Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,752)

Search Parameters:
Keywords = miniaturization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2000 KiB  
Article
Wearable Personal Uroflowmeter for Measuring Urine Leakage in Women with Incontinence: Feasibility Study
by Ali Attari, Faezeh Shanehsazzadeh, Tana Kirkbride, Carol Day, John O. L. DeLancey and James A. Ashton-Miller
Biosensors 2025, 15(8), 481; https://doi.org/10.3390/bios15080481 - 24 Jul 2025
Abstract
This paper describes a novel wearable personal uroflowmeter and its use to log urine leakage episodes in women. Consisting of a miniature flow rate sensor attached under the urethral meatus, it recorded both urine flow rate and volume during activities of daily living. [...] Read more.
This paper describes a novel wearable personal uroflowmeter and its use to log urine leakage episodes in women. Consisting of a miniature flow rate sensor attached under the urethral meatus, it recorded both urine flow rate and volume during activities of daily living. The sensor communicated with a determining unit incorporating a microcontroller and an inertial measurement unit worn at the waist, facilitating the post-hoc determination of which activities and changes in pose caused leakage. Six women participated in a feasibility study performed in a clinical setting. The results indicate that the uroflowmeter was 97.5% accurate in assessing micturition flow compared to gold standard uroflowmetry and leakage measurements. The system also provides subject-specific information on the relationship between physical activity and urine leakage, thereby eliminating errors due to missing data and recall bias in bladder leakage diaries and circumventing the limitations of office-based uroflowmeters. Full article
(This article belongs to the Special Issue Advances in Flexible and Wearable Biosensors)
Show Figures

Figure 1

23 pages, 6498 KiB  
Article
Design and Testing of Miniaturized Electrically Driven Plug Seedling Transplanter
by Meng Chen, Yang Xu, Changjie Han, Desheng Li, Binning Yang, Shilong Qiu, Yan Luo, Hanping Mao and Xu Ma
Agriculture 2025, 15(15), 1589; https://doi.org/10.3390/agriculture15151589 - 24 Jul 2025
Abstract
To address the issues of bulky structure and complex transmission systems in current transplanters, a compact, electric-driven automatic transplanter was designed. Using pepper plug seedlings as the test subject, this study investigated plug tray dimensions and planting patterns. According to the design requirement [...] Read more.
To address the issues of bulky structure and complex transmission systems in current transplanters, a compact, electric-driven automatic transplanter was designed. Using pepper plug seedlings as the test subject, this study investigated plug tray dimensions and planting patterns. According to the design requirement that the width of the single-row transplanter must be less than 62.5 cm, a three-dimensional transplanter model was constructed. The transplanter comprises a coaxially installed dual-layer seedling conveying device and a sector-expanding automatic seedling picking and depositing device. The structural dimensions, drive configurations, and driving forces of the transplanter were also determined. Finally, the circuit and pneumatic system were designed, and the transplanter was assembled. Both bench and field tests were conducted to select the optimal working parameters. The test results demonstrated that the seedling picking and depositing mechanism met the required operational efficiency. In static seedling picking and depositing tests, at three transplanting speeds of 120 plants/min, 160 plants/min, and 200 plants/min, the success rates of seedling picking and depositing were 100%, 100%, and 97.5%, respectively. In the field test, at three transplanting speeds of 80 plants/min, 100 plants/min, and 120 plants/min, the transplanting success rates were 94.17%, 90.83%, and 88.33%, respectively. These results illustrate that the compact, electric-driven seedling conveying and picking and depositing devices meet the operational demands of automatic transplanting, providing a reference for the miniaturization and electrification of transplanters. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

