Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = mixed ferrites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6023 KB  
Article
Electromagnetic Shielding Performance of Ta-Doped NiFe2O4 Composites Reinforced with Chopped Strands for 7–18 GHz Applications
by Mehriban Emek, Ethem İlhan Şahin, Jamal Eldin F. M. Ibrahim and Mesut Kartal
Nanomaterials 2025, 15(20), 1580; https://doi.org/10.3390/nano15201580 - 16 Oct 2025
Viewed by 251
Abstract
This study reports the synthesis, structural characterization, and electromagnetic shielding performance of tantalum (Ta)-doped nickel ferrite (NiFe2O4) composites reinforced with chopped strands. Ta-doped NiFe2O4 powders were prepared via the conventional mixed-oxide route and sintered at 1200 [...] Read more.
This study reports the synthesis, structural characterization, and electromagnetic shielding performance of tantalum (Ta)-doped nickel ferrite (NiFe2O4) composites reinforced with chopped strands. Ta-doped NiFe2O4 powders were prepared via the conventional mixed-oxide route and sintered at 1200 °C for 4 h, resulting in a well-crystallized single-phase spinel structure. Comprehensive structural and chemical analyses were carried out using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), confirming the successful incorporation of Ta into the NiFe2O4 lattice and the uniform microstructural distribution. The ferrite powders were subsequently embedded with chopped strands and epoxy resin through hot pressing to fabricate composites with varying filler contents. The electromagnetic interference (EMI) shielding effectiveness (SE) of the composites was systematically evaluated in the 7–18 GHz frequency range using a network analyzer (NA). The optimized composite, with a thickness of 1.2 mm, demonstrated a maximum SE of 34.74 dB at 17.4 GHz, primarily attributed to interfacial polarization, dipolar relaxation, and multiple scattering effects induced by the chopped strands. The results indicate that the shielding performance of the composites can be precisely tuned by modifying the filler concentration and microstructural characteristics, enabling selective frequency-band applications. Overall, this work highlights the potential of Ta-doped NiFe2O4/chopped strand composites as lightweight, cost-effective, and high-performance candidates for advanced microwave absorption and electromagnetic shielding applications in defense, and next-generation communication technologies. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

14 pages, 2557 KB  
Article
Composite Material Formation Based on Biochar and Nickel (II)-Copper (II) Ferrites
by Nina P. Shabelskaya, Alexandr V. Vyaltsev, Neonilla G. Sundukova, Vera A. Baranova, Sergej I. Sulima, Elena V. Sulima, Yulia A. Gaidukova, Asatullo M. Radzhbov, Elena V. Vasileva and Elena A. Yakovenko
Molecules 2025, 30(19), 3900; https://doi.org/10.3390/molecules30193900 - 26 Sep 2025
Viewed by 326
Abstract
This paper studies the formation process of a composite material based on an organic substance, biochar from sunflower husks, and an inorganic substance, nickel (II)-copper (II) ferrites of the composition CuxNi1−xFe2O4 (x = 0.0; 0.5; 1.0). [...] Read more.
This paper studies the formation process of a composite material based on an organic substance, biochar from sunflower husks, and an inorganic substance, nickel (II)-copper (II) ferrites of the composition CuxNi1−xFe2O4 (x = 0.0; 0.5; 1.0). The obtained materials were characterized by X-ray phase analysis, scanning electron microscopy, and FTIR spectroscopy. It is shown that when replacing copper (II) cations with nickel (II) cations, the average parameters and volume of the unit cell gradually decrease, and the cation–anion distances in both the tetrahedral and octahedral spinel grids also decrease with regularity. The oxide materials were found to form a film on the surface of biochar, repeating its porous structure. The obtained materials exhibit high catalytic activity in the methyl orange decomposition reaction under the action of hydrogen peroxide in an acidic medium; the degradation of methyl orange in an aqueous solution occurs 30 min after the start of the reaction. This result may be associated with the formation of the Fenton system during the oxidation–reduction process. A significant increase in the reaction rate in the system containing mixed nickel–copper ferrite as a catalyst may be associated with the formation of a more defective structure due to the Jahn–Teller effect manifestation, which creates additional active centers on the catalyst surface. Full article
Show Figures

