Reduction of 4-Nitrophenol to 4-Aminophenol by Reusable CuFe5O8-Based Catalysts Synthesized by Co-Precipitation Method
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials Preparation
3.2. Catalytic Testing
3.3. Materials Characterization
3.3.1. X-Ray Diffraction (XRD)
3.3.2. Scanning Electron Microscopy/Energy Dispersive X-Ray Spectroscopy (SEM/EDS)
3.3.3. X-Ray Absorption Spectroscopy (XAS)
3.3.4. Ultraviolet–Visible Spectrophotometer (UV–Vis)
3.3.5. Brunauer–Emmett–Teller (BET)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parmekar, M.V.; Salker, A.V. Room temperature complete reduction of nitroarenes over a novel Cu/SiO2@NiFe2O4 nano-catalyst in an aqueous medium—A kinetic and mechanistic study. RSC Adv. 2016, 6, 108458–108467. [Google Scholar] [CrossRef]
- He, Q.; Tian, Y.; Wu, Y.; Liu, J.; Li, G.; Deng, P.; Chen, D. Facile and ultrasensitive determination of 4-nitrophenol based on acetylene lack paste and graphene hybrid electrode. Nanomaterials 2019, 9, 429. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Huang, J.; Zhou, T.; Jiang, Y.; Jiang, Y.; Gao, M.; Liu, Y. Recyclable Magnetic Cu/CuFe2O4 Nanocomposites for the Rapid Degradation of 4-NP. Catalysts 2020, 10, 1437. [Google Scholar] [CrossRef]
- Botsa, S.M.; Kumar, Y.P.; Basavaiah, K. Facile simultaneous synthesis of tetraaniline nanostructures/silver nanoparticles as heterogeneous catalyst for the efficient catalytic reduction of 4-nitrophenol to 4-aminophenol. RSC Adv. 2020, 10, 22043–22053. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, T.; Xing, G.; Kou, Y.; Li, B.; Wang, X.; Gao, M.; Chen, L.; Wang, Y.; Yang, J.; et al. Fundamental formation of three-dimensional Fe3O4 microcrystals and practical application in anchoring Au as recoverable catalyst for effective reduction of 4-nitrophenol. Ind. Eng. Chem. Res. 2019, 5, 20903–20911. [Google Scholar] [CrossRef]
- Mejia, Y.R.; Bogireddy, N.K.R. Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. RSC Adv. 2012, 12, 18661–18675. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Feng, X.; Huang, D.; Yang, G.; Astruc, D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord. Chem. Rev. 2015, 287, 114–136. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Huang, W.; Tan, X.; Dong, H.; Goodman, B.A.; Du, H.; Lei, F.; Diao, K. Adsorption of phenolic compounds from water by a novel ethylenediamine rosin-based resin: Interaction models and adorption mechanism. Chemosphere 2019, 214, 821–829. [Google Scholar] [CrossRef]
- Tan, Z.; Gao, M.; Dai, J.; Ge, W.; Zhu, W.; Yan, Y. Magnetic Interconnected Macroporous Imprinted Foams for Selective Recognition and Adsorptive Removal of Phenolic Pollution from Water. Fibers Polym. 2020, 21, 762–774. [Google Scholar] [CrossRef]
- Azhgapillai, P.; Gopalsamy, K.; Othman, I.; Ashraf, S.-S.; Banat, F.; Haifa, M.-A. Photocatalytic reduction of 4-Nitrophenol over eco-friendly NixCuxFe2O4 without an additional reducing agent in water. Mater. Sci. Energy Technol. 2024, 7, 195–204. [Google Scholar] [CrossRef]
