You are currently viewing a new version of our website. To view the old version click .
Pharmaceutics
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Review
  • Open Access

12 December 2025

Advances in Mesoporous Silica and Hybrid Nanoparticles for Drug Delivery: Synthesis, Functionalization, and Biomedical Applications

Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
This article belongs to the Section Drug Delivery and Controlled Release

Abstract

Mesoporous silica nanoparticles (MSNs) are among the most adaptable nanocarriers in modern pharmaceutics, characterized by a high surface area, tunable pore size, controllable morphology, and excellent biocompatibility. These qualities enable effective encapsulation, protection, and the delivery of drugs in a specific area and, therefore, MSNs are powerful platforms for the targeted and controlled delivery of drugs and theragnostic agents. Over the past ten years and within the 2021–2025 period, the advancement of MSN design has led to the creation of hybrid nanostructures into polymers, lipids, metals, and biomolecules that have yielded multifunctional carriers with enhanced stability, responsiveness, and biological activities. The current review provides a review of the synthesis methods, surface functionalization techniques, and physicochemical characterization techniques that define the next-generation MSN-based delivery systems. The particular focus is put on stimuli-responsive systems, such as redox, pH, enzyme-activated, and light-activated systems, that enable delivering drugs in a controlled and localized manner. We further provide a summary of the biomedical use of MSNs and their hybrids such as in cancer chemotherapy, gene and nucleic acid delivery, antimicrobial and vaccine delivery, and central nervous system targeting, supported by recent in vivo and in vitro studies. Important evaluations of biocompatibility, immunogenicity, degradation, and biodistribution in vivo are also provided with a focus on safety in addition to the regulatory impediments to clinical translation. The review concludes by saying that there are still limitations such as large-scale reproducibility, long-term toxicity, and standardization by the regulators, and that directions are being taken in the future in the fields of smart programmable nanocarriers, green synthesis, and sustainable manufacture. Overall, mesoporous silica and hybrid nanoparticles represent a breakthrough technology in the nanomedicine sector with potentials that are unrivaled in relation to targeted, controlled, and personalized therapeutic interventions.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.