Effects of Hall Current and Thermal Radiation on the Time-Dependent Swirling Flow of Hybrid Nanofluids over a Disk Surface: A Bayesian Regularization Artificial Neural Network Approach
Abstract
:1. Introduction
2. Problem Formulation
3. Hybrid Nanofluid Model
4. Numerical Solution
5. Intelligent Computing: ANN-BR Scheme
6. Discussion of Results
Results with Discussion of ANN-BRS Illustrative Outcomes
7. Conclusions
- The obtained outcome proved that there was an increase in the both radial and azimuthal velocity distribution for the Hall current number.
- In the case of the development of the external magnetic field consequences, radial components diminished while the azimuthal velocity was lesser.
- An increase in heat transfer rate for and and a reduction in heat transfer rate for and m occurred.
- The slip parameter increased the temperature distribution accompanied by the upsurge.
- Heat transfer rate to a rotating disk can be accurately regulated with the help of volume fractions and of energy-carrying nanoparticles.
- There are certain implications when involving thermal radiation and a Hall current in the design and optimization of systems that involve hybrid nanofluids. Such understanding can be useful in a range of industries, such as aerospace and automotive engineering and renewable energy systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
u,v,w | Velocity components | Electron collision time | |
Polar coordinates | Electric conductivity of | ||
Kinematic viscosity | T | Fluid temperature (K) | |
Magnetic field strength | M | Magnetic field number | |
Dynamic viscosity | S | Unsteadiness parameter | |
Specific heat capacity | Disk rotating rate | ||
Dimensionless parameter | b | Positive constant | |
Radiative heat flux | c | Stretching rate | |
g | Swirling velocity flow | Origin temperature | |
Axial velocity flow | Constant reference temperature | ||
f | Radial velocity flow | Electron pressure | |
Volume fraction of | Value of density of electrons | ||
Volume fraction of | m | Hall current parameter | |
Surface temperature | Magnetic permeability | ||
Cyclotron frequency of electrons | Sc | Schmidt parameter | |
Rd | Radiation parameter | Pr | Prandtl parameter |
Heat capacity ratio | Thermophoresis coefficient | ||
Nusselt number | Heat source/sink number | ||
Brownian motion | mass diffusivity | ||
Rotating parameter | Sherwood number | ||
Thermophoresis number | C | Fluid cenentration | |
Density of fluid | Specific heat capacity | ||
J | Current density | Eckert number |
References
- Okonkwo, E.C.; Wole-Osho, I.; Kavaz, D.; Abid, M. Comparison of experimental and theoretical methods of obtaining the thermal properties of alumina/iron mono and hybrid nanofluids. J. Mol. Liq. 2019, 292, 111377. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Gao, Q.; Sun, X.; Yang, Q.; Yang, H. Field synergy analysis of heat transfer characteristics of mixed nanofluid flow in self-excited oscillating heat exchanger tubes. J. Therm. Anal. Calorim. 2024, 149, 4893–4912. [Google Scholar] [CrossRef]
- Rahman, S.I.; Moghassemi, A.; Arsalan, A.; Timilsina, L.; Chamarthi, P.K.; Papari, B.; Ozkan, G.; Edrington, C.S. Emerging trends and challenges in thermal management of power electronic converters: A state of the art review. IEEE Access 2024, 12, 50633–50672. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Olabi, A.; Sayed, E.T.; Wilberforce, T.; Elsaid, K.; Doranehgard, M.H.; Abdelkareem, M.A. Microchannel heat sinks with nanofluids for cooling electronic components: Performance enhancement, challenges, and limitations. Therm. Sci. Eng. Prog. 2023, 37, 101608. [Google Scholar] [CrossRef]
