Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (461)

Search Parameters:
Keywords = multifunctional greening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
67 pages, 11236 KB  
Review
Research Progress in Thermal Functional Fibers
by Hui Zheng, Xiao Yang, Chunyang Wang, Yujie Xu, Haisheng Chen, Ting Zhang and Xinghua Zheng
Materials 2026, 19(1), 11; https://doi.org/10.3390/ma19010011 (registering DOI) - 19 Dec 2025
Abstract
The utilization and transformation of heat have played pivotal roles in numerous significant stages of human societal evolution and advancement. Recently, more rigorous and precise requirements have been imposed on thermal functional materials for applications including microelectronic device cooling, personal thermal regulation in [...] Read more.
The utilization and transformation of heat have played pivotal roles in numerous significant stages of human societal evolution and advancement. Recently, more rigorous and precise requirements have been imposed on thermal functional materials for applications including microelectronic device cooling, personal thermal regulation in extreme environments, green building initiatives, flexible wearable electronics, and solar thermal collection. Thermal functional fibers offer advantages such as lightweight construction, versatile functional design, and integrated manufacturing capabilities. By modifying the composition, structure, and fabrication techniques of fibers, control over heat transfer, storage, and conversion processes can be optimized. This review underscores the latest developments in thermal functional fibers, emphasizing high thermal conductivity fibers, thermal insulation fibers, thermal radiation regulation fibers, phase-change thermal storage fibers, thermoelectric fibers, Joule heating fibers, photothermal conversion fibers, thermally actuated fibers, and multifunctional composite fibers. It elucidates how these various fibers enhance thermal performance through innovative material selection, fabrication methods, and structural design. Finally, the review discusses prevailing developmental trends, current challenges, and future directions in the design and fabrication of thermal functional fibers. Full article
27 pages, 778 KB  
Review
Yeast-Derived Biomolecules as Green Nanoplatforms for Sustainable Lignocellulosic Biorefineries
by Fabio P. Sanchez Vera, Naiara J. Clerici, Gabriela A. Lourenço, Sara B. Santa Rita, Kiara A. Garcia Bustos, Eduardo Florez Martinez, Guilherme O. Silva, Paulo R. Franco Marcelino, Julio César dos Santos and Silvio S. da Silva
Fermentation 2025, 11(12), 695; https://doi.org/10.3390/fermentation11120695 - 16 Dec 2025
Viewed by 162
Abstract
Yeast-derived biomolecules are redefining the boundaries of green nanotechnology. Biosurfactants, exopolysaccharides, enzymes, pigments, proteins, and organic acids—when sourced from carbohydrate-rich lignocellulosic hydrolysates—offer a molecular toolbox capable of directing, stabilizing, and functionalizing nanoparticles (NPs) with unprecedented precision. Beyond their structural diversity and intrinsic biocompatibility, [...] Read more.
Yeast-derived biomolecules are redefining the boundaries of green nanotechnology. Biosurfactants, exopolysaccharides, enzymes, pigments, proteins, and organic acids—when sourced from carbohydrate-rich lignocellulosic hydrolysates—offer a molecular toolbox capable of directing, stabilizing, and functionalizing nanoparticles (NPs) with unprecedented precision. Beyond their structural diversity and intrinsic biocompatibility, these biomolecules anchor a paradigm shift: the convergence of biorefineries with nanotechnology to deliver multifunctional materials for the circular bioeconomy. This review explores: (i) the expanding portfolio of metallic and metal oxide NPs synthesized through yeast biomolecules; (ii) molecular-level mechanisms of reduction, capping, and surface tailoring that dictate NP morphology, stability, and reactivity; (iii) synergistic roles in intensifying lignocellulosic processes—from enhanced hydrolysis to catalytic upgrading; and (iv) frontier applications spanning antimicrobial coatings, regenerative packaging, precision agriculture, and environmental remediation. We highlight structure–function relationships, where amphiphilicity, charge distribution, and redox activity govern resilience under saline, acidic, and thermally harsh industrial matrices. Yet, critical bottlenecks remain: inconsistent yields, limited comparative studies, downstream recovery hurdles, and the absence of comprehensive life-cycle and toxicological evaluations. To bridge this gap, we propose a translational roadmap coupling standardized characterization with real hydrolysate testing, molecular libraries linking biomolecule chemistry to NP performance, and integrated techno-economic and environmental assessments. By aligning yeast biotechnology with nanoscience, we argue that yeast-biomolecule-driven nanoplatforms are not merely sustainable alternatives but transformative solutions for next-generation lignocellulosic biorefineries. Full article
(This article belongs to the Special Issue Yeast Biotechnology in Valorization of Waste and By-Products)
Show Figures

