 116.20 | 130.23 |
Carbon | wt. % | 59.96 | 64.82 | 68.13 | 70.52 | 72.16 | 73.72 |
Hydrogen | wt. % | 13.31 | 13.49 | 13.61 | 13.70 | 13.71 | 13.82 |
Oxygen | wt. % | 26.62 | 21.59 | 18.15 | 15.70 | 14.13 | 12.29 |
Density | g·cm−3 | 0.8037 | 0.8097 | 0.8148 | 0.8218 | 0.8180 | 0.8270 |
Boiling point | °C | 97 | 117 | 138 | 157 | - | 195 |
Self-ignition temperature | °C | 350 | 345 | 300 | 285 | 275 | 270 |
Lower heating value | MJ·kg−1 | 29.82 | 32.01 | 32.16 | 39.10 | 39.92 | 52.94 |
Latent heat of vaporization | kJ·kg−1 | 727.88 | 585.40 | 308.05 | 486 | 574.95 | – |
Sample Name | Jet-A (%) | Aeroshell (%) | Heptane (%) | Propanol (%) | Butanol (%) | Pentanol (%) | Hexanol (%) | Heptanol (%) | Octanol (%) |
---|---|---|---|---|---|---|---|---|---|
Ke | 95 | 5 | - | - | - | - | - | - | - |
PR10 | 80 | 5 | 5 | 10 | - | - | - | - | - |
PR20 | 70 | 5 | 5 | 20 | - | - | - | - | - |
PR 30 | 60 | 5 | 5 | 30 | - | - | - | - | - |
BU10 | 80 | 5 | 5 | - | 10 | - | - | - | - |
BU20 | 70 | 5 | 5 | - | 20 | - | - | - | - |
BU30 | 60 | 5 | 5 | - | 30 | - | - | - | - |
PE10 | 80 | 5 | 5 | - | - | 10 | - | - | - |
PE20 | 70 | 5 | 5 | - | - | 20 | - | - | - |
PE30 | 60 | 5 | 5 | - | - | 30 | - | - | - |
HE10 | 80 | 5 | 5 | - | - | - | 10 | - | - |
HE20 | 70 | 5 | 5 | - | - | - | 20 | - | - |
HE30 | 60 | 5 | 5 | - | - | - | 30 | - | - |
HP10 | 80 | 5 | 5 | - | - | - | - | 10 | - |
HP20 | 70 | 5 | 5 | - | - | - | - | 20 | - |
HP30 | 60 | 5 | 5 | - | - | - | - | 30 | - |
OC10 | 80 | 5 | 5 | - | - | - | - | - | 10 |
OC20 | 70 | 5 | 5 | - | - | - | - | - | 20 |
OC30 | 60 | 5 | 5 | - | - | - | - | - | 30 |
Sample | Temperature/K | ||||||||
---|---|---|---|---|---|---|---|---|---|
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
Ke | 2.3699 | 2.1593 | 1.9656 | 1.7892 | 1.6431 | 1.5040 | 1.3937 | 1.2991 | 1.2082 |
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
PR10 | 2.2445 | 2.0271 | 1.8419 | 1.6818 | 1.5417 | 1.4172 | 1.3090 | 1.2123 | 1.1259 |
PR20 | 2.4719 | 2.2055 | 1.9920 | 1.8093 | 1.6605 | 1.5174 | 1.3950 | 1.2876 | 1.1915 |
PR30 | 2.7633 | 2.4618 | 2.2041 | 1.9853 | 1.7942 | 1.6314 | 1.4896 | 1.3741 | 1.2628 |
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
BU10 | 2.3323 | 2.0967 | 1.9055 | 1.7397 | 1.5957 | 1.4674 | 1.3387 | 1.2390 | 1.1496 |
BU20 | 2.5510 | 2.2946 | 2.0699 | 1.8810 | 1.7115 | 1.5682 | 1.4409 | 1.3283 | 1.2224 |
BU30 | 2.8989 | 2.5841 | 2.2909 | 2.0792 | 1.8821 | 1.7101 | 1.5615 | 1.4305 | 1.3155 |
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