- Alshuhail, L.A.; Shaik, F.; Sundar, L.S. Thermal efficiency enhancement of mono and hybrid nanofluids in solar thermal applications–A review. Alex. Eng. J. 2023, 68, 365–404. [Google Scholar] [CrossRef]
- Huminic, G.; Huminic, A. Capabilities of advanced heat transfer fluids on the performance of flat plate solar collector. Energy Rep. 2024, 11, 1945–1958. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Thakur, R.; Kumar, S.; Lee, D. Effects of climate variables and nanofluid-based cooling on the efficiency of a liquid spectrum filter-based concentrated photovoltaic thermal system. J. Therm. Anal. Calorim. 2024, 149, 2273–2291. [Google Scholar] [CrossRef]
- Wang, X.; Song, Y.; Li, C.; Zhang, Y.; Ali, H.M.; Sharma, S.; Li, R.; Yang, M.; Gao, T.; Liu, M.; et al. Nanofluids application in machining: A comprehensive review. Int. J. Adv. Manuf. Technol. 2024, 131, 3113–3164. [Google Scholar] [CrossRef]
- Piazza, R. Thermophoresis: Moving particles with thermal gradients. Soft Matter 2008, 4, 1740–1744. [Google Scholar] [CrossRef]
- Hafeez, A.; Khan, M.; Ahmed, J. Oldroyd-B fluid flow over a rotating disk subject to Soret–Dufour effects and thermophoresis particle deposition. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 2408–2415. [Google Scholar] [CrossRef]
- Chen, J.; Gao, P.; Gu, H.; Chen, Y.; Xinnuo, E.; Yu, J. Experimental study of the natural deposition of submicron aerosols on the surface of a vertical circular tube with non-condensable gases. Nucl. Eng. Des. 2024, 417, 112863. [Google Scholar] [CrossRef]
- Karthik, K.; JK, M.; Kiran, S.; KV, N.; Prasannakumara, B.; Fehmi, G. Impacts of thermophoretic deposition and thermal radiation on heat and mass transfer analysis of ternary nanofluid flow across a wedge. Int. J. Model. Simul. 2024, 1–13. [Google Scholar] [CrossRef]
- Goudarzi, S.; Shekaramiz, M.; Omidvar, A.; Golab, E.; Karimipour, A.; Karimipour, A. Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/Water hybrid nanofluid natural convection. Powder Technol. 2020, 375, 493–503. [Google Scholar] [CrossRef]
- Daneshfar, R.; Soulgani, B.S.; Ashoori, S. Identifying the mechanisms behind the stability of silica nano-and micro-particles: Effects of particle size, electrolyte concentration and type of ionic species. J. Mol. Liq. 2024, 397, 124059. [Google Scholar] [CrossRef]
- Shevchuk, I.V. Modelling of Convective Heat and Mass Transfer in Rotating Flows; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Tassaddiq, A.; Khan, S.; Bilal, M.; Gul, T.; Mukhtar, S.; Shah, Z.; Bonyah, E. Heat and mass transfer together with hybrid nanofluid flow over a rotating disk. AIP Adv. 2020, 10, 055317. [Google Scholar] [CrossRef]
- Ahmed, J.; Nazir, F.; Fadhl, B.M.; Makhdoum, B.M.; Mahmoud, Z.; Mohamed, A.; Khan, I. Magneto-bioconvection flow of Casson nanofluid configured by a rotating disk in the presence of gyrotatic microorganisms and Joule heating. Heliyon 2023, 9, e18028. [Google Scholar] [CrossRef]
- Saukani, I.; Nuraini, E.; Nurhadi, S.; Sumarno, A.S.H.; Saptawati, R.T.T.; Prasetyo, P.; Ms, F.I.S. Format Methods on Storage Media (Hard Disk) for Optimization Data Storage Capacity. Asian J. Sci. Eng. 2023, 2, 126–132. [Google Scholar] [CrossRef]
- Mehmood, T.; Ramzan, M.; Howari, F.; Kadry, S.; Chu, Y.M. Application of response surface methodology on the nanofluid flow over a rotating disk with autocatalytic chemical reaction and entropy generation optimization. Sci. Rep. 2021, 11, 4021. [Google Scholar] [CrossRef]
- Basit, M.A.; Farooq, U.; Imran, M.; Fatima, N.; Alhushaybari, A.; Noreen, S.; Eldin, S.M.; Akgül, A. Comprehensive investigations of (Au-Ag/Blood and Cu-Fe3O4/Blood) hybrid nanofluid over two rotating disks: Numerical and computational approach. Alex. Eng. J. 2023, 72, 19–36. [Google Scholar] [CrossRef]