Figure 1

40 pages, 2992 KB  
Review
Advances in Mesoporous Silica and Hybrid Nanoparticles for Drug Delivery: Synthesis, Functionalization, and Biomedical Applications
by Ahmad Almatroudi
Pharmaceutics 2025, 17(12), 1602; https://doi.org/10.3390/pharmaceutics17121602 - 12 Dec 2025
Viewed by 210
Abstract
Mesoporous silica nanoparticles (MSNs) are among the most adaptable nanocarriers in modern pharmaceutics, characterized by a high surface area, tunable pore size, controllable morphology, and excellent biocompatibility. These qualities enable effective encapsulation, protection, and the delivery of drugs in a specific area and, [...] Read more.
Mesoporous silica nanoparticles (MSNs) are among the most adaptable nanocarriers in modern pharmaceutics, characterized by a high surface area, tunable pore size, controllable morphology, and excellent biocompatibility. These qualities enable effective encapsulation, protection, and the delivery of drugs in a specific area and, therefore, MSNs are powerful platforms for the targeted and controlled delivery of drugs and theragnostic agents. Over the past ten years and within the 2021–2025 period, the advancement of MSN design has led to the creation of hybrid nanostructures into polymers, lipids, metals, and biomolecules that have yielded multifunctional carriers with enhanced stability, responsiveness, and biological activities. The current review provides a review of the synthesis methods, surface functionalization techniques, and physicochemical characterization techniques that define the next-generation MSN-based delivery systems. The particular focus is put on stimuli-responsive systems, such as redox, pH, enzyme-activated, and light-activated systems, that enable delivering drugs in a controlled and localized manner. We further provide a summary of the biomedical use of MSNs and their hybrids such as in cancer chemotherapy, gene and nucleic acid delivery, antimicrobial and vaccine delivery, and central nervous system targeting, supported by recent in vivo and in vitro studies. Important evaluations of biocompatibility, immunogenicity, degradation, and biodistribution in vivo are also provided with a focus on safety in addition to the regulatory impediments to clinical translation. The review concludes by saying that there are still limitations such as large-scale reproducibility, long-term toxicity, and standardization by the regulators, and that directions are being taken in the future in the fields of smart programmable nanocarriers, green synthesis, and sustainable manufacture. Overall, mesoporous silica and hybrid nanoparticles represent a breakthrough technology in the nanomedicine sector with potentials that are unrivaled in relation to targeted, controlled, and personalized therapeutic interventions. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