- Zhao, B.; Mele, G.; Pio, I.; Li, J.; Palmisano, L.; Vasapollo, G. Degradation of 4-nitrophenol (4-NP) using Fe–TiO2 as a heterogeneous photo-Fenton catalyst. J. Hazard. Mater. 2010, 176, 569–574. [Google Scholar] [CrossRef]
- Chen, D.; Chen, S.; Jiang, Y.; Xie, S.; Quan, H.; Hua, L.; Luo, X. Heterogeneous Fenton-like catalysis of Fe-MOF derived magnetic carbon nanocomposites for degradation of 4-nitrophenol. RSC Adv. 2017, 7, 49024–49030. [Google Scholar] [CrossRef]
- Ding, Q.; Kang, Z.; Cao, L.; Lin, M.; Lin, H.; Yang, D.-P. Conversion of waste eggshell into difunctional Au/CaCO3 nanocomposite for 4-Nitrophenol electrochemical detection and catalytic reduction. Appl. Surf. Sci. 2020, 510, 145526. [Google Scholar] [CrossRef]
- Oh, C.; Ji, S.; Cheong, Y.; Yim, G. Applicability of electrochemical wastewater treatment system powered by temperature difference energy. J. Hazard. Mater. 2018, 351, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Serra, A.; Artal, R.; Pozo, M.; Garcia-Amoros, J.; Gomez, E. Simple environmentally-friendly reductio of 4-Nitrophenol. Catalysts 2020, 10, 458. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, L.; Liu, X.; Cao, M. Hybrids of gold nanoparticles with core-shell hyperbranced polymers: Synthesis, characterization, and their high catalytic activity for reduction of 4-nitrophenol. Catalysts 2016, 6, 3. [Google Scholar] [CrossRef]
- Xiong, L.L.; Huang, R.; Chai, H.H.; Yu, L.; Li, C.M. Facile synthesis of Fe3O4@Tannic Acid@Au nanocomposites as a catalyst for 4-nitrophenol and methylene blue removal. ACS Omega 2020, 5, 20903–20911. [Google Scholar] [CrossRef]
- Goyal, A.; Bansal, S.; Singhal, S. Facile reduction of nitrophenols: Comparative catalytic efficiency of MFe2O4 (M = Ni, Cu, Zn) nano ferrites. Int. J. Hydrogen Energy 2014, 39, 4895–4908. [Google Scholar] [CrossRef]
- Gao, Q.; Sun, Z.Q. Facile fabrication of uniform MFe2O4 (M = Co, Ni, Cu) hollow spheres and their recyclable superior catalytic activity towards 4-nitrophenol reduction. J. Nanosci. Nanotechnol. 2018, 18, 5645–5653. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, A.J. Hight performance of manganese porphyrin sensitized p-Type CuFe2O4 photocathode for solar water splitting to produce hydrogen in a tandem photo electrochemical cell. Catalysts 2018, 8, 108. [Google Scholar] [CrossRef]
- Velinov, N.; Koleva, K.; Tsoncheva, T.; Manova, E.; Paneva, D.; Tenchev, K.; Kunev, B.; Mitov, I. Nanosized Cu0.5Cu0.5Fe2O4 ferrite as catalyst for methanol decomposition: Effect of preparation procedure. Catal. Commun. 2013, 32, 41–46. [Google Scholar] [CrossRef]
- Lou, J.C.; Chang, C.K. Catalytic oxidation of CO over a catalyst produced in ferrite process. Environ. Eng. Sci. 2006, 23, 1024–1032. [Google Scholar] [CrossRef]
- Yang, S.; Wu, C.; Zhou, H.; Yang, Y.; Zhao, Y.; Wang, C.; Yang, W.; Xu, J. An Ullmann C-O coupling reaction catalyzed by magnetic copper ferrite nanoparticles. Adv. Synth. Catal. 2013, 355, 53–58. [Google Scholar] [CrossRef]
