Ultra-Low-Temperature Tensile Fracture Mechanism of 500 MPa Duplex Steel Bar
Abstract
:1. Introduction
2. Test Materials and Methods
2.1. Preliminary Characterization of Matrix Microstructure
2.2. X-Ray Diffraction Analysis of Matrix Microstructure
2.3. Transmission of Lamellae from the Matrix Microstructure
2.4. Test Methods
3. Test Results
3.1. Mechanical Properties
3.1.1. Bending Test
3.1.2. Axial Tensile Test
3.2. Tensile Fracture Microstructure Analysis
3.2.1. Fracture Profile Microstructure
3.2.2. Fracture Profile EBSD
3.3. Tensile Fractures Analysis
3.3.1. Topography Analysis of Tensile Fractures
3.3.2. Transmission Electron Microscopy Analysis
4. Discussion
4.1. Effect of Tensile Deformation Temperature on Mechanical Properties
4.2. Effect of Tensile Deformation Temperature on Microstructure Deformation
4.3. Advantages of Duplex Microstructure Design in Low-Temperature Deformation Environment
4.4. Performance Comparison
5. Conclusions
- (1)
- The lower the tensile temperature, the higher the yield strength and tensile strength of the low-temperature-resistant steel bar, and the lower the plasticity. In the low-temperature environment, the tensile strength is increased, and the dislocation enhancement is dominant. The yield strength at 25 °C tensile temperature is 621 MPa, the tensile strength is 697 MPa, and the elongation after fracture is 26%. The yield strength at −163 °C is 821 MPa, the tensile strength is 873 MPa, and the elongation after fracture is 16%. The real performance exceeds the set standard, and there is a considerable margin of strength. The strain-hardening rate increases as the temperature decreases.
- (2)
- The deformation behavior of the F + P microstructure in the core is less affected by the decrease in temperature, and the deformation behavior of the TM microstructure in the border is more affected by the decrease in temperature. At the tensile ambient temperature of −163 °C, the core microstructure still has a good deformation ability, and the border microstructure has only a slight deformation. The core microstructure ensures the 16% elongation of the low-temperature-resistant steel bar under ultra-low-temperature tensile. The tensile strength is greatly improved, and the border microstructure makes the greatest contribution.
- (3)
- The uniformity of the material is an important reference in the low-temperature environment. A large number of cracks appeared at the fracture of the core of the low-temperature-resistant steel bar at −163 °C. Because there are two kinds of microstructure (F + P) in the core, the uniformity is not as good as that of the border microstructure. The core material has about 5% P microstructure, and we observe that the border of the deformed P microstructure is easily accompanied by microcracks and cavities, which is due to the stress concentration phenomenon at it, which leads to the separation of microstructure P and F. The lower the temperature, the more obvious the stress concentration effect, and the microstructure P is the root cause of the crack in the core of the rebar in the ultra-low-temperature tensile environment.
- (4)