PE10 | 2.4163 | 2.1883 | 1.9822 | 1.8123 | 1.6567 | 1.5245 | 1.4060 | 1.3027 | 1.2075 |
PE20 | 2.7128 | 2.4365 | 2.1956 | 1.9856 | 1.8096 | 1.6555 | 1.5203 | 1.4016 | 1.2958 |
PE30 | 3.2254 | 2.8428 | 2.5356 | 2.2713 | 2.0553 | 1.8634 | 1.7003 | 1.5604 | 1.4297 |
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
HE10 | 2.5105 | 2.2683 | 2.0524 | 1.8684 | 1.7080 | 1.5682 | 1.4475 | 1.3376 | 1.2408 |
HE20 | 2.9072 | 2.6544 | 2.3455 | 2.1262 | 1.9257 | 1.7573 | 1.636 | 1.4892 | 1.3791 |
HE30 | 3.4860 | 3.0747 | 2.7468 | 2.4607 | 2.2221 | 2.0456 | 1.8547 | 1.6853 | 1.5480 |
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
HP10 | 2.6681 | 2.3596 | 2.1158 | 1.9238 | 1.8061 | 1.6084 | 1.4885 | 1.3713 | 1.2718 |
HP20 | 3.1468 | 2.744 | 2.4642 | 2.2226 | 2.0322 | 1.8621 | 1.6885 | 1.5498 | 1.4263 |
HP30 | 3.7544 | 3.3206 | 2.9477 | 2.6339 | 2.3616 | 2.1468 | 1.9473 | 1.8006 | 1.6243 |
273.15 | 278.15 | 283.15 | 288.15 | 293.15 | 298.15 | 303.15 | 308.15 | 313.15 | |
OC10 | 2.8619 | 2.5683 | 2.3109 | 2.0907 | 1.8904 | 1.7318 | 1.5892 | 1.4628 | 1.3507 |
OC20 | 3.5580 | 3.1047 | 2.7272 | 2.4663 | 2.2004 | 2.0127 | 1.8440 | 1.6978 | 1.5675 |
OC30 | 4.2770 | 3.7643 | 3.3254 | 2.9569 | 2.6455 | 2.3907 | 2.1666 | 1.9697 | 1.7968 |
Sample | nD | Sample | nD | Sample | nD | Sample | nD | Sample | nD | Sample | nD |
---|---|---|---|---|---|---|---|---|---|---|---|
PR10 | 1.4300 | BU10 | 1.4312 | PE10 | 1.4325 | HE10 | 1.4336 | HP10 | 1.4343 | OC10 | 1.4350 |
PR20 | 1.4267 | BU20 | 1.4281 | PE20 | 1.4296 | HE20 | 1.4309 | HP20 | 1.4322 | OC20 | 1.4334 |
PR30 | 1.4240 | BU30 | 1.4255 | PE30 | 1.4270 | HE30 | 1.4286 | HP30 | 1.4303 | OC30 | 1.4318 |
Property | Mixtures | Regression Coefficients | R2 | ||
---|---|---|---|---|---|
a | b | c | |||
Density at 293.15 K (g·cm−3) | PR | 3 × 10−6 | 5 × 10−5 | 0.7912 | 0.9983 |
BU | 2 × 10−6 | 0.0001 | 0.7912 | 0.9996 | |
PE | 5 × 10−7 | 0.0003 | 0.7912 | 1.0000 | |
HE | 5 × 10−7 | 0.0003 | 0.7912 | 0.9996 | |
HP | −3 × 10−18 | 0.0004 | 0.7913 | 0.9984 | |
OC | −2 × 10−6 | 0.0005 | 0.7913 | 0.9966 | |
Kinematic viscosity at 293.15 K (mm2·s−1) | PR | 0.0006 | −0.0119 | 1.6328 | 0.9347 |
BU | 0.0005 | −0.0080 | 1.6377 | 0.9875 | |
PE | 0.0006 | −0.0035 | 1.6408 | 0.9990 | |
HE | 0.0006 | 0.0022 | 1.6394 | 0.9987 | |
HP | 0.0004 | 0.0113 | 1.6451 | 0.9997 | |
OC | 0.0005 | 0.0183 | 1.6467 | 0.9995 | |
Refractive index at 293.15 K | PR | 0.0975 | −0.0703 | 1.4365 | 0.9959 |
BU | 0.0700 | −0.0574 | 1.4365 | 0.9976 | |
PE | 0.0375 | −0.0429 | 1.4366 | 0.9992 | |
HE | 0.0175 | −0.0319 | 1.4366 | 1.0000 | |