Figure 1

16 pages, 5802 KB  
Article
Enhancing the Mechanical Performance of Dual-Phase Steel Through Multi-Axis Compression and Inter-Critical Annealing
by Pooja Dwivedi, Aditya Kumar Padap, Sachin Maheshwari, Faseeulla Khan Mohammad, Mohammed E. Ali Mohsin, SK Safdar Hossain, Hussain Altammar and Arshad Noor Siddiquee
Materials 2025, 18(13), 3139; https://doi.org/10.3390/ma18133139 - 2 Jul 2025
Viewed by 783
Abstract
This study examines the microstructural evolution, mechanical properties, and wear behavior of medium-carbon dual-phase steel (AISI 1040) processed via Multi-Axis Compression (MAC). The DP steel was produced through inter-critical annealing at 745 °C, followed by MAC at 500 °C, resulting in a refined [...] Read more.
This study examines the microstructural evolution, mechanical properties, and wear behavior of medium-carbon dual-phase steel (AISI 1040) processed via Multi-Axis Compression (MAC). The DP steel was produced through inter-critical annealing at 745 °C, followed by MAC at 500 °C, resulting in a refined grain microstructure. Optical micrographs confirmed the presence of ferrite and martensite phases after annealing, with significant grain refinement observed following MAC. The average grain size decreased from 66 ± 4 μm to 18 ± 1 μm after nine MAC passes. Mechanical testing revealed substantial improvements in hardness (from 145 ± 9 HV to 298 ± 18 HV) and ultimate tensile strength (from 557 ± 33 MPa to 738 ± 44 MPa), attributed to strain hardening and the Hall–Petch effect. Fractographic analysis revealed a ductile failure mode in the annealed sample, while DP0 and DP9 exhibited a mixed fracture mode. Both DP0 and DP9 samples demonstrated superior wear resistance compared to the annealed sample. However, the DP9 sample exhibited slightly lower wear resistance than DP0, likely due to the fragmentation of martensite induced by high accumulated strain, which could act as crack initiation sites during sliding wear. Furthermore, wear resistance was significantly enhanced due to the combined effects of the DP structure and Severe Plastic Deformation (SPD). These findings highlight the potential of MAC processing for developing high-performance steels suitable for lightweight automotive applications. Full article
Show Figures

Figure 1

23 pages, 6671 KB  
Article
Hierarchical Microstructure–Mechanical Property Correlations in Superior Strength 5 wt% Cr Cold-Work Tool Steel Manufactured by Direct Energy Deposition
by Jung-Hyun Park, Young-Kyun Kim, Jin-Young Kim, Hyo-Yun Jung, Sung-Jin Park and Kee-Ahn Lee
Materials 2025, 18(13), 3113; https://doi.org/10.3390/ma18133113 - 1 Jul 2025
Cited by 1 | Viewed by 734
Abstract
The direct energy deposition (DED) metal additive manufacturing process enables rapid deposition and repair, providing an efficient approach to producing durable tool steel components. Here, 5 wt% Cr cold-work tool steel (Caldie) was developed by reducing carbon and chromium to suppress coarse carbide [...] Read more.
The direct energy deposition (DED) metal additive manufacturing process enables rapid deposition and repair, providing an efficient approach to producing durable tool steel components. Here, 5 wt% Cr cold-work tool steel (Caldie) was developed by reducing carbon and chromium to suppress coarse carbide formation and by increasing molybdenum and vanadium to enhance dimensional stability. In this study, Caldie tool steel was fabricated via DED for the first time, and the effects of post-heat treatment on its hierarchical microstructure and mechanical properties were investigated and compared with those of wrought (reference) material. The as-built sample exhibited a mixed microstructure comprising lath martensite, retained austenite, polygonal ferrite, and carbide networks, which transformed into full martensite with fine carbides after heat treatment (DED-HT). The tensile strength of the DED Caldie material increased from 1340 MPa to 1949 MPa after heat treatment, demonstrating superior strength compared to other heat-treated, DED-processed high-carbon tool steels. Compared to DED-HT, the wrought material exhibited finer martensite, a more uniform Bain group distribution, and finer carbides, resulting in higher strength. This study provides insights into the effects of heat treatment on the hierarchical microstructure and mechanical behavior of Caldie tool steel manufactured by DED. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