- The 500 MPa low-temperature-resistant steel bar is fully up to standard, and the yield strength even has a large margin. For the LNG storage tank temperature of −163 °C, our suggestion for improvement is to reduce the thickness of the border group TM ring a bit, which is now 2.6 mm and can be controlled at 2.0–2.2 mm. In the use scenario of −163 °C, the yield strength still reaches the standard, the strong yield ratio will increase, and the elongation will be further improved.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foss, M.M. Introduction to LNG, Center for Energy Economics, Energy Economics Research; The University of Texas at Austin: Austin, TX, USA, 2007; pp. 1–40. [Google Scholar]
- Lin, W.; Zhang, N.; Gu, A. LNG (liquefied natural gas): A necessary part in China’s future energy infrastructure. Energy 2010, 35, 4383–4391. [Google Scholar] [CrossRef]
- Lim, W.; Choi, K.; Moon, I. Current status and perspectives of liquefied natural gas (LNG) plant design. Ind. Eng. Chem. Res. 2013, 52, 3065–3088. [Google Scholar] [CrossRef]
- Zou, C.; He, D.; Jia, C.; Xiong, B.; Zhao, Q.; Pan, S. Connotation and pathway of world energy transition and its significance for carbon neutral. Acta Pet. Sin. 2021, 42, 233. [Google Scholar]
- Guo, Z.; Sun, W.; Yu, T.; Wang, K. Develop of 500MPa −165 °C cryogenic steel bar for LNG storage tank. Anhui Metall. 2014, 1–3. [Google Scholar]
- Yu, Z.Q. Wind resistant analysis and reinforcement of bar netting of large low temperature LNG storage tank. Ind. Constr. 2010, 40, 136–140. [Google Scholar]
- Cheng, X.Z. Thermal stress analyses on external wall of LNG storage tank and the design of prestressed reinforcement. Acta Pet. Sin. 2012, 33, 499. [Google Scholar]
- Zhai, X.; Gao, S.; Fan, F. Mechanical behavioral of LNG outer concrete tank under low temperature. J. Harbin Inst. Technol. 2014, 46, 7–12. [Google Scholar]
- Park, W.S.; Chun, M.S.; Han, M.S.; Kim, M.H.; Lee, J.M. Comparative study on mechanical behavior of low temperature application materials for ships and offshore structures: Part I—Experimental investigations. Mater. Sci. Eng. A 2011, 528, 5790–5803. [Google Scholar] [CrossRef]
- Park, D.-H.; Choi, S.-W.; Kim, J.-H.; Lee, J.-M. Cryogenic mechanical behavior of 5000-and 6000-series aluminum alloys: Issues on application to offshore plants. Cryogenics 2015, 68, 44–58. [Google Scholar] [CrossRef]
- Kinney, C.; Pytlewski, K.; Khachaturyan, A.; Morris, J., Jr. The microstructure of lath martensite in quenched 9Ni steel. Acta Mater. 2014, 69, 372–385. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, Z.; Zhang, T.; Li, G.; Huang, Z.; Fan, Y.; Liu, H. Corrosion behavior of high manganese steel by iron-oxidizing bacteria in wastewater at the bottom of liquefied natural gas storage tanks. Corros. Sci. 2025, 242, 112561. [Google Scholar] [CrossRef]
- Muttaqie, T.; Sasmito, C.; Suhartono, A.; Khoirudin, M.H.; Al Hakim, B.; Kurniawan, M.A.; Firmandha, T.; Do, Q.T.; Hyun, P.S.; Prabowo, A.R. Impact Behavior Characterizing of SUS 304 in Cryogenic Temperature Scenarios for LNG Tanks. Procedia Struct. Integr. 2024, 59, 222–229. [Google Scholar] [CrossRef]
- Zhang, L.H.; Chen, F.R. Research status of low-temperature steel and its low-temperature toughness. Weld. Mach. 2020, 50, 88–91. [Google Scholar]
- Wang, Y.Q. Survey of Investigationabout Britlefracture of Steel Structure Under Lowtemperature. Steel Constr. 1994, 217–221. [Google Scholar]