- Hussain, S.; Ali, A.; Rasheed, K.; Pasha, A.A.; Algarni, S.; Alqahtani, T.; Irshad, K. Application of response surface methodology to optimize MHD nanofluid flow over a rotating disk with thermal radiation and joule heating. Case Stud. Therm. Eng. 2023, 52, 103715. [Google Scholar] [CrossRef]
- Yu, B.; Hu, H.; Li, J.; Ding, X.; Li, Z. Wetting-Enabled Microfluidic Surface for Fluid/Droplet Manipulation: Fabrication, Strategies and Applications. Adv. Eng. Mater. 2024, 16, 2400200. [Google Scholar] [CrossRef]
- Wang, D.; Joshi, A.; Fan, L.S. Chemical looping technology—A manifestation of a novel fluidization and fluid-particle system for CO2 capture and clean energy conversions. Powder Technol. 2022, 409, 117814. [Google Scholar] [CrossRef]
- Khan, H.; Yaseen, M.; Rawat, S.K.; Khan, A. Insight into the significance of ternary hybrid nanofluid flow between two rotating disks in the presence of gyrotactic microorganisms. Nano 2024. [Google Scholar] [CrossRef]
- Guo, P.; Leng, Y.; Nazir, F.; Ahmed, J.; Mohamed, A.; Khan, I.; Elseesy, I.E. Mixed convection phenomenon for hybrid nanofluid flow exterior to a vertical spinning cylinder with binary chemical reaction and activation energy. Case Stud. Therm. Eng. 2024, 54, 103943. [Google Scholar] [CrossRef]
- Averyanov, Y. Designing and Analyzing New Early Stopping Rules for Saving Computational Resources. Ph.D. Thesis, Université de Lille, Lille, France, Inria, Le Chesnay-Rocquencourt, France, 2020. [Google Scholar]
- Zaheer, K.; Saeed, S.; Tariq, S. Prediction of aerosol optical depth over Pakistan using novel hybrid machine learning model. Acta Geophys. 2023, 71, 2009–2029. [Google Scholar] [CrossRef]
- Sharma, B.K.; Sharma, P.; Mishra, N.K.; Fernandez-Gamiz, U. Darcy-Forchheimer hybrid nanofluid flow over the rotating Riga disk in the presence of chemical reaction: Artificial neural network approach. Alex. Eng. J. 2023, 76, 101–130. [Google Scholar] [CrossRef]
- Junaid, M.S.; Aslam, M.N.; Khan, M.A.; Saleem, S.; Riaz, M.B. Thermal analysis of a viscoelastic Maxwell hybrid nanofluid with graphene and polythiophene nanoparticles: Insights from an artificial neural network model. Alex. Eng. J. 2024, 94, 193–211. [Google Scholar] [CrossRef]
- Alawi, O.A.; Kamar, H.M.; Shawkat, M.M.; Al-Ani, M.M.; Mohammed, H.A.; Homod, R.Z.; Wahid, M.A. Artificial intelligence-based viscosity prediction of polyalphaolefin-boron nitride nanofluids. Int. J. Hydromechatron. 2024, 7, 89–112. [Google Scholar] [CrossRef]
- Freidberg, J.P. Plasma Physics and Fusion Energy; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ahmed, J.; Gunaime, N.M.; Nazir, F. Thermal transport of magnetized hybrid nanofluid swirling over a disk surface with Hall current and thermal radiation effects. Numer. Heat Transf. Part A Appl. 2023, 1–16. [Google Scholar] [CrossRef]
- Abbasi, F.; Gul, M.; Shehzad, S. Hall effects on peristalsis of boron nitride-ethylene glycol nanofluid with temperature dependent thermal conductivity. Phys. E Low-Dimens. Syst. Nanostructures 2018, 99, 275–284. [Google Scholar] [CrossRef]
- Khan, M.; Ahmed, J.; Ahmad, L. Chemically reactive and radiative von Kármán swirling flow due to a rotating disk. Appl. Math. Mech. 2018, 39, 1295–1310. [Google Scholar] [CrossRef]
- Khan, M.; Ahmed, J.; Ahmad, L. Application of modified Fourier law in von Kármán swirling flow of Maxwell fluid with chemically reactive species. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 573. [Google Scholar] [CrossRef]
- Aly, E.H.; Pop, I. MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 3012–3038. [Google Scholar] [CrossRef]