- Cheng, R.; Fan, X.; Wang, M.; Li, M.; Tian, J.; Zhang, L. Facile construction of CuFe2O4/g-C3N4 photocatalyst for enhanced visible-light hydrogen evolution. RSC Adv. 2016, 6, 18990–18995. [Google Scholar] [CrossRef]
- Shi, F.; Shan, H.; Li, D.; Yin, X.; Yu, J.; Ding, B. A general strategy to fabricate soft magnetic CuFe2O4@SiO2 nanofibrous membranes as efficient and recyclable Fenton-such as catalysts. J. Colloid Interface Sci. 2019, 538, 620–629. [Google Scholar] [CrossRef]
- Surendrai, B.S.; Veerabhdraswamy, M.; Anantharaju, K.S.; Nagaswarupa, H.P.; Prashantha, S.C. Green and chemical-engineered CuFe2O4: Characterization, cyclic votammetry, photocatalytic and photoluminescence investigation for multifunctional applications. J. Nanostruct. Chem. 2018, 8, 45–59. [Google Scholar] [CrossRef]
- Surendrai, B.S. Green engineered synthesis of Ag-doped CuFe2O4: Characterization, cyclic voltammeter and photocatalytic studies. J. Sci. Adv. Mater. Devices 2018, 3, 44–50. [Google Scholar] [CrossRef]
- Pang, C.K.; Joseph, C.G.; Farm, Y.Y. Magnetically recoverable copper ferrite for catalytic ozonation of surfactant-containing simulated laundry wastewater. J. Environ. Chem. Eng. 2023, 11, 111203. [Google Scholar] [CrossRef]
- Cui, L.; Bai, Z.; Li, Z.; Liu, Z.; Ma, H.; Chen, X.; Lin, K.; Hao, J.; Cui, Y.; Tian, F. A recyclable photocatalyst Cu2O/Fe3O4@C/Cu nanocomposite for efficient photocatalytic reduction of 4-nitrophenol. Appl. Surf. Sci. 2022, 602, 154403. [Google Scholar] [CrossRef]
- Estrella, M.; Laura, B.; Zhou, G.; Wang, X.; Wang, Q.; Wen, W.; Hanson, J.C.; Frenkel, A.I.; Rodriguez, J.A. In situ characterization of CuFe2O4 and Cu/Fe3O4 water-gas shift catalysts. J. Phys. Chem. 2009, 113, 14411–14417. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, H.; Shen, H.; Zhu, C.; He, R.; Tang, J.; Wang, Y.; Jiang, X.; Wang, J.; Bu, W.; et al. Space-Selective Chemodynamic Therapy of CuFe5O8 Nanocubes for Implant-Related Infections. ACS Nano 2020, 14, 13391–13405. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Ren, Y.; Ma, W.; Ma, J.; Du, Y. Degradation of shale gas produced water by magnetic proous MFe2O4 (M = Cu, Ni, Co and Zn) heterogeneous catalyzed ozone. Chem. Eng. J. 2018, 345, 98–106. [Google Scholar] [CrossRef]
- Gorter, E.W. Chemistry and magnetic properties of some ferrimagnetic oxides like those occurring in nature. Adv. Phys. 1957, 6, 336–361. [Google Scholar] [CrossRef]
- Kurajica, S.; Popović, J.; Tkalčec, E.; Gržeta, B.; Mandić, V. The effect of annealing temperature on the structure and optical properties of sol–gel derived nanocrystalline cobalt aluminate spinel. Mater. Chem. Phys. 2012, 135, 587–593. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Shiraishi, T. Eutectoid decomposition of CuFe2O4-Fe3O4 spinel solid solution including CuFe5O8. J. Am. Ceram. Soc. 1969, 52, 401. [Google Scholar] [CrossRef]