21 pages, 3491 KB  
Article
Urban Roadside Forests as Green Infrastructure: Multifunctional Ecosystem Services in a Coastal City of China
by Wenjing Niu, Xiang Yu and Lu Ding
Forests 2025, 16(12), 1841; https://doi.org/10.3390/f16121841 - 10 Dec 2025
Viewed by 176
Abstract
Urban roadside forests are vital components of green infrastructure that provide multiple ecosystem services, contributing to climate regulation, environmental quality, and urban resilience. This study assessed the multifunctional ecosystem services of roadside tree communities along four representative road types—Coastal Scenic, Commercial Arterial, Residential [...] Read more.
Urban roadside forests are vital components of green infrastructure that provide multiple ecosystem services, contributing to climate regulation, environmental quality, and urban resilience. This study assessed the multifunctional ecosystem services of roadside tree communities along four representative road types—Coastal Scenic, Commercial Arterial, Residential Secondary, and Industrial Park Roads—in Weihai, a coastal city in eastern China. Based on a complete tree inventory (6742 individuals from 38 species) integrated with the i-Tree Eco model, we quantified three key ecosystem services, carbon storage and annual sequestration, air-pollutant removal, and stormwater interception, and monetized their benefits. Results indicate that roadside forests stored approximately 1120 tons of carbon and sequestered 78 tons annually (≈USD 0.53 million; CNY 3.85 million), removed 1.28 tons of air pollutants per year (≈USD 9370; CNY 68,400), and intercepted 1560 m3 of stormwater (≈USD 5560; CNY 40,600). Commercial Arterial and Coastal Scenic Roads yielded the highest total ecosystem-service values, while Residential Secondary Roads achieved the greatest per-area efficiency. These findings highlight the significant contribution of urban roadside forests to sustainable and climate-resilient city development and underscore their potential role in urban forest planning and management. Full article
(This article belongs to the Special Issue Growth, Maintenance, and Function of Urban Trees)
Show Figures

Figure 1

9 pages, 286 KB  
Proceeding Paper
Synthesis of 2-Naphthyl 2-Chloroacetate and Study of Its Nucleophilic Substitution Reactions with Citric Acid
by Ruzimurod Jurayev, Azimjon Choriev, Anvar Abdushukurov and Ilyos Normurodov
Eng. Proc. 2025, 117(1), 10; https://doi.org/10.3390/engproc2025117010 - 8 Dec 2025
Viewed by 126
Abstract
In this study, an efficient and regioselective synthetic method was developed for the preparation of 3-hydroxy-3-((2-(naphthalen-2-yloxy)-2-oxoethoxy)carbonyl)pentanedioic acid, a multifunctional ether–ester compound of potential interest for pharmaceutical and material science applications. The target compound was synthesized via the nucleophilic substitution (SN2) and esterification reactions [...] Read more.
In this study, an efficient and regioselective synthetic method was developed for the preparation of 3-hydroxy-3-((2-(naphthalen-2-yloxy)-2-oxoethoxy)carbonyl)pentanedioic acid, a multifunctional ether–ester compound of potential interest for pharmaceutical and material science applications. The target compound was synthesized via the nucleophilic substitution (SN2) and esterification reactions of 2-naphthyl chloroacetate with the monosodium salt of citric acid. Optimization of the reaction conditions was carried out by varying the molar ratio of the reagents, reaction temperature, and duration. The highest yield of 83% was achieved under the conditions of a 2:1 molar ratio of chloroacetate to citrate, a temperature of 70–80 °C, and a reaction time of 6 h. The enhanced product yield observed under these conditions is attributed to the dual reactivity of the citric acid monosodium salt, which contains a free hydroxyl group capable of undergoing SN2 etherification, and free carboxylic acid groups that participate in esterification with the electrophilic 2-naphthyl chloroacetate. The stoichiometric 2:1 ratio ensures that both reactive centers on the citrate anion are fully utilized, leading to efficient and selective transformation into the desired product. Mechanistically, the ether bond formation proceeds through the classical Williamson ether synthesis pathway, where the alkoxide formed from the hydroxyl group attacks the electrophilic carbon of the chloroacetate, displacing the chloride ion. Concurrently, esterification enhances molecular complexity and stability. The results underline the synthetic utility of citric acid derivatives in forming complex organic architectures via environmentally benign routes. This study not only contributes a practical approach to multifunctional molecule synthesis but also reinforces the applicability of green chemistry principles in ester–ether coupling strategies. Full article
20 pages, 3834 KB  
Article
SnO2 Nanoparticles for Sensing and Bone Regeneration Application: Wet-Chemical and Plant-Based Green Synthesis, Spectroscopic Characterization, Photocatalytic, and SERS Activities
by Edyta Proniewicz, Olga Surma, Marta Gajewska and Marcin Molenda
Nanomaterials 2025, 15(24), 1839; https://doi.org/10.3390/nano15241839 - 5 Dec 2025
Viewed by 323
Abstract
This study presents the synthesis and comprehensive characterization of tin dioxide nanoparticles (SnO2NPs). SnO2NPs were obtained using a conventional wet-chemistry route and an environmentally friendly green-chemistry approach employing plant extracts from rooibos leaves (Aspalathus linearis), pomegranate seeds [...] Read more.
This study presents the synthesis and comprehensive characterization of tin dioxide nanoparticles (SnO2NPs). SnO2NPs were obtained using a conventional wet-chemistry route and an environmentally friendly green-chemistry approach employing plant extracts from rooibos leaves (Aspalathus linearis), pomegranate seeds (Punica granatum), and kiwifruit peels (family Actinidiaceae). The thermal stability and decomposition profiles were analyzed by thermogravimetric analysis (TGA), while their structural and physicochemical properties were investigated using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), ultraviolet–visible (UV–Vis) spectroscopy, dynamic light scattering (DLS), Raman spectroscopy, and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. Transmission electron microscopy (TEM) confirmed the nanoscale morphology and uniformity of the obtained particles. The photocatalytic activity of SnO2NPs was evaluated via the degradation of methyl orange (MeO) under UV irradiation, revealing that nanoparticles synthesized using rooibos extract exhibited the highest efficiency (68% degradation within 180 min). Furthermore, surface-enhanced Raman scattering (SERS) spectroscopy was employed to study the adsorption behavior of L-phenylalanine (L-Phe) on the SnO2NP surface. To the best of our knowledge, this is the first report demonstrating the use of pure SnO2 nanoparticles as SERS substrates for biologically active, low-symmetry molecules. The calculated enhancement factor (EF) reached up to two orders of magnitude (102), comparable to other transition metal-based nanostructures. These findings highlight the potential of SnO2NPs as multifunctional materials for biomedical and sensing applications, bridging nanotechnology and regenerative medicine. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