17 pages, 6448 KB  
Article
Development of NiZn Ferrites Doped with Co for Low Power Losses at High Frequencies (10 MHz) and High Temperatures (>80 °C)
by Stefanos Zaspalis, Georgios Kogias, Vassilios Zaspalis, Eustathios Kikkinides, Elisabeth Rauchenwald, Christoph Vogler and Kevin Ouda
Magnetochemistry 2025, 11(5), 44; https://doi.org/10.3390/magnetochemistry11050044 - 17 May 2025
Viewed by 1083
Abstract
Polycrystalline nickel–zinc (NiZn) ferrites are widely used in high-frequency applications due to their excellent magnetic properties such as low power losses, high magnetic permeability, and adequate saturation induction. However, data on their power loss behavior at 10 MHz, particularly at elevated temperatures, remain [...] Read more.
Polycrystalline nickel–zinc (NiZn) ferrites are widely used in high-frequency applications due to their excellent magnetic properties such as low power losses, high magnetic permeability, and adequate saturation induction. However, data on their power loss behavior at 10 MHz, particularly at elevated temperatures, remain limited in the literature. This study investigates the magnetic performance of Co-doped NiZn ferrites at 10 MHz, under varying induction fields (3–10 mT) and temperatures (20–120 °C), with a focus on reducing high-temperature losses. Ferrite samples were synthesized using the conventional mixed oxide method and systematically varied in composition (Fe, Co content and Ni/Zn molar ratio). Key findings reveal that the incorporation of cobalt significantly enhances high-temperature performance by shifting resonance frequencies, attributed to increased domain wall pinning. Samples with optimized compositions and processing demonstrated power losses at 10 MHz, 10 mT and 25 °C, 100 °C and 120 °C as low as 310 mW cm−3, 1233 mW cm−3 and 1400 mW cm−3, respectively, with relative initial permeabilities exceeding 80 at these temperatures. These results provide insights into the design of high-frequency magnetic components and highlight strategies to minimize high-temperature losses. Full article
Show Figures

Figure 1

27 pages, 37149 KB  
Article
Ultra-Low-Temperature Tensile Fracture Mechanism of 500 MPa Duplex Steel Bar
by Zhenghong Ma, Jun Cao, Huanhuan Zhang, Shubiao Yin, Bingguo Liu and Zhibo Zhang
Materials 2025, 18(10), 2288; https://doi.org/10.3390/ma18102288 - 14 May 2025
Cited by 1 | Viewed by 669
Abstract
In the field of low-temperature-resistant steel bars in the liquefied natural gas (LNG) ultra-low-temperature environment, matching the strength and toughness of the material has become a key technical difficulty. In this paper, a duplex low-temperature-resistant steel bar was developed and designed, which adopts [...] Read more.
In the field of low-temperature-resistant steel bars in the liquefied natural gas (LNG) ultra-low-temperature environment, matching the strength and toughness of the material has become a key technical difficulty. In this paper, a duplex low-temperature-resistant steel bar was developed and designed, which adopts a continuous water-penetrating rolling process and a self-tempering process to effectively control the microstructure proportion of it at room temperature and effectively cope with ultra-low-temperature tensile failure at −163 °C. We studied the failure mechanism of 500 MPa steel grade low-temperature-resistant steel bars at tensile temperatures from 25 °C to −163 °C. We define a mixed microstructure of ferrite and pearlite (F + P) as the core of the material and tempered martensitic (TM) as the border of the material. It was found that the core and border microstructure had different response characteristics at different tensile temperatures. It is proved that, through the duplex microstructure design, it can meet the design requirements for the 500 MPa steel grade of low-temperature-resistant steel bars. By clarifying the effects of microstructure deformation, dislocation distribution, precipitated phase, and inclusions on the low-temperature resistance of steel bars under low-temperature tensile fracture, the deformation models of core and border microstructure under different tensile temperatures were constructed, and the methods for optimizing the production process of subsequent steel mills were given. After the optimization, the low-temperature toughness of the 500 MPa steel grade steel bar will be further guaranteed. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