- Mohapatra, J.; Mitra, A.; Bahadur, D.; Aslam, M. Surface controlled synthesis of MFe2O4 (M = Mn, Fe, Co, Ni and Zn) nanoparticles and their magnetic characteristics. CrystEngComm 2013, 15, 524–532. [Google Scholar] [CrossRef]
- Guan, D.; Zong, J.; Xu, H.; Huang, Y.C.; Hu, Z.; Chen, B.; Zhang, Y.; Ni, M.; Xu, X.; Zhou, W.; et al. A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Appl. Phys. Rev. 2022, 9, 011422. [Google Scholar] [CrossRef]
- Lopez-Ramon, M.V.; Alvarez, M.A.; Moreno-Castilla, C.; Fontecha-Camara, M.A.; Yebra-Rodriguez, A.; Bailon-Garcia, E. Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove garlic acid from water. Colloid Interface Sci. 2018, 511, 193–202. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, Y.; Li, Y.; Hou, X.; Wang, Y.; Bai, R.; Zhao, J. Synthesis, optical, and magnetic properties of α-Fe2O3 particles with various shapes. Mater. Lett. 2013, 99, 111–114. [Google Scholar] [CrossRef]
- Guijarro, N.; Bornoz, P.; Prevot, M.; Yu, X.; Zhu, X.; Johnson, M.; Jeanbourquin, X.; Le Formal, F.; Sivula, K. Evaluating spinel ferrite MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: Prospects and limitations. Sustain. Energy Fuels 2018, 2, 103–117. [Google Scholar] [CrossRef]
- Nawle, A.C.; Humbe, A.V.; Babrekar, M.K.; Deshmukh, S.S.; Jadhav, K.M. Deposition, characterization, magnetic and optical properties of Zn doped CuFe2O4 thin films. J. Alloys Compd. 2017, 695, 1573–1582. [Google Scholar] [CrossRef]
- Park, S.; Baek, J.H.; Zhang, L.; Lee, J.M.; Stone, K.H.; Cho, I.S.; Guo, J.; Jung, H.S.; Zheng, X. Rapid frame-annealed CuFe2O4 as efficient photocathode for photoelectrochemical hydrogen production. Sustain. Chem. Eng. 2019, 7, 5867–5874. [Google Scholar] [CrossRef]
- Liu, B.H.; Li, Z.P. A review: Hydrogren generation from borohydride hydrolysis reaction. J. Power Sources 2009, 187, 527–534. [Google Scholar]
- Kassem, A.A.; Abdelhamid, H.N.; Fouad, D.M.; Ibrahim, S.A. Metal-organic frameworks (MOFs) and MOFs-derived CuO@C for hydrogen generation from sodium borohydride. Int. J. Hydrogen Energy 2019, 44, 31230–31238. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Chen, G. Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nano clusters supported on TiO2. J. Mater. Chem. 2009, 19, 8223. [Google Scholar] [CrossRef]
- Elfiad, A.; Galli, F.; Djadoun, A.; Sennour, M.; Chegrouche, S.; Meddour-Boukhobza, L.; Boffito, D.C. Natural α-Fe2O3 as efficient catalyst for the p-nitrophenol reduction. Mater. Sci. Eng. B 2018, 229, 126–134. [Google Scholar] [CrossRef]
- Deka, P.; Choudhury, R.; Deka, R.C.; Bharali, P. Influence of Ni on enhanced catalytic activity of Cu/Co3O4 towards reduction of nitroaromatic compounds: Studies on the reduction kinetics. RSC Adv. 2016, 6, 71517–71528. [Google Scholar] [CrossRef]
- Kassem, A.A.; Abdelhamid, H.N.; Fouad, D.M.; Ibrahim, S.A. Catalytic reduction of 4-nitrophenol using copper terephthalate frameworks and CuO@C composite. J. Environ. Chem. Eng. 2021, 9, 104401. [Google Scholar] [CrossRef]