33 pages, 2261 KB  
Review
Citrus Waste Valorization: Unconventional Pathways for Sustainable Biomaterials and Bioactive Products
by Valeria Olmedo-Galarza, Nicolás Pinto-Mosquera, Holguer Pineda-Flores and Luis Manosalvas-Quiroz
Sustainability 2025, 17(24), 10887; https://doi.org/10.3390/su172410887 - 5 Dec 2025
Viewed by 721
Abstract
Citrus fruits are among the most important global crops, with annual production exceeding 160 million tons. Processing produces significant waste, mainly peels, seeds, and pulp, which can make up to fifty percent of the fruit’s mass. This review critically examines innovative ways to [...] Read more.
Citrus fruits are among the most important global crops, with annual production exceeding 160 million tons. Processing produces significant waste, mainly peels, seeds, and pulp, which can make up to fifty percent of the fruit’s mass. This review critically examines innovative ways to valorize these byproducts. Recent research shows that peels, seeds, and pulp can be converted into high-value materials, including biocomposites and biomaterials, marking a shift from traditional uses like animal feed and biogas production. Notable innovations include smart packaging, pectin-based wound dressings, and biodegradable polymers for sustainable electronics. Advanced green extraction methods, such as deep eutectic solvents, have achieved extraction yields over 85% for flavonoids. Additionally, multifunctional biorefineries processing citrus and olive residues have increased biogas yields by 38–42%. The review explores emerging applications in nanotechnology, nutraceuticals, biodegradable polymers, and functional coatings, all aligned with principles of circular economy and green chemistry. These advances suggest that citrus waste can play a significant role in sustainability efforts and new market development. The review also discusses barriers to adoption, including scalability challenges, regulatory limits, and consumer acceptance, from both global and regional viewpoints. Full article
(This article belongs to the Section Bioeconomy of Sustainability)
Show Figures