17 pages, 5259 KB  
Article
Recycling Industrial Waste: Ferritization Products for Zn2+ Removal from Wastewater
by Dmitry Samchenko, Gennadii Kochetov, Shuwei Hao, Yuliia Trach, Roman Trach and Olena Hnes
Sustainability 2025, 17(9), 4008; https://doi.org/10.3390/su17094008 - 29 Apr 2025
Viewed by 850
Abstract
This study presents a sustainable approach to recycling exhausted etching solutions through ferritization, using various activation methods and aeration rates. The process transforms industrial waste into valuable magnetic sorbents, supporting circular economy principles. Structural and chemical analysis of the ferritization products revealed the [...] Read more.
This study presents a sustainable approach to recycling exhausted etching solutions through ferritization, using various activation methods and aeration rates. The process transforms industrial waste into valuable magnetic sorbents, supporting circular economy principles. Structural and chemical analysis of the ferritization products revealed the formation of ferromagnetic crystalline phases, including lepidocrocite (ɣ-FeOOH), ferrooxygite (δ-FeOOH), and magnetite (Fe3O4). Increasing the aeration rate and use of ultrasound treatment enhances Fe3O4 content and iron ion removal efficiency. The adsorption capacity of the recycled materials for Zn2+ removal was assessed under different pH conditions using mechanical mixing and ultrasound treatment. The highest level of Zn2+ removal (92.0%) was achieved at pH 8 with ultrasound-activated sorbents containing 61.3% δ-FeOOH and 38.7% Fe3O4. At pH 10, magnetite-based sorbents achieved over 98.9% Zn2+ removal, enabling the treated water’s reuse in industrial rinsing processes. Electron microscopy and X-ray fluorescence confirmed the presence of fine, spherical magnetite and zinc ferrite particles. These findings underscore the potential of ferritization-based recycling as an eco-friendly and efficient strategy for heavy metal removal from galvanic wastewater. Full article
Show Figures

Figure 1

21 pages, 11178 KB  
Review
Material Characterization and Strategies for Optimization of Additively Manufactured Electric Machines—A Review
by Shaheer Ul Hassan, Mazahir Hussain Shah, Luděk Pešek and Miroslav Chomát
Electronics 2025, 14(4), 729; https://doi.org/10.3390/electronics14040729 - 13 Feb 2025
Viewed by 1630
Abstract
With the advent of 3D printing, advancements in optimizing structures and innovations to 3D print new materials for electric machines are being developed. Conventional structures are being replaced by lattice structures which provide better properties. From plastics to metals, recent achievements have been [...] Read more.
With the advent of 3D printing, advancements in optimizing structures and innovations to 3D print new materials for electric machines are being developed. Conventional structures are being replaced by lattice structures which provide better properties. From plastics to metals, recent achievements have been made in the 3D printing of soft and hard magnetic materials. Hard magnetic materials are mostly printed by mixing them with ferrites or using a binder material. This paper focuses on all the different methods and compositions to 3D print metals and soft and hard magnetic materials. Although research is still undergoing to expand the use of different magnetic materials, we still have some limitations in their use in electric machines e.g., mixing hard magnetic materials with other materials for 3D printing weakens their electromagnetic properties. Some 3D printing processes provide a comparatively low mechanical strength. With research being undertaken to overcome these challenges, recent 3D-printed magnetic materials for the use in electric machines are discussed in this paper. Apart from materials, different optimization strategies are also introduced that increase the efficiency of the 3D-printed parts e.g., process optimization, topology optimization, and thermal optimization. Process optimization includes different multi-material strategies to reduce the time taken, print multiple parts in one process, and improve the properties of the part. Topology optimization revolves around optimized designs. The properties of electric machines are enhanced by using optimized shapes of rotor, stator, and coils. During the operation of electric machines, there is always some heat generation. The efficient removal of this heat from the system can increase the efficiency of the part. Thermal optimization to efficiently dissipate the heat to the atmosphere is achieved by using phase-changing materials (PCMs), by installing cooling systems, or by introducing optimized structures with better thermal properties. All these developments are discussed in this paper. Full article
Show Figures