- Kassem, A.A.; Abdelhamid, H.N.; Fouad, D.M.; Ibrahim, S.A. Hydrogénation reduction of dyes using metal-organic framework-derived CuO@C. Microporous Mesoporous Mater. 2020, 305, 110340. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Hierarchical porous ZIF-8 for hydrogen production via the hydrolysis of sodium borohydride. Dalton Trans. 2020, 49, 4416–4424. [Google Scholar] [CrossRef]
- Berahim, N.; Basirun, W.J.; Leo, B.F.; Johan, M.R. Synthesis of Bimetallic Gold-Silver (Au-Ag) Nanoparticles for the Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol. Catalysts 2018, 8, 412. [Google Scholar] [CrossRef]
- He, Y.; Dai, C.; Zhou, X. Magnetic cobalt ferrite composite as an efficient catalyst for photocatalytic oxidation of carbamazepine. Environ. Sci. Pollut. Res. 2017, 24, 2065–2074. [Google Scholar] [CrossRef]
- Ibrahim, I.; Athanasekou, C.; Manolis, G.; Kaltzoglou, A.; Nasikas, N.K.; Katsaros, F.; Devlin, E.; Kontos, A.G.; Falaras, P. Photocatalysis as an advanced reduction process (ARP): The reduction of 4-nitrophenol using titania nanotubes-ferrite nanocomposites. J. Hazard. Mater. 2019, 372, 37–44. [Google Scholar] [CrossRef]
- Ma, M.; Yang, Y.; Li, W.; Feng, R.; Li, Z.; Lyu, P.; Ma, Y. Gold nanoparticles supported by amino groups on the surface of magnetic microspheres for the catalytic reduction of 4-nitrophenol. J. Mater. Sci. 2019, 54, 323–334. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Deemer, E.; Fernandez-Delgado, O.; Wang, H.; Curry, M.L.; El-Gendy, A.A.; Noveron, J.C. Fe nanoparticles encapsulated in MOF-derived carbon for the reduction of 4-nitrophenol and methyl orange in water. Catal. Commun. 2019, 130, 105753. [Google Scholar] [CrossRef]
- Akbarzadeh, E.; Soheili, H.Z.; Gholami, M.R. Novel Cu2O/Cu-MOF/r-GO is reported as highly efficient catalyst for reduction of 4-nitrophenol. Mater. Chem. Phys. 2019, 237, 121846. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks. J. Environ. Chem. Eng. 2021, 9, 104404. [Google Scholar] [CrossRef]
- Mandlimath, T.R.; Goal, B. Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol. J. Mol. Catal. A Chem. 2011, 350, 9–15. [Google Scholar] [CrossRef]
Sample | Elemental Composition (Weight %) | Crystalline Phase Composition (Amount %) | Crystallite Size (nm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Before Reaction | After Reaction | |||||||||
Cu | Fe | O | CuFe5O8 | CuO | FeO | CuFe5O8 | CuO | FeO | ||
CFO-600 | 27.08 | 57.76 | 15.16 | 77.10 | 20.20 | 2.60 | 80.0 | 20.0 | 0.0 | 18.48 |
CFO-700 | 27.86 | 61.21 | 10.94 | 64.80 | 29.60 | 5.50 | 90.50 | 9.50 | 0.0 | 27.10 |
CFO-800 | 27.86 | 61.20 | 26.03 | 86.90 | 13.10 | 0.0 | 93.00 | 7.00 | 0.0 | 52.42 |
CFO-900 | 27.08 | 57.76 | 15.16 | 86.20 | 13.80 | 0.0 | 96.50 | 3.50 | 0.0 | 55.07 |
Sample | Specific BET Surface Area (m2 g−1) |
---|---|
CFO-600 | 15.93 |
CFO-700 | 4.67 |
CFO-800 | 0.82 |
CFO-900 | 0.08 |
Sample | k (min−1) | R Square |
---|---|---|
CFO-600 | 0.25 | 0.96 |
CFO-700 | 0.11 | 0.99 |
CFO-800 | 0.11 | 0.98 |
CFO-900 | 0.07 | 1.00 |