21 pages, 4490 KiB  
Article
Oxidative Stress Model of Lipopolysaccharide-Challenge in Piglets of Wuzhishan Miniature Pig
by Ruiying Bao, Pingfei Qiu, Yanrong Hu, Junpu Chen, Xiaochun Li, Qin Wang, Yongqiang Li, Huiyu Shi, Haiwen Zhang and Xuemei Wang
Vet. Sci. 2025, 12(8), 694; https://doi.org/10.3390/vetsci12080694 - 24 Jul 2025
Abstract
Oxidative stress (OS) is a major concern in young poultry and livestock, prompting extensive research on OS models. This study aimed to systematically investigate the dynamic effects and temporal trends of OS induced with lipopolysaccharide (LPS) over time. Twenty-eight piglets were randomly divided [...] Read more.
Oxidative stress (OS) is a major concern in young poultry and livestock, prompting extensive research on OS models. This study aimed to systematically investigate the dynamic effects and temporal trends of OS induced with lipopolysaccharide (LPS) over time. Twenty-eight piglets were randomly divided into four groups and equally intraperitoneally injected with LPS at doses of 0 μg/kg (control), 50 μg/kg (L-LPS), 100 μg/kg (M-LPS) and 150 μg/kg (H-LPS) body weight, respectively. The results showed that total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), and catalase (CAT) were decreased, while malondialdehyde (MDA), nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α), diamine oxidase (DAO) and D-lactic acid (D-LA) were increased in the M-LPS and H-LPS group on day 1 in comparison with the control group, but no differences were found among treatments on day 7. However, LPS treatments gave rise to varying degrees of pathological injury in the intestines, livers and spleens on day 7. Metabolomics analysis indicated that compared with the control group, glycyl-valine, histamine and lepidine F were decreased in the M-LPS group. Most differentially expressed metabolites were enriched in amino acid-related metabolism pathways on both day 1 and day 7. Microbiome analysis identified that Oscillibacter_sp._CAG:241 was decreased in the M-LPS group compared with the control group on day 1, while Bacteroides_thetaiotaomicron and Lactobacillus_amylovorus were reduced in the M-LPS group on day 7. Collectively, an LPS dose of 100 μg/kg body weight is optimal for inducing acute inflammation in Wuzhishan miniature pigs. These findings highlight the importance of considering both the duration of OS induction and the specific research objectives when establishing OS models. Full article
13 pages, 9208 KiB  
Article
Hormonal Signaling and Follicular Regulation in Normal and Miniature Pigs During Corpus Luteum Regression
by Sang-Hwan Kim
Int. J. Mol. Sci. 2025, 26(15), 7147; https://doi.org/10.3390/ijms26157147 - 24 Jul 2025
Abstract
Reproductive efficiency in pigs is regulated by hormonal pathways that control follicular development at Day 15 of the estrous cycle, during corpus luteum regression. Miniature pigs are extensively employed as human-relevant models in biomedical research, yet their reproductive characteristics during mid-luteal regression remain [...] Read more.
Reproductive efficiency in pigs is regulated by hormonal pathways that control follicular development at Day 15 of the estrous cycle, during corpus luteum regression. Miniature pigs are extensively employed as human-relevant models in biomedical research, yet their reproductive characteristics during mid-luteal regression remain inadequately characterized, limiting assessments of their translational reliability. Differences in follicular morphology, hormonal signaling, and vascular development may underlie their lower fertility compared to conventional pigs. In this study, follicular development after corpus luteum formation was compared between conventional pigs and minipigs using histological staining, immunofluorescence, hormonal assays, and transcriptomic profiling. The expression of VEGF, mTOR, LH, FSH, PAPP-A, and apoptosis markers was evaluated across the granulosa and thecal regions. Differential gene expression was analyzed using microarray data followed by GO categorization. Minipigs exhibited smaller follicles, reduced vascularization, and lower VEGF and MMP activity compared to conventional pigs. Expression of LH and PAPP-A was higher in conventional pigs, while minipigs showed relatively elevated E2 and FSH levels. Transcriptomic data revealed greater upregulation of cell-survival- and angiogenesis-related genes in conventional pigs, including genes involved in IGF pathways. Apoptosis and poor extracellular matrix remodeling were more pronounced in minipigs. Minipigs demonstrated impaired follicular remodeling and weaker hormonal signaling after corpus luteum formation, which likely contributed to their reduced reproductive efficiency. Understanding these species differences can guide breeding strategies and fertility management in biomedical and agricultural settings. Full article
(This article belongs to the Special Issue Molecular Research on Reproductive Physiology and Endocrinology)
Show Figures