Figure 1

19 pages, 5042 KB  
Article
Reduction of 4-Nitrophenol to 4-Aminophenol by Reusable CuFe5O8-Based Catalysts Synthesized by Co-Precipitation Method
by Patompong Siri-apai, Sila Yaemphutchong, Natapol Suetrong, Arunthip Suesuwan, Nicha Choophun, Suttipong Wannapaiboon, Aphichart Rodchanarowan, Kantapat Chansaenpak, Nidcha Aroonrote, Yuranan Hanlumyuang and Worawat Wattanathana
Molecules 2025, 30(4), 777; https://doi.org/10.3390/molecules30040777 - 7 Feb 2025
Cited by 3 | Viewed by 2346
Abstract
The reduction of unfriendly 4-nitrophenol to make it unimpactful with the environment (4-aminophenol) was carried out using the metastable form of copper ferrite (CuFe5O8) synthesized by the co-precipitation of metal nitrate salts, an efficient method with inexpensive and abundant [...] Read more.
The reduction of unfriendly 4-nitrophenol to make it unimpactful with the environment (4-aminophenol) was carried out using the metastable form of copper ferrite (CuFe5O8) synthesized by the co-precipitation of metal nitrate salts, an efficient method with inexpensive and abundant starting materials. The samples were obtained by calcination at various temperatures ranging from 600 °C to 900 °C. The material characterizations, including X-ray diffraction, N2 adsorption/desorption, scanning electron microscope, X-ray absorption spectroscopy, and ultraviolet–visible spectrometry, were employed to identify the detailed structures and describe their correlations with catalytic activities. The X-ray diffraction and X-ray absorption spectroscopy analyses revealed the presence of mixed CuFe5O8 and copper oxide phases, where the formers are rich in Cu2+, Fe2+, and Fe3+ ions. The electron transfer between Cu2+, Fe2+, and Fe3+ led to the high efficiency of the catalytic reaction of the synthesized copper ferrites. Especially for the sample calcined at 600 °C, the apparent kinetic constant (k) for a reduction of 4-nitrophenol was equal to 0.25 min−1, illustrating nearly 100% conversion of 4-nitrophenol to 4-aminophenol within less than 9 min. Regarding the N2 adsorption/desorption isotherms, the samples calcined at 600 °C have the highest specific Brunauer–Emmett–Teller (BET) surface area (15.93 m2 g−1) among the others in the series, which may imply the most effective catalytic performance investigated herein. The post-catalytic X-ray diffraction investigation indicated the stability of the prepared catalysts. Furthermore, the chemical stability of the prepared catalysts was confirmed by its reusability in five consecutive cycles. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

28 pages, 7742 KB  
Article
Structure and Functional Characteristics of Novel Polyurethane/Ferrite Nanocomposites with Antioxidant Properties and Improved Biocompatibility for Vascular Graft Development
by Marija V. Pergal, Jelena Brkljačić, Dana Vasiljević-Radović, Miloš Steinhart, Sanja Ostojić, Biljana Dojčinović, Bratislav Antić and Gordana Tovilović-Kovačević
Polymers 2025, 17(2), 152; https://doi.org/10.3390/polym17020152 - 9 Jan 2025
Viewed by 1800
Abstract
Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper–zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type [...] Read more.
Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper–zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test. The antioxidant activity was detected by UV–VIS spectroscopy using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay. Embedding the different types of nanoparticles in the polyurethane matrix increased phase mixing, swelling ability, and DPPH scavenging, decreased surface roughness, and differently affected the stiffness of the prepared materials. The composite with zinc ferrite showed improved mechanical properties, hydrophilicity, cell adhesion, and antioxidant activity with similar thermal stability, but lower surface roughness and crosslinking density compared to the pristine polyurethane matrix. The in vitro biocompatibility evaluation demonstrates that all nanocomposites are non-toxic, exhibit good hemocompatibility, and promote cell adhesion, and recommends their use as biocompatible materials for the development of coatings for vascular implants. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