Catalyst | Synthesis | Reaction Conditions | Conversion | Time | Ref |
---|---|---|---|---|---|
(4-NP, NaBH4, Cat, T) | (%) | (min) | |||
Fe2O3 | Natural hematite | 0.1 mM, 0.5 M, 1 mg, 25 °C | 99 | 4 | [46] |
TiO2/CuFe2O4 | Co-precipitation method | 0.05 mmol L−1, 0.22 M, Membrane, 25 °C | 95 | 35 | [53] |
Chemical impregnation technique in ultrasounds | |||||
Fe3O4/P(GMA-DVB)/PAMAM/Au | Solvothermal method, 40 °C for 2 h | 0.60 mM, 0.10 M, 1.0 gL−1 catalyst, 45 °C | 78.7 | 7 | [54] |
Polymerization method, 2 h at 90 °C | |||||
Michel addition and amidation 60 °C for 48 h | |||||
Carbonization of Fe-BDC MOF | Solvothermal DMF and water at 100 °C, 24 h | 20 ppm, 0.5 M, 5 mg, 25 °C | 100 | 4 | [55] |
Carbonization at 800 C in Ar gas atmosphere | |||||
Cu2O/Cu-MOF/rGO | Modified Hummer’s method | 0.1 mM, 0.1 M, 1 mg, 25 °C | 100 | 2 | [56] |
Solvothermal 110 °C for 36 h | |||||
70 °C under reflux conditions, 5 h | |||||
CuBDC | Solvothermal 100 °C for 5 h | 0.1 mM, 0.1 M, 5 mg, 25 °C | 100 | 2 | [57] |
CuFe5O8 | Co-precipitation method | 0.1 mM, 60 mM, 5 mg, 25 °C | 100 | 9 | This work |
Catalyst | Synthesis | Reaction Conditions | k | Ref |
---|---|---|---|---|
(4-NP, NaBH4, Cat, T) | (min−1) | |||
Fe2O3 | Natural hematite | 0.1 mM, 0.5 M, 1 mg, 25 °C | 0.84 | [46] |
CuO | 99%, S. D. Fine (As purchased) | 5 mM, 0.05 M, 0.1 g, 25 °C | 1.14 | [58] |
CuFe5O8 | Co-precipitation method | 0.1 mM, 60 mM, 5 mg, 25 °C | 0.25 | [This work] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siri-apai, P.; Yaemphutchong, S.; Suetrong, N.; Suesuwan, A.; Choophun, N.; Wannapaiboon, S.; Rodchanarowan, A.; Chansaenpak, K.; Aroonrote, N.; Hanlumyuang, Y.; et al. Reduction of 4-Nitrophenol to 4-Aminophenol by Reusable CuFe5O8-Based Catalysts Synthesized by Co-Precipitation Method. Molecules 2025, 30, 777. https://doi.org/10.3390/molecules30040777
Siri-apai P, Yaemphutchong S, Suetrong N, Suesuwan A, Choophun N, Wannapaiboon S, Rodchanarowan A, Chansaenpak K, Aroonrote N, Hanlumyuang Y, et al. Reduction of 4-Nitrophenol to 4-Aminophenol by Reusable CuFe5O8-Based Catalysts Synthesized by Co-Precipitation Method. Molecules. 2025; 30(4):777. https://doi.org/10.3390/molecules30040777
Chicago/Turabian StyleSiri-apai, Patompong, Sila Yaemphutchong, Natapol Suetrong, Arunthip Suesuwan, Nicha Choophun, Suttipong Wannapaiboon, Aphichart Rodchanarowan, Kantapat Chansaenpak, Nidcha Aroonrote, Yuranan Hanlumyuang, and et al. 2025. "Reduction of 4-Nitrophenol to 4-Aminophenol by Reusable CuFe5O8-Based Catalysts Synthesized by Co-Precipitation Method" Molecules 30, no. 4: 777. https://doi.org/10.3390/molecules30040777
APA StyleSiri-apai, P., Yaemphutchong, S., Suetrong, N., Suesuwan, A., Choophun, N., Wannapaiboon, S., Rodchanarowan, A., Chansaenpak, K., Aroonrote, N., Hanlumyuang, Y., & Wattanathana, W. (2025). Reduction of 4-Nitrophenol to 4-Aminophenol by Reusable CuFe5O8-Based Catalysts Synthesized by Co-Precipitation Method. Molecules, 30(4), 777. https://doi.org/10.3390/molecules30040777