- Li, J.; Wang, Y.; Liu, K.; Zhao, D.; Jiang, S.; Yang, Y.; Yu, Q. Tough-brittle transition mechanism and specific cutting energy analysis during cryogenic machining of Ti–6Al–4V alloy. J. Clean. Prod. 2023, 383, 135533. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, J.; Yan, J.-B. Flexural and fracture performance of UHPC exposed to low-temperature environment. Constr. Build. Mater. 2023, 373, 130865. [Google Scholar] [CrossRef]
- Wang, Y.; Che, Z.-C.; Chen, Y.-F.; Yang, S.-F.; Zhang, J.-F.; Xue, Q.-H. Strength and toughness mechanism of single Ti microalloyed steels. J. Iron Steel Res. Int. 2024, 32, 769–782. [Google Scholar] [CrossRef]
- Santos-Güemes, R.; Ortiz, C.J.; Segurado, J. An FFT based approach to account for elastic interactions in OkMC: Application to dislocation loops in iron. J. Nucl. Mater. 2024, 594, 155020. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; Shi, Y.; Li, M.; Pan, Q. Fracture behaviors and microstructure evolution of an Al–Mg–Mn-Sc-Zr alloy at elevated and cryogenic temperature. Mater. Sci. Eng. A 2024, 913, 147028. [Google Scholar] [CrossRef]
- Afzali, N.; Stranghöner, N.; Langenberg, P. Low Temperature Fracture Behaviour of Nickel Alloy Steel 1.5662. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Rhodes, Greece, 16–21 June 2024; ISOPE: San Francisco, CA, USA; p. ISOPE-I-24-441. [Google Scholar]
- Krauss, G. Steels: Processing, Structure, and Performance; ASM International: Almere, The Netherlands, 2015. [Google Scholar]
- Yan, J.-B.; Xie, J. Experimental studies on mechanical properties of steel reinforcements under cryogenic temperatures. Constr. Build. Mater. 2017, 151, 661–672. [Google Scholar] [CrossRef]
- Scotti, L.; Warnken, N.; Mottura, A. Non-classical interstitial sites and anomalous diffusion mechanisms in hcp-titanium. Acta Mater. 2019, 177, 68–81. [Google Scholar] [CrossRef]
- Chu, X.; Li, Y.; Xu, C.; Li, W.; Fu, B.; Jia, X. Tri-functional co-nanoprecipitates enhanced cryogenic ductility by inducing structural heterogeneity and refining nano-twins in a low-stacking-fault-energy 17Mn steel. Int. J. Plast. 2024, 178, 104014. [Google Scholar] [CrossRef]
- Robert, M.; Benmokrane, B. Behavior of GFRP reinforcing bars subjected to extreme temperatures. J. Compos. Constr. 2010, 14, 353–360. [Google Scholar] [CrossRef]
- Zhao, Y.; Tong, X.; Wei, X.; Xu, S.; Lan, S.; Wang, X.-L.; Zhang, Z. Effects of microstructure on crack resistance and low-temperature toughness of ultra-low carbon high strength steel. Int. J. Plast. 2019, 116, 203–215. [Google Scholar] [CrossRef]
- De Barbieri, F.; Jorge-Badiola, D.; Allende, R.; Tello, K.; Artigas, A.; Perazzo, F.; Jami, H.; Ipiña, J.P. Effect of Cr content in temperature-dependent mechanical properties and strain hardening of a twinning-induced plasticity steel. Mater. Sci. Eng. A 2024, 889, 145865. [Google Scholar] [CrossRef]
- Mao, W.; Gao, S.; Gong, W.; Kawasaki, T.; Ito, T.; Harjo, S.; Tsuji, N. Martensitic transformation-governed Lüders deformation enables large ductility and late-stage strain hardening in ultrafine-grained austenitic stainless steel at low temperatures. Acta Mater. 2024, 278, 120233. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; He, Y.; Zhu, Z.; Chen, H. Fracture behavior of S355J2W steel and weld at low temperature. Fatigue Fract. Eng. Mater. Struct. 2024, 47, 849–861. [Google Scholar] [CrossRef]
- Zou, J.; Gao, X.; Wang, D.; Jiang, L.; Huang, Z.; Wang, T. Gradient alternating deformation mechanism of two metals and interface bonding mechanism of cu/Al cold rolling composite process. Mater. Charact. 2023, 201, 112989. [Google Scholar] [CrossRef]