19 pages, 1440 KB  
Article
Effects of Hall Current and Thermal Radiation on the Time-Dependent Swirling Flow of Hybrid Nanofluids over a Disk Surface: A Bayesian Regularization Artificial Neural Network Approach
by Faisal Nazir, Nirman Bhowmike, Muhammad Zahid, Sultan Shoaib, Yasar Amin and Saleem Shahid
AppliedMath 2024, 4(4), 1503-1521; https://doi.org/10.3390/appliedmath4040080 - 10 Dec 2024
Cited by 4 | Viewed by 1386
Abstract
For automobile and aerospace engineers, implementing Hall currents and thermal radiation in cooling systems helps increase the performance and durability of an engine. In the case of solar energy systems, the effectiveness of heat exchangers and solar collectors can be enhanced by the [...] Read more.
For automobile and aerospace engineers, implementing Hall currents and thermal radiation in cooling systems helps increase the performance and durability of an engine. In the case of solar energy systems, the effectiveness of heat exchangers and solar collectors can be enhanced by the best use of hybrid nanofluids and the implementation of a Hall current, thermophoresis, Brownian motion, a heat source/sink, and thermal radiation in a time-dependent hybrid nanofluid flow over a disk for a Bayesian regularization ANN backpropagation algorithm. In the current physical model of Cobalt ferrite CoFe2O4 and aluminum oxide Al2O3 mixed with water, a new category of the nanofluid is called the hybrid nanofluid. The study uses MATLAB bvp4c to unravel such intricate relations, transforming PDEs into ODEs. This analysis enables the numerical solution of several BVPs that govern the system of the given problem. Hall currents resulting from the interaction between magnetic fields and the electrically conducting nanofluid, and thermal radiation as an energy transfer mechanism operating through absorption and emission, are central factors for controlling these fluids for use in various fields. The graphical interpretation assists in demonstrating the character of new parameters. The heat source/sink parameter is advantageous to thermal layering, but using a high Schmidt number limits the mass transfer. Additionally, a backpropagation technique with Bayesian regularization is intended for solving ordinary differential equations. Training state, performance, error histograms, and regression demonstration are used to analyze the output of the neural network. In addition to this, there is a decrease in the fluid velocity as magnetic parameter values decrease and a rise in the fluid temperature while the disk is spinning. Thermal radiation adds another level to the thermal behavior by altering how the hybrid nanofluid receives, emits, and allows heat to pass through it. Full article
Show Figures