Figure 1

23 pages, 2939 KiB  
Article
Cascaded Detection Method for Ship Targets Using High-Frequency Surface Wave Radar in the Time–Frequency Domain
by Zhiqing Yang, Hao Zhou, Yingwei Tian, Gan Liu, Bing Zhang, Yao Qin, Peng Li and Weimin Huang
Remote Sens. 2025, 17(15), 2580; https://doi.org/10.3390/rs17152580 - 24 Jul 2025
Abstract
Compact high-frequency surface wave radars (HFSWRs) utilize miniaturized antennas, resulting in lower antenna gain and a reduced signal-to-noise ratio (SNR) for target echoes. Due to noise interference, ship echoes in the noise region often fall below the detection threshold, leading to missed detections. [...] Read more.
Compact high-frequency surface wave radars (HFSWRs) utilize miniaturized antennas, resulting in lower antenna gain and a reduced signal-to-noise ratio (SNR) for target echoes. Due to noise interference, ship echoes in the noise region often fall below the detection threshold, leading to missed detections. To address this issue, this paper proposes a cascaded detection method in the time–frequency (TF) domain to improve ship detection performance under such conditions. First, TF features are extracted from TF representations of ship and noise signals. Supervised machine learning algorithms are then employed to distinguish targets from noise, reducing false alarms. Next, a non-constant false alarm rate (CFAR) threshold is computed based on the noise mean, standard deviation, and an adjustment factor to improve detection robustness. Experiments show that the classification accuracy between the ship and noise signals exceeds 99%, and the proposed method significantly outperforms the conventional CFAR and TF-domain CFAR in terms of detection performance. Full article
17 pages, 2815 KiB  
Article
Research on the Structural Design and Mechanical Properties of T800 Carbon Fiber Composite Materials in Flapping Wings
by Ruojun Wang, Zengyan Jiang, Yuan Zhang, Luyao Fan and Weilong Yin
Materials 2025, 18(15), 3474; https://doi.org/10.3390/ma18153474 - 24 Jul 2025
Abstract
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping [...] Read more.
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping mechanism of a single-degree-of-freedom miniature flapping wing aircraft. In this study, T800 carbon fiber composite material was used as the frame material. Three typical wing membrane materials, namely polyethylene terephthalate (PET), polyimide (PI), and non-woven kite fabric, were selected for comparative analysis. Three flapping wing configurations with different stiffness were proposed. These wings adopted carbon fiber composite material frames. The wing membrane material is bonded to the frame through a coating. Inspired by bionics, a flapping wing that mimics the membrane vein structure of insect wings is designed. By changing the type of membrane material and the distribution of carbon fiber composite materials on the wing, the stiffness of the flapping wing can be controlled, thereby affecting the mechanical properties of the flapping wing aircraft. The modal analysis of the flapping-wing structure was conducted using the finite element analysis method, and the experimental prototype was fabricated by using 3D printing technology. To evaluate the influence of different wing membrane materials on lift performance, a high-precision force measurement experimental platform was built, systematic tests were carried out, and the lift characteristics under different flapping frequencies were analyzed. Through computational modeling and experiments, it has been proven that under the same flapping wing frequency, the T800 carbon fiber composite material frame can significantly improve the stiffness and durability of the flapping wing. In addition, the selection of wing membrane materials has a significant impact on lift performance. Among the test materials, the PET wing film demonstrated excellent stability and lift performance under high-frequency conditions. This research provides crucial experimental evidence for the optimal selection of wing membrane materials for micro flapping-wing aircraft, verifies the application potential of T800 carbon fiber composite materials in micro flapping-wing aircraft, and opens up new avenues for the application of advanced composite materials in high-performance micro flapping-wing aircraft. Full article
Show Figures

Figure 1

18 pages, 3248 KiB  
Article
Electrochemical Nanostructured Aptasensor for Direct Detection of Glycated Hemoglobin
by Luminita Fritea, Cosmin-Mihai Cotrut, Iulian Antoniac, Simona Daniela Cavalu, Luciana Dobjanschi, Angela Antonescu, Liviu Moldovan, Maria Domuta and Florin Banica
Int. J. Mol. Sci. 2025, 26(15), 7140; https://doi.org/10.3390/ijms26157140 - 24 Jul 2025
Abstract
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and [...] Read more.
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and combined with gold nanoparticles (AuNPs) electrochemically deposited onto a screen-printed carbon electrode. The nanomaterials significantly improved the analytical performance of the sensor due to their increased surface area and high electrical conductivity. This nanoplatform was employed as a substrate for the covalent attachment of thiolated ferrocene-labeled HbA1c specific aptamer through Au-S binding. The electrochemical signal of ferrocene was covered by a stronger oxidation peak of Fe2+ from the HbA1c structure, leading to the elaboration of a nanostructured aptasensor capable of the direct detection of HbA1c. The electrochemical aptasensor presented a very wide linear range (0.688–11.5%), an acceptable limit of detection (0.098%), and good selectivity and stability, being successfully applied on real samples. This miniaturized, simple, easy-to-use, and fast-responding aptasensor, requiring only a small sample volume, can be considered as a promising candidate for the efficient on-site determination of HbA1c. Full article
Show Figures