HP | 0.0100 | −0.0240 | 1.4366 | 1.0000 | |
OC | −6 × 10−14 | −0.0160 | 1.4366 | 1.0000 |
Sample | Density | Kinematic Viscosity | |||||
---|---|---|---|---|---|---|---|
Regression Coefficients | Regression Coefficients | ||||||
a | b | R2 | a | b | c | R2 | |
Ke | −0.0008 | 0.8050 | 0.9996 | 0.0004 | −0.0439 | 2.3683 | 0.9999 |
PR10 | −0.0008 | 0.8075 | 1.0000 | 0.0004 | −0.0419 | 2.2342 | 0.9996 |
PR20 | −0.0008 | 0.8093 | 1.0000 | 0.0004 | −0.0488 | 2.4524 | 0.9991 |
PR30 | −0.0008 | 0.8114 | 1.0000 | 0.0005 | −0.0588 | 2.7496 | 0.9996 |
BU10 | −0.0008 | 0.8083 | 1.0000 | 0.0004 | −0.0437 | 2.3177 | 0.9994 |
BU20 | −0.0008 | 0.8106 | 1.0000 | 0.0004 | −0.0500 | 2.5392 | 0.9996 |
BU30 | −0.0008 | 0.8131 | 0.9999 | 0.0006 | −0.0616 | 2.8810 | 0.9991 |
PE10 | −0.0008 | 0.8091 | 1.0000 | 0.0004 | −0.0453 | 2.4076 | 0.9997 |
PE20 | −0.0008 | 0.8118 | 0.9999 | 0.0005 | −0.0544 | 2.7013 | 0.9996 |
PE30 | −0.0008 | 0.8147 | 0.9998 | 0.0007 | −0.0712 | 3.1992 | 0.9991 |
HE10 | −0.0008 | 0.8097 | 1.0000 | 0.0004 | −0.0481 | 2.5013 | 0.9997 |
HE20 | −0.0008 | 0.8125 | 0.9999 | 0.0005 | −0.0599 | 2.9119 | 0.9989 |
HE30 | −0.0008 | 0.8157 | 0.9999 | 0.0007 | −0.0755 | 3.4542 | 0.9986 |
HP10 | −0.0008 | 0.8103 | 1.0000 | 0.0005 | −0.0535 | 2.6361 | 0.9970 |
HP20 | −0.0008 | 0.8134 | 1.0000 | 0.0006 | −0.0669 | 3.1009 | 0.9973 |
HP30 | −0.0008 | 0.8170 | 0.9999 | 0.0008 | −0.0844 | 3.7318 | 0.9991 |
OC10 | −0.0008 | 0.8115 | 1.0000 | 0.0005 | −0.0583 | 2.8513 | 0.9997 |
OC20 | −0.0008 | 0.8148 | 0.9999 | 0.0009 | −0.0834 | 3.5195 | 0.9981 |
OC30 | −0.0008 | 0.8187 | 1.0000 | 0.0010 | −0.0995 | 4.2496 | 0.9993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, S.; Ceatra, L.; Cican, G.; Mirea, R. Physicochemical Properties of Jet-A/n-Heptane/Alcohol Blends for Turboengine Applications. Inventions 2025, 10, 3. https://doi.org/10.3390/inventions10010003
Osman S, Ceatra L, Cican G, Mirea R. Physicochemical Properties of Jet-A/n-Heptane/Alcohol Blends for Turboengine Applications. Inventions. 2025; 10(1):3. https://doi.org/10.3390/inventions10010003
Chicago/Turabian StyleOsman, Sibel, Laurentiu Ceatra, Grigore Cican, and Radu Mirea. 2025. "Physicochemical Properties of Jet-A/n-Heptane/Alcohol Blends for Turboengine Applications" Inventions 10, no. 1: 3. https://doi.org/10.3390/inventions10010003
APA StyleOsman, S., Ceatra, L., Cican, G., & Mirea, R. (2025). Physicochemical Properties of Jet-A/n-Heptane/Alcohol Blends for Turboengine Applications. Inventions, 10(1), 3. https://doi.org/10.3390/inventions10010003