Figure 1

17 pages, 1695 KB  
Review
The Multifunctional Role of Salix spp.: Linking Phytoremediation, Forest Therapy, and Phytomedicine for Environmental and Human Benefits
by Giovanni N. Roviello
Forests 2025, 16(12), 1808; https://doi.org/10.3390/f16121808 - 2 Dec 2025
Viewed by 306
Abstract
Air pollution, soil contamination, and rising illness demand integrated, nature-based solutions. Willow trees (Salix spp.) uniquely combine ecological resilience with therapeutic value, remediating polluted environments while supporting human well-being. This review synthesizes recent literature on the established role of Salix spp. in [...] Read more.
Air pollution, soil contamination, and rising illness demand integrated, nature-based solutions. Willow trees (Salix spp.) uniquely combine ecological resilience with therapeutic value, remediating polluted environments while supporting human well-being. This review synthesizes recent literature on the established role of Salix spp. in phytoremediation and growing contribution to forest therapy through emissions of biogenic volatile organic compounds (BVOCs). As urbanization accelerates and environmental pressures intensify globally, the surprising adaptability and multifunctionality of Salix justify the utilization of this genus in building resilient and health-promoting ecosystems. The major points discussed in this work include willow-based phytoremediation strategies, such as rhizodegradation, phytoextraction, and phytostabilization, contributing to restoring even heavily polluted soils, especially when combined with specific strategies of microbial augmentation and trait-based selection. Salix plantations and even individual willow trees may contribute to forest therapy (and ‘forest bathing’ approaches) through volatile compounds emitted by Salix spp. such as ocimene, β-caryophyllene, and others, which exhibit neuroprotective (against Parkinson’s disease), anti-inflammatory, and mood-enhancing properties. Willow’s significantly extended foliage season in temperate regions allows for prolonged ‘forest bathing’ opportunities, enhancing passive therapeutic engagement in urban green infrastructures. Remarkably, the pharmacological potential of willow extends beyond salicin, encompassing a diverse array of phytocompounds with applications in phytomedicine. Finally, willow’s ease of propagation and adaptability make this species a convenient solution for multifunctional landscape design, where ecological restoration and human well-being converge. Overall, this review demonstrates the integrative value of Salix spp. as a keystone genus in sustainable landscape planning, combining remarkable environmental resilience with therapeutic benefits. Future studies should explore standardized methods to evaluate the combined ecological and therapeutic performance of Salix spp., integrating long-term field monitoring with analyses of BVOC emissions under varying environmental stresses. Full article
Show Figures

Figure 1

36 pages, 34783 KB  
Article
Rethinking Urban Lawns: Rewilding and Other Nature-Based Alternatives
by Diana Dushkova and Maria Ignatieva
Diversity 2025, 17(12), 830; https://doi.org/10.3390/d17120830 - 1 Dec 2025
Viewed by 582
Abstract
Ongoing urbanization, biodiversity decline, and intensifying climate change increasingly challenge the sustainability of urban green spaces (UGS) dominated by conventional, intensively maintained lawns. Although widespread across cities worldwide, lawns are criticised for their low biodiversity value and high resource demands. This paper explores [...] Read more.
Ongoing urbanization, biodiversity decline, and intensifying climate change increasingly challenge the sustainability of urban green spaces (UGS) dominated by conventional, intensively maintained lawns. Although widespread across cities worldwide, lawns are criticised for their low biodiversity value and high resource demands. This paper explores nature-based solutions (NBS) as viable alternatives for enhancing resilience and multifunctionality of urban lawns. It conceptualizes lawns as intertwined ecological, design, and socio-cultural systems, and evaluates strategies for their transformation. Building on case studies from ten Eurasian cities, a narrative literature review, and the authors’ inter- and transdisciplinary research experience, this study develops a typology of NBS alternatives, including urban species-rich meadows, semi-natural grasslands, naturalistic herbaceous perennial plantings, mixed-vegetation groundcovers, edible lawns, pictorial (annual) meadows, and rewilded lawns. Key interventions involve reduced mowing, multifunctional green spaces, adaptive management, and community engagement. Findings demonstrate that these approaches enhance biodiversity, ecosystem services, and climate resilience, but their success depends on local ecological conditions, landscape design, and public perceptions of urban nature. Alternative lawn designs and maintenance practices should employ native, drought- and trampling-resistant plants and context-sensitive design configurations while respecting cultural traditions of urban greening and fostering social acceptance. The paper suggests practical recommendations and directions for future research. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Graphical abstract