- Kratochvíl, J.; Kružík, M.; Sedláček, R. Instability origin of subgrain formation in plastically deformed materials. Int. J. Eng. Sci. 2010, 48, 1401–1412. [Google Scholar] [CrossRef]
- Du, J.; Liu, Y.; Zhang, Z.; Shang, S.-L.; Li, H.; Liu, Z.-K.; Liu, F. Deformation behaviors in light of dislocation core characteristics with respect to the compositional-dependent misfit potentials of aluminum alloys. J. Mater. Res. Technol. 2023, 27, 4366–4377. [Google Scholar] [CrossRef]
- Liang, C.; Wang, N.; Chen, Y.; Jiang, C.; Wu, G.; Zhao, Q.; Zhu, L.; Luo, J. Transition of low and high-angle grain boundaries during strain rate-induced dislocation storage and annihilation. Mater. Charact. 2023, 205, 113284. [Google Scholar] [CrossRef]
- Wang, D.; Yang, S.; Jiang, H.; Cao, K.; Xiao, J.; Guo, H.; Liu, R.; Zhao, A. Study on the relationship between the refined hierarchical microstructure, yield strength and impact toughness of low-carbon martensitic steel at different quenching temperatures. Mater. Sci. Eng. A 2024, 896, 146271. [Google Scholar] [CrossRef]
- Fukui, D.; Nakada, N.; Onaka, S. Internal residual stress originated from Bain strain and its effect on hardness in Fe–Ni martensite. Acta Mater. 2020, 196, 660–668. [Google Scholar] [CrossRef]
- Okada, K.; Shibata, A.; Tsuji, N. Characteristics and formation mechanism of serrated markings on the hydrogen-related quasi-cleavage fracture in as quenched low-carbon martensitic steel. Scr. Mater. 2023, 234, 115568. [Google Scholar] [CrossRef]
- Pineau, A.; Benzerga, A.A.; Pardoen, T. Failure of metals I: Brittle and ductile fracture. Acta Mater. 2016, 107, 424–483. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Y. Introduction of Non-metallic Inclusions in Steels. In Handbook of Non-Metallic Inclusions in Steels; Springer: Berlin/Heidelberg, Germany, 2025; pp. 1–35. [Google Scholar]
- Fu, Y.; Chen, C.; Liu, X.; Huang, S.; Mao, J.; Yi, Y. Research on the ultra-low temperature tensile deformation mechanism of Al-Mg-Si alloys in different heat treatment states. J. Alloys Compd. 2025, 1010, 177150. [Google Scholar] [CrossRef]
- Xu, S.; Ren, X.; Zhou, W. Research of cell-grain refinement and dislocation strengthening of laser shock processing on GH2036 alloy. Chin. J. Lasers 2016, 43, 46–51. [Google Scholar]
- Xiang, S.; Zhang, X. Dislocation structure evolution under electroplastic effect. Mater. Sci. Eng. A 2019, 761, 138026. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, W.; Zhen, L.; Zhang, X. Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718. Mater. Sci. Eng. A 2008, 486, 321–332. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Song, H.; Zhang, S. Comparative study on the fatigue properties and dislocation evolution of three kinds of aluminum alloys. Int. J. Fatigue 2024, 178, 108001. [Google Scholar] [CrossRef]
- Jackson, P. Dislocation modelling of shear in fcc crystals. Prog. Mater. Sci. 1985, 29, 139–175. [Google Scholar] [CrossRef]
- Blum, W.; Eisenlohr, P. Dislocation mechanics of creep. Mater. Sci. Eng. A 2009, 510, 7–13. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Kawasaki, M.; Langdon, T.G. Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress. Prog. Mater. Sci. 2023, 137, 101131. [Google Scholar] [CrossRef]
- Xie, L.; Wu, G.; Peng, Q.; Liu, J.; Li, D.; Wang, W. An atomistic study on grain-size and temperature effects on mechanical properties of polycrystal CoCrFeNi high-entropy alloys. Mater. Today Commun. 2023, 37, 107264. [Google Scholar] [CrossRef]