- Khashi’ie, N.S.; Waini, I.; Zainal, N.A.; Hamzah, K.; Arifin, N.M.; Pop, I. Multiple solutions and stability analysis of magnetic hybrid nanofluid flow over a rotating disk with heat generation. J. Adv. Res. Fluid Mech. Therm. Sci. 2023, 102, 59–72. [Google Scholar]
- MacKay, D.J. Bayesian methods for backpropagation networks. In Models of Neural Networks III: Association, Generalization, and Representation; Springer: Berlin/Heidelberg, Germany, 1996; pp. 211–254. [Google Scholar]
- Burden, F.; Winkler, D. Bayesian regularization of neural networks. In Artificial Neural Networks: Methods and Applications; Humana Press: Totowa, NJ, USA, 2009; pp. 23–42. [Google Scholar]
k (W/mk) | (J/kgk) | |||
---|---|---|---|---|
Pure water | 997.1 | 0.613 | 4197 | 0.05 |
4908 | 3.6 | 700 | ||
3970 | 40 | 765 |
S | (NF) | (HNF) | |||||||
---|---|---|---|---|---|---|---|---|---|
0.6 | 0.8 | 1.0 | 0.5 | 0.02 | 0.5 | 0.4 | 0.2 | 1.622040 | 2.253789 |
0.8 | 1.938445 | 2.693621 | |||||||
1.0 | 2.225704 | 3.090755 | |||||||
1.0 | 0.3 | 1.780332 | 2.444007 | ||||||
0.4 | 1.885911 | 2.599171 | |||||||
0.5 | 1.980055 | 2.736396 | |||||||
0.8 | 0.7 | 2.084430 | 2.817053 | ||||||
0.8 | 2.133092 | 2.912269 | |||||||
0.9 | 2.180144 | 3.003371 | |||||||
1.0 | 0.1 | 2.003443 | 2.796124 | ||||||
0.2 | 2.047613 | 2.847932 | |||||||
0.3 | 2.091787 | 2.899743 | |||||||
0.5 | 0.03 | 2.167230 | 2.984875 | ||||||
0.05 | 2.141414 | 2.947895 | |||||||
0.07 | 2.115612 | 2.910932 | |||||||
0.01 | 0.6 | 2.203083 | 3.031185 | ||||||
0.8 | 2.249686 | 3.087599 | |||||||
1.0 | 2.297263 | 3.145064 | |||||||
0.5 | 0.7 | 2.466676 | 3.381189 | ||||||
0.9 | 2.686264 | 3.666367 | |||||||
1.1 | 2.933866 | 3.984960 | |||||||
0.4 | 0.5 | 2.229809 | 3.060558 | ||||||
0.7 | 2.263984 | 3.099753 | |||||||
0.9 | 2.299029 | 3.139820 |
S | (NF) | (HNF) | ||||
---|---|---|---|---|---|---|
1.5 | 0.7 | 0.5 | 0.4 | 0.7 | 1.605421 | 1.940375 |
1.7 | 1.820324 | 2.149919 | ||||
1.9 | 2.017342 | 2.341895 | ||||
1.5 | 0.4 | 1.509153 | 1.833637 | |||
0.5 | 1.543047 | 1.870739 | ||||
0.6 | 1.575134 | 1.906338 | ||||
0.7 | 0.7 | 1.937827 | 2.201451 | |||
0.9 | 2.119779 | 2.344831 | ||||
1.1 | 2.233280 | 2.434675 | ||||
0.5 | 0.6 | 1.774717 | 2.151670 | |||
0.7 | 1.842365 | 2.242591 | ||||
0.8 | 1.898369 | 2.323622 | ||||
0.4 | 0.2 | 2.650721 | 2.740184 | |||
0.4 | 2.255309 | 2.434796 | ||||
0.6 | 1.830026 | 2.110249 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazir, F.; Bhowmike, N.; Zahid, M.; Shoaib, S.; Amin, Y.; Shahid, S. Effects of Hall Current and Thermal Radiation on the Time-Dependent Swirling Flow of Hybrid Nanofluids over a Disk Surface: A Bayesian Regularization Artificial Neural Network Approach. AppliedMath 2024, 4, 1503-1521. https://doi.org/10.3390/appliedmath4040080
Nazir F, Bhowmike N, Zahid M, Shoaib S, Amin Y, Shahid S. Effects of Hall Current and Thermal Radiation on the Time-Dependent Swirling Flow of Hybrid Nanofluids over a Disk Surface: A Bayesian Regularization Artificial Neural Network Approach. AppliedMath. 2024; 4(4):1503-1521. https://doi.org/10.3390/appliedmath4040080
Chicago/Turabian StyleNazir, Faisal, Nirman Bhowmike, Muhammad Zahid, Sultan Shoaib, Yasar Amin, and Saleem Shahid. 2024. "Effects of Hall Current and Thermal Radiation on the Time-Dependent Swirling Flow of Hybrid Nanofluids over a Disk Surface: A Bayesian Regularization Artificial Neural Network Approach" AppliedMath 4, no. 4: 1503-1521. https://doi.org/10.3390/appliedmath4040080
APA StyleNazir, F., Bhowmike, N., Zahid, M., Shoaib, S., Amin, Y., & Shahid, S. (2024). Effects of Hall Current and Thermal Radiation on the Time-Dependent Swirling Flow of Hybrid Nanofluids over a Disk Surface: A Bayesian Regularization Artificial Neural Network Approach. AppliedMath, 4(4), 1503-1521. https://doi.org/10.3390/appliedmath4040080