11 pages, 7527 KB  
Article
Effect of Aluminum Salt Precursor on the Crystalline Structure of Alumina Nanoparticles (Al2O3) Synthesized by Green Chemistry Using Cymbopogon citratus Extract
by Miguel Castro, Laura Tous, Adriana Herrera, Dylan Martinez-Bernett and Manuel Saba
Processes 2025, 13(12), 3876; https://doi.org/10.3390/pr13123876 - 1 Dec 2025
Viewed by 255
Abstract
Alumina nanoparticles have broad applications in catalysis, electronics, and the construction sector, and are widely incorporated as additives in coating formulations to enhance mechanical durability and functional performance. This work focuses on the green synthesis of aluminum oxide (Al2O3) [...] Read more.
Alumina nanoparticles have broad applications in catalysis, electronics, and the construction sector, and are widely incorporated as additives in coating formulations to enhance mechanical durability and functional performance. This work focuses on the green synthesis of aluminum oxide (Al2O3) nanoparticles using lemongrass (Cymbopogon citratus) extract. Aluminum nitrate [Al(NO3)3] and aluminum chloride (AlCl3) were used with extract. The reaction was carried out at 70 °C for 1 h at 250 rpm and then thermal treatments at 700 °C and 900 °C were applied. The results showed that nanoparticles synthesized from the AlCl3 and calcined at 700 °C exhibited a smaller particle size (36 ± 14 nm) as compared with those synthesized from the [Al(NO3)3] and calcined at 700 °C (49 ± 25 nm). Despite both precursors yielding nanoparticles, the peaks related to the γ-Al2O3 crystal phase were observed in the AlCl3 at 700 °C calcination. Conversely, the nanoparticles synthesized from the [Al(NO3)3] required a high temperature treatment at 900 °C to display this stable crystal phase. This study reports an easy and cost-effective green chemistry route to obtain γ-Al2O3 nanoparticles, highlighting the importance of the selection of precursors as a critical step to achieve a sustainable and low-energy process, suggesting the potential applications in paints with multifunctional properties. Full article
(This article belongs to the Special Issue Synthesis and Applications of Nanomaterials)
Show Figures

Graphical abstract

26 pages, 5010 KB  
Review
From Agricultural Waste to Recyclable Biodegradable Packaging: A Systematic and Bibliometric Review
by Mei Bie, Wei Zhao, He Dong, Yinghui Gu, Shiwei Yuan and Kai Song
Sustainability 2025, 17(23), 10742; https://doi.org/10.3390/su172310742 - 1 Dec 2025
Viewed by 653
Abstract
Amidst the dual global pressures of plastic pollution and resource scarcity, the transition to a circular economy has become an imperative. The valorization of biomass waste from agricultural, food, and animal processing into biodegradable packaging materials presents a key strategy to address this [...] Read more.
Amidst the dual global pressures of plastic pollution and resource scarcity, the transition to a circular economy has become an imperative. The valorization of biomass waste from agricultural, food, and animal processing into biodegradable packaging materials presents a key strategy to address this challenge. This review aims to systematically construct a comprehensive knowledge framework for the field, addressing the thematic fragmentation and methodological limitations of existing literature through integrated cross-stream analysis, combined bibliometric and technological assessment, and identification of emerging research frontiers. We begin with a bibliometric analysis to delineate the field’s evolutionary trajectory since 2008, global collaboration networks, core research themes, and emerging frontiers, revealing a clear progression from environmental impact assessment to functional material innovation. Subsequently, this review delves into the complete technological chain, from the green extraction of bio-based materials from three major waste streams to the comparison of traditional and advanced film fabrication methods. We then elaborate on the critical performance evaluation dimensions, including mechanical, barrier, biodegradable, safety, and functional properties, and summarize current applications in sectors such as food and medicine. Finally, we critically assess the core challenges related to cost, performance stability, and large-scale production, and provide a systematic outlook on future research directions, particularly the development of high-performance, multifunctional, and intelligent materials. This review offers a comprehensive and data-driven reference framework for researchers and industry stakeholders in the field. Full article
Show Figures