- Tian, L.; Quan, L.; Wang, C.; Yu, W.; Huang, L.; Shin, K.; Yu, H. Microstructure and mechanical properties of 2524 aluminum alloy with dislocation loops by various quenching rates. Mater. Sci. Eng. A 2023, 886, 145659. [Google Scholar] [CrossRef]
- Hamdi, H.; Charkhchian, J.; Abedi, H.R. On the work hardening capacity of high entropy alloys during low-temperature deformation: A review. Mater. Sci. Eng. A 2024, 915, 147206. [Google Scholar] [CrossRef]
- Sun, H.; Shao, M.; Lu, N.; Li, X.; Li, L.; Wang, Z.; Jiang, J.; Zhang, H. The morphology and crystallography of lath martensite via high pressure martensitic transformation in Fe-0.45 wt.% C steel. Acta Mater. 2025, 284, 120624. [Google Scholar] [CrossRef]
- Yu, S.; Deng, Y.; Tao, Z.; Misra, R.; Yang, Y. Effects of intercritical annealing time on microstructure, tensile properties, and cryogenic toughness of newly designed ultra-low C low Ni medium-Mn steel. J. Mater. Res. Technol. 2024, 32, 1245–1255. [Google Scholar] [CrossRef]
- Elites, M.; Comes, H.; Planas, J. Behavior at cryogenic temperatures of steel for concrete reinforcement. J. Proc. 1986, 83, 405–411. [Google Scholar]
- Dahmani, L.; Khenane, A.; Kaci, S. Behavior of the reinforced concrete at cryogenic temperatures. Cryogenics 2007, 47, 517–525. [Google Scholar] [CrossRef]
- Yan, J.-B.; Liew, J.R.; Zhang, M.-H.; Wang, J.-Y. Mechanical properties of normal strength mild steel and high strength steel S690 in low temperature relevant to Arctic environment. Mater. Des. 2014, 61, 150–159. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Ren, Q.; Du, H.; Wei, Y.; Shi, Y.; Hou, X.; Wang, J.; Jin, P. Deformation behavior and strengthening mechanisms of a novel powder metallurgy Ni-based superalloy during in-situ tensile testing. Mater. Sci. Eng. A 2025, 926, 147942. [Google Scholar] [CrossRef]
- Liu, L.-X.; Pan, J.; Zhang, P.-C.; Guo, R.; Xu, J.-Y.; Liu, L. Tensile and impact behavior of 3D-printed (FeCoNi) 86Al7Ti7 high entropy alloy at ambient and cryogenic temperatures. Mater. Des. 2024, 242, 113020. [Google Scholar] [CrossRef]
- Xie, K.; Fang, Y.; Ma, P.; Yang, H.; Wan, S.; Prashanth, K.G.; Gargarella, P.; Mu, Y.; Wang, G.; Jia, Y. Obtaining strength-ductility combination in a laser additive manufactured (FeCoNi) 86Al7Ti7 high-entropy alloy at cryogenic temperature. J. Mater. Res. Technol. 2025, 34, 819–831. [Google Scholar] [CrossRef]
- Li, S.; Hang, C.; Zhang, W.; Tian, Y.; Yu, D.; Ding, Y.; Wang, X. Fracture behavior and constitutive relations of Sn-3.0 Ag-0.5 Cu solder alloy at cryogenic temperature. Mater. Sci. Eng. A 2024, 896, 146280. [Google Scholar] [CrossRef]
- Zhang, C.; Zhai, Y.; Su, W.; Yang, B.; Cheng, Q.; Wang, Q.; Cao, W.; Huang, C. High fracture toughness of an ultra-strong medium Mn steel with fibrous ferrite in a martensitic matrix. Mater. Sci. Eng. A 2024, 902, 146606. [Google Scholar] [CrossRef]
- Zhai, K.; Zhang, Y.; Yue, J.; Qiu, Y.; Zhou, X.; Zhao, K.; Yu, X.; Zheng, J.; Li, S.; Ping, D. Fracture surface microstructure and new fracture mechanism in the pearlite structure. J. Mater. Res. Technol. 2024, 31, 1885–1895. [Google Scholar] [CrossRef]
- Kuhlmann-Wilsdorf, D. Evolution of FCC deformation structures in polyslip. Acta Metall. Mater. 1992, 40, 205. [Google Scholar]