Figure 1

18 pages, 3941 KB  
Article
Synergistic Effects of BaTiO3 and MFe2O4 (M = Mn, Ni, Cu, Zn, and Co) Nanoparticles as Artificial Pinning Centers on the Performance of YBa2Cu3Oy Superconductor
by Amjad S. Dair, Yassine Slimani, Essia Hannachi, Faten Ben Azzouz and Munirah A. Almessiere
Nanomaterials 2024, 14(22), 1810; https://doi.org/10.3390/nano14221810 - 12 Nov 2024
Cited by 2 | Viewed by 1219
Abstract
Large-scale superconductor applications necessitate a superconducting matrix with pinning sites (PSs) that immobilize vortices at elevated temperatures and magnetic fields. While previous works focused on the single addition of nanoparticles, the simultaneous inclusion of different nanoparticles into a superconducting matrix can be an [...] Read more.
Large-scale superconductor applications necessitate a superconducting matrix with pinning sites (PSs) that immobilize vortices at elevated temperatures and magnetic fields. While previous works focused on the single addition of nanoparticles, the simultaneous inclusion of different nanoparticles into a superconducting matrix can be an effective way to achieve an improved flux pinning capacity. The purpose of this study is to explore the influence of mixed-nanoparticle pinning, with the co-addition of non-magnetic (BaTiO3; BT) and various types of magnetic spinel ferrite (MFe2O4, abbreviated as MFO, where M = Mn, Co, Cu, Zn, and Ni) nanoparticles, on the superconductivity and flux pinning performances of the high-temperature superconductor YBa2Cu3Oy (YBCO). An analysis of X-Ray diffraction (XRD) data of BT–MFe2O4-co-added YBCO samples showed the formation of an orthorhombic structure with Pmmm symmetry. According to electrical resistivity measurements, the emergence of the superconducting state below Tcoffset (zero-resistivity temperature) was proven for all samples. The highest Tcoffset value was recorded for the Y-BT-MnFO sample, while the minimum value was obtained for the Y-BT-ZnFO sample. Direct current (DC) magnetization results showed good magnetic flux pinning performance for all the co-added samples compared to the pristine sample but with some discrepancies. At 77 K, the values of the self-critical current density (self-Jcm) and maximum pinning force (Fpmax) for the Y-BT-MnFO sample were found to be eight times higher and seventeen times greater than those for the pristine sample, respectively. The results acquired suggested that mixing the BT phase with an appropriate type of spinel ferrite nanoparticles can be a practical solution to the problem of degradation of the critical current density of the YBCO material. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

14 pages, 27179 KB  
Article
Effect of Filler Wire Composition on Weld Metal Microstructure and Mechanical Properties in X80 Steel Laser Welds
by Hanwen Yang, James Chen, Xiaoye Zhao, Nazmul Huda and Adrian P. Gerlich
Materials 2024, 17(21), 5235; https://doi.org/10.3390/ma17215235 - 28 Oct 2024
Cited by 2 | Viewed by 1335
Abstract
Laser welding was performed using different filler wires, ER70S steel, commercially pure iron, and pure nickel filler, in the context of welding X80 pipeline steel to assess the microstructure and mechanical properties of the weld metal. Introducing an ER70S wire promoted acicular ferrite [...] Read more.
Laser welding was performed using different filler wires, ER70S steel, commercially pure iron, and pure nickel filler, in the context of welding X80 pipeline steel to assess the microstructure and mechanical properties of the weld metal. Introducing an ER70S wire promoted acicular ferrite formation in the fusion zone, compared to a bainitic microstructure in an autogenous laser weld. The use of pure iron wire was considered as a potential strategy for reducing hardenability, as it led to the dilution of alloying elements in the fusion zone, increasing ferrite content and reducing weld metal hardness to a level compliant with API pipeline standards. The addition of pure nickel wire was used to reveal the degree of weld metal mixing imposed by the laser (thus providing an unambiguous tracer element) when it is combined with filler material dilution in the fusion zone, revealing that the upper region contained 38% wire material and the lower region only 12%. This accounts for the differences observed between the upper versus lower portions of the weld metal when other wires are used, and the use of hardness mapping and micro-indentation demonstrates the correlation between the variations in mechanical properties and microstructural differences introduced by incomplete mixing of the filler wire elements. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