Figure 1

33 pages, 2550 KB  
Review
Comprehensive Review on the Biomedical Applications of Marine Algal Polysaccharides
by Ashwini A. Waoo, Sukhendra Singh, Neha Chandra, Shaily Mishra, Manish Pratap Singh, Joyabrata Mal, Abhimanyu Kumar Jha, Jeong Chan Joo and Ashutosh Pandey
Phycology 2025, 5(4), 80; https://doi.org/10.3390/phycology5040080 - 1 Dec 2025
Viewed by 687
Abstract
Marine algal polysaccharides (MAPs) are multifunctional biopolymers with significant potential in biomedical applications. Derived from brown, red, and green algae, key examples include alginate, agar, carrageenan, fucoidan, ulvan, and laminarin. Their structural diversity underlies a broad range of biological activities, particularly among sulfated [...] Read more.
Marine algal polysaccharides (MAPs) are multifunctional biopolymers with significant potential in biomedical applications. Derived from brown, red, and green algae, key examples include alginate, agar, carrageenan, fucoidan, ulvan, and laminarin. Their structural diversity underlies a broad range of biological activities, particularly among sulfated polysaccharides, which exhibit antiviral, anticancer, anticoagulant, immunomodulatory, and antioxidant effects. Owing to their biocompatibility and tunable physicochemical properties, MAPs are also valuable in wound healing, tissue regeneration, and drug delivery. Advances in ultrasound-, microwave-, and enzyme-assisted extraction methods have enhanced yield and functionality. This review combines structural, extraction, and biomedical views on MAPs, with a focus on how molecular characteristics relate to their potential as drugs. Future work should focus on scalable green extraction, molecular-level characterization, and clinical validation to develop MAPs-based biomaterials for next-generation drug delivery, wound healing, and tissue engineering. Full article
(This article belongs to the Special Issue Seaweed Metabolites)
Show Figures

Figure 1

32 pages, 2149 KB  
Review
Plant-Based Polysaccharide Gums as Sustainable Bio-Polymers: Focus on Tragacanth Gum and Its Emerging Applications
by Shivani Dogra, Dhananjay Yadav, Bhupendra Koul and Muhammad Fazle Rabbee
Polymers 2025, 17(23), 3163; https://doi.org/10.3390/polym17233163 - 27 Nov 2025
Viewed by 820
Abstract
Plant-based natural polymers are gaining attention as ecofriendly alternatives to synthetic materials with applications in food, biomedical, pharmaceutical, and environmental science. Tragacanth gum (TG), a natural exudate obtained from Astragalus species, represents a unique polysaccharide with a complex molecular structure and distinctive rheological [...] Read more.
Plant-based natural polymers are gaining attention as ecofriendly alternatives to synthetic materials with applications in food, biomedical, pharmaceutical, and environmental science. Tragacanth gum (TG), a natural exudate obtained from Astragalus species, represents a unique polysaccharide with a complex molecular structure and distinctive rheological properties. It has been traditionally used for centuries as a stabilizer and emulsifier. Recent advances highlight its potential as a multifunctional biopolymer with industrial and biomedical potential. This review explores the structural characteristics, physicochemical properties, and modification strategies of TG, comparing it with other plant derived gums. Special emphasis is given to its applications in drug delivery, tissue engineering, wound healing, biodegradable packaging, and functional food formulation. Strengths such as biocompatibility and gel-forming ability but challenges remain including variability in quality, limited standardization, and issues with large scale production. Emerging trends, such as nanoformulations, hybrid polymer composites, and smart hydrogels, are also discussed. By positioning TG within the broader context of sustainable biomaterials, this review identifies key research gaps and proposes future directions to advance its role in the green polymer economy. Full article
Show Figures