- Xie, J.; Han, X.; Pei, J.; Lei, G. Experimental study of mechanical properties of reinforcing steels at cryogenic temperatures. Ind. Constr. 2015, 45, 126–129. [Google Scholar]
- Liu, S.; Gu, X.L.; Huang, Q.H.; Zhang, W.P. Stress-strain relationship of steel bars at super-low temperature. J. Tongji Univ. (Nat. Sci.) 2010, 38, 954–960. [Google Scholar]
- Liu, S.; Gu, X.; Huang, Q. Experimental study on mechanical properties of steel bars at super-low temperature. J. Build. Struct. 2008, 29, 47–51. [Google Scholar]
Steel | C | Si | Mn | Ni | V | Ti | P | S | Ca | Al | N/ppm | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
HRB500DW | 0.07 | 0.30 | 1.51 | 1.03 | 0.08 | 0.005 | 0.007 | 0.002 | 0.0025 | 0.0278 | 0.0081 | Bal. |
Steel | Location | Metallograph | HV0.3 | Grain Size |
---|---|---|---|---|
HRB500DW | Core | F + P | 212 | 4.76 |
Border | TM | 293 | 6.05 |
Steel | Test | Nominal Diameter | Diameter of the Bending Indenter | Results |
---|---|---|---|---|
HRB500DW | Positive bend | ≤16 mm | 4 d | Qualified |
>16 mm | 7 d | Qualified | ||
Reverse bend | ≤16 mm | 5 d | Qualified | |
>16 mm | 8 d | Qualified |
Steel | ReL/MPa | Rm/ReL | Agt/% |
---|---|---|---|
HRB500DW | 500–650 | ≥1.10 | ≥5.0 |
Steel | ReL/MPa | Agt/% | Specimen Style |
---|---|---|---|
HRB500DW | ≥575 | ≥3.0 | No notched |
- | 1.0 | Notched |
Steel | Diameter (mm) | Tensile Temperature | Rm/MPa | ReL/MPa | A% | Agt% |
---|---|---|---|---|---|---|
HRB500DW | 20 | 25 °C | 697 | 621 | 26 | 11.06 |
HRB500DW | 20 | −50 °C | 732 | 643 | 21 | 10.50 |
HRB500DW | 20 | −130 °C | 799 | 704 | 20 | 10.00 |
HRB500DW | 20 | −163 °C | 873 | 821 | 16 | 8.64 |
Sampling Location | Specimen | Grain Block Size/μm | Grain Boundary ≥15° | Grain Boundary ≤15° | Kernel Average Misorientation | ||||
---|---|---|---|---|---|---|---|---|---|
0–1.0 | 1.0–2.0 | 2.0–3.0 | 3.0–4.0 | 4.0–5.0 | |||||
Core | Matrix | 3.76 | 68.7 | 31.3 | 93.8 | 5.3 | 0.8 | 0.1 | 0 |
25 °C | 1.94 | 33.1 | 66.9 | 23.5 | 37.8 | 28.4 | 8.7 | 1.6 | |
−50 °C | 2.27 | 26.8 | 73.2 | 20.3 | 37.0 | 31.0 | 10.1 | 1.6 | |
−130 °C | 2.17 | 26.9 | 73.1 | 18.9 | 36.8 | 31.6 | 10.9 | 1.7 | |
−163 °C | 2.18 | 26.6 | 73.4 | 18.7 | 35.4 | 32.9 | 11.3 | 1.9 | |
Border | Matrix | 3.37 | 33.1 | 66.9 | 38.4 | 46.4 | 12.7 | 2.1 | 0.4 |
25 °C | 1.95 | 24.5 | 75.5 | 24.5 | 36.5 | 28.2 | 6.4 | 0.9 | |
−50 °C | 2.20 | 28.9 | 71.1 | 20.4 | 43.6 | 28.5 | 6.7 | 0.8 | |
−130 °C | 2.61 | 23.1 | 76.9 | 21.6 | 41.1 | 28.8 | 7.4 | 1.1 | |
−163 °C | 2.97 | 25.4 | 74.6 | 19.7 | 45.0 | 28.0 | 9.1 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Cao, J.; Zhang, H.; Yin, S.; Liu, B.; Zhang, Z. Ultra-Low-Temperature Tensile Fracture Mechanism of 500 MPa Duplex Steel Bar. Materials 2025, 18, 2288. https://doi.org/10.3390/ma18102288
Ma Z, Cao J, Zhang H, Yin S, Liu B, Zhang Z. Ultra-Low-Temperature Tensile Fracture Mechanism of 500 MPa Duplex Steel Bar. Materials. 2025; 18(10):2288. https://doi.org/10.3390/ma18102288
Chicago/Turabian StyleMa, Zhenghong, Jun Cao, Huanhuan Zhang, Shubiao Yin, Bingguo Liu, and Zhibo Zhang. 2025. "Ultra-Low-Temperature Tensile Fracture Mechanism of 500 MPa Duplex Steel Bar" Materials 18, no. 10: 2288. https://doi.org/10.3390/ma18102288
APA StyleMa, Z., Cao, J., Zhang, H., Yin, S., Liu, B., & Zhang, Z. (2025). Ultra-Low-Temperature Tensile Fracture Mechanism of 500 MPa Duplex Steel Bar. Materials, 18(10), 2288. https://doi.org/10.3390/ma18102288