21 pages, 7238 KB  
Article
The Influence of Alloy Composition on Microstructure and Performance of Mixed-Smelting Alloy and Weld Metal
by Guangnan Ge, Jin Hu, Zongqiu Hu, Haijun Li, Yan Huo, Shawei Tang, Yi Liu, Junfeng Ding, Shipu Hou and Yunbao Gao
Materials 2024, 17(19), 4708; https://doi.org/10.3390/ma17194708 - 25 Sep 2024
Cited by 1 | Viewed by 1061
Abstract
In the present work, the Q345B low-alloy steel with different contents and ER309L stainless steel were melted together to obtain new alloys. The aim was to design the composition of weld metal (Q345B low-alloy steel as the base material and ER309L welding wire [...] Read more.
In the present work, the Q345B low-alloy steel with different contents and ER309L stainless steel were melted together to obtain new alloys. The aim was to design the composition of weld metal (Q345B low-alloy steel as the base material and ER309L welding wire as the filler material) and improve the corrosion resistance of the weld metal. During the welding process, the composition of the weld metal was controlled to match the new alloys by changing the welding heat input. A relationship curve between fusion ration and welding heat input was obtained. The research focused on analyzing the effect of mixed-smelting ratio between Q345B and ER309L and welding heat input on the microscopic structure and corrosion performance of the prepared samples. The results show that the melted alloys containing 20% to 30% Q345B consist of a ferrite (δ) phase and austenite (A) phase, the samples containing 45% to 50% Q345B consist of a martensite (M) phase and austenite (A) phase, and the sample containing 40% Q345B consists of a martensite (M) phase, ferrite (δ) phase, and austenite (A) phase. As the mixed-smelting ratio of Q345B/ER309L increased, the corrosion resistance of samples decreased gradually. For the weld metal, the fusion ration between Q345B base material and ER309L welding wire increases with the welding heat input. When the heat input changed from 0.645 kJ/mm to 2.860 kJ/mm, the composition of the weld metal was consistent with the melted alloys containing 20–45% Q345B. The microstructure and corrosion resistance of the weld metal could be designed by the melting means, which has important guiding significance for engineering applications. Full article
Show Figures

Graphical abstract

17 pages, 6933 KB  
Article
Evidence for a Giant Magneto-Electric Coupling in Bulk Composites with Coaxial Fibers of Nickel–Zinc Ferrite and PZT
by Bingfeng Ge, Jitao Zhang, Sujoy Saha, Sabita Acharya, Chaitrali Kshirsagar, Sidharth Menon, Menka Jain, Michael R. Page and Gopalan Srinivasan
J. Compos. Sci. 2024, 8(8), 309; https://doi.org/10.3390/jcs8080309 - 8 Aug 2024
Cited by 3 | Viewed by 2067
Abstract
This report is on magneto-electric (ME) interactions in bulk composites with coaxial fibers of nickel–zinc ferrite and PZT. The core–shell fibers of PZT and Ni1−xZnxFe2O4 (NZFO) with x = 0–0.5 were made by electrospinning. Both kinds [...] Read more.
This report is on magneto-electric (ME) interactions in bulk composites with coaxial fibers of nickel–zinc ferrite and PZT. The core–shell fibers of PZT and Ni1−xZnxFe2O4 (NZFO) with x = 0–0.5 were made by electrospinning. Both kinds of fibers, either with ferrite or PZT core and with diameters in the range of 1–3 μm were made. Electron and scanning probe microscopy images indicated well-formed fibers with uniform core and shell structures and defect-free interface. X-ray diffraction data for the fibers annealed at 700–900 °C did not show any impurity phases. Magnetization, magnetostriction, ferromagnetic resonance, and polarization P versus electric field E measurements confirmed the ferroic nature of the fibers. For ME measurements, the fibers were pressed into disks and rectangular platelets and then annealed at 900–1000 °C for densification. The strengths of strain-mediated ME coupling were measured by the H-induced changes in remnant polarization Pr and by low-frequency ME voltage coefficient (MEVC). The fractional change in Pr under H increased in magnitude, from +3% for disks of NFO–PZT to −82% for NZFO (x = 0.3)-PZT, and a further increase in x resulted in a decrease to a value of −3% for x = 0.5. The low-frequency MEVC measured in disks of the core–shell fibers ranged from 6 mV/cm Oe to 37 mV/cm Oe. The fractional changes in Pr and the MEVC values were an order of magnitude higher than for bulk samples containing mixed fibers with a random distribution of NZFO and PZT. The bulk composites with coaxial fibers have the potential for use as magnetic field sensors and in energy-harvesting applications. Full article
(This article belongs to the Special Issue Discontinuous Fiber Composites, Volume III)
Show Figures

Figure 1

Back to TopTop