Graphical abstract

26 pages, 1563 KB  
Review
Extraction Techniques for Brewer’s Spent Grain Protein: A Comparative Review of Efficiency, Purity, and Functionality
by Haocheng Tong, Puxuan Zhang, Liang Zhang, Wei Zhou, Zhengte Lin, Tengfei Yu, Guanchen Liu and Donghong Liu
Foods 2025, 14(23), 4058; https://doi.org/10.3390/foods14234058 - 26 Nov 2025
Viewed by 515
Abstract
Brewer’s spent grain (BSG), the primary by-product of beer production, represents a promising and sustainable source of plant-based protein. This review provides a comprehensive overview of extraction techniques for brewer’s spent grain protein (BSGP), encompassing conventional methods—such as alkaline, hydrothermal, ethanol, and enzymatic [...] Read more.
Brewer’s spent grain (BSG), the primary by-product of beer production, represents a promising and sustainable source of plant-based protein. This review provides a comprehensive overview of extraction techniques for brewer’s spent grain protein (BSGP), encompassing conventional methods—such as alkaline, hydrothermal, ethanol, and enzymatic extraction—as well as emerging green approaches, including ultrasound-assisted, microwave-assisted, subcritical water, and deep eutectic solvent extraction. The influence of key extraction parameters on protein yield, purity, and structural integrity is critically examined, along with the resultant alterations in functional properties such as solubility, emulsifying capacity, foaming ability, and gelation behavior. Although through parameter optimization and the application of novel technology, the existing research has been able to increase the protein extraction rate and achieve better functional properties, the challenges of obtaining higher protein purity and extracting proteins on a larger scale remain. Collectively, these findings underscore the considerable potential of BSGP as a multifunctional ingredient in next-generation sustainable food formulations. Full article
Show Figures

Figure 1

25 pages, 1288 KB  
Review
Critical Contribution of Biomass-Based Amendments in Mine Ecological Restoration: Properties, Functional Mechanisms, and Environmental Impacts
by Si-Mai Peng, Xin-Yue Li, Jia Xie, Wen-Hui Liu, Su-Xin Li, Jian-Lan Luo and Lei Zhao
Minerals 2025, 15(12), 1250; https://doi.org/10.3390/min15121250 - 26 Nov 2025
Viewed by 303
Abstract
Mining activities have caused widespread land degradation and contamination, affecting millions of hectares worldwide and posing persistent ecological risks. However, reclamation substrates are constrained by limited availability and compromised quality, which restricts their ability to fully support mine ecological restoration. Among various amendment [...] Read more.
Mining activities have caused widespread land degradation and contamination, affecting millions of hectares worldwide and posing persistent ecological risks. However, reclamation substrates are constrained by limited availability and compromised quality, which restricts their ability to fully support mine ecological restoration. Among various amendment materials, biomass-based amendments have been widely applied due to their broad availability, renewability, biodegradability, and low cost. In recent years, their role has expanded beyond simple nutrient supplementation to encompass multiple functions, including structural optimization, pollutant stabilization, and microbial regulation. This review highlights the valorisation of biomass-derived solid wastes as multifunctional amendments for mine ecological restoration. By converting agricultural and industrial wastes into green materials, these amendments improve substrate structure, stabilize heavy metals and organic pollutants, enhance nutrient cycling, and stimulate microbial activity. Potential risks, including nutrient leaching, secondary pollution, and greenhouse gas emissions, are critically assessed, with emphasis on their variability under different environmental conditions. By integrating functional benefits with ecological risks, this work underscores the critical role of biomass-based amendments as waste-to-resource strategies in advancing sustainable mine reclamation, contributing to circular economy goals, and supporting environmental engineering practices. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

Back to TopTop