Figure 1

23 pages, 845 KiB  
Article
OSIRIS4CubeSat—The World’s Smallest Commercially Available Laser Communication Terminal
by Benjamin Rödiger, Christian Roubal, Fabian Rein, René Rüddenklau, Anil Morab Vishwanath and Christopher Schmidt
Aerospace 2025, 12(8), 655; https://doi.org/10.3390/aerospace12080655 - 23 Jul 2025
Abstract
The New Space movement led to an exponential increase in the number of the smallest satellites in orbit in the last two decades. The number of required communication channels increased with that as well and revealed the limitations of classical radio frequency channels. [...] Read more.
The New Space movement led to an exponential increase in the number of the smallest satellites in orbit in the last two decades. The number of required communication channels increased with that as well and revealed the limitations of classical radio frequency channels. Free-space optical communication overcomes these challenges and has been successfully demonstrated, with operational systems in orbit on large and small satellites. The next step is to miniaturize the technology of laser communication to make it usable on CubeSats. Thus, the German Aerospace Center (DLR) developed, together with Tesat-Spacecom GmbH & Co. KG in Backnang, Germany, a highly miniaturized and power-efficient laser terminal, which is based on a potential customer’s use case. OSIRIS4CubeSat uses a new patented design that combines electronics and optomechanics into a single system architecture to achieve a high compactness following the CubeSat standard. Interfaces and software protocols that follow established standards allowed for an easy transition to the industry for a commercial mass market. The successful demonstration of OSIRIS4CubeSat during the PIXL-1 mission proved its capabilities and the advantages of free-space optical communication in the final environment. This paper gives an overview of the system architecture and the development of the single subsystems. The system’s capabilities are verified by the already published in-orbit demonstration results. Full article
(This article belongs to the Special Issue On-Board Systems Design for Aerospace Vehicles (2nd Edition))
13 pages, 1952 KiB  
Article
Real-Time Dose Measurement in Brachytherapy Using Scintillation Detectors Based on Ce3+-Doped Garnet Crystals
by Sandra Witkiewicz-Łukaszek, Bogna Sobiech, Janusz Winiecki and Yuriy Zorenko
Crystals 2025, 15(8), 669; https://doi.org/10.3390/cryst15080669 - 23 Jul 2025
Abstract
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized [...] Read more.
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized techniques, have been explored to address this limitation. One approach to solving this problem involves the use of dosimetric materials based on efficient scintillation crystals, which can be placed in the patient’s body using a long optical fiber inserted intra-cavernously, either in front of or next to the tumor. Scintillation crystals with a density close to that of tissue can be used in any location, including the respiratory tract, as they do not interfere with dose distribution. However, in many cases of radiation therapy, the detector may need to be positioned behind the target. In such cases, the use of heavy, high-density, and high-Zeff scintillators is strongly preferred. The delivered radiation dose was registered using the radioluminescence response of the crystal scintillator and recorded with a compact luminescence spectrometer connected to the scintillator via a long optical fiber (so-called fiber-optic dosimeter). This proposed measurement method is completely non-invasive, safe, and can be performed in real time. To complete the abovementioned task, scintillation detectors based on YAG:Ce (ρ = 4.5 g/cm3; Zeff = 35), LuAG:Ce (ρ = 6.75 g/cm3; Zeff = 63), and GAGG:Ce (ρ = 6.63 g/cm3; Zeff = 54.4) garnet crystals, with different densities ρ and effective atomic numbers Zeff, were used in this work. The results obtained are very promising. We observed a strong linear correlation between the dose and the scintillation signal recorded by the detector system based on these garnet crystals. The measurements were performed on a specially prepared phantom in the brachytherapy treatment room at the Oncology Center in Bydgoszcz, where in situ measurements of the applied dose in the 0.5–8 Gy range were performed, generated by the 192Ir (394 keV) γ-ray source from the standard Fexitron Elektra treatment system. Finally, we found that GAGG:Ce crystal detectors demonstrated the best figure-of-merit performance among all the garnet scintillators studied. Full article
(This article belongs to the Special Issue Recent Advances in Scintillator Materials)
Show Figures

Figure 1

14 pages, 4769 KiB  
Article
Parallel Dictionary Reconstruction and Fusion for Spectral Recovery in Computational Imaging Spectrometers
by Hongzhen Song, Qifeng Hou, Kaipeng Sun, Guixiang Zhang, Tuoqi Xu, Benjin Sun and Liu Zhang
Sensors 2025, 25(15), 4556; https://doi.org/10.3390/s25154556 - 23 Jul 2025
Abstract
Computational imaging spectrometers using broad-bandpass filter arrays with distinct transmission functions are promising implementations of miniaturization. The number of filters is limited by the practical factors. Compressed sensing is used to model the system as linear underdetermined equations for hyperspectral imaging. This paper [...] Read more.
Computational imaging spectrometers using broad-bandpass filter arrays with distinct transmission functions are promising implementations of miniaturization. The number of filters is limited by the practical factors. Compressed sensing is used to model the system as linear underdetermined equations for hyperspectral imaging. This paper proposes the following method: parallel dictionary reconstruction and fusion for spectral recovery in computational imaging spectrometers. Orthogonal systems are the dictionary candidates for reconstruction. According to observation of ground objects, the dictionaries are selected from the candidates using the criterion of incoherence. Parallel computations are performed with the selected dictionaries, and spectral recovery is achieved by fusion of the computational results. The method is verified by simulating visible-NIR spectral recovery of typical ground objects. The proposed method has a mean square recovery error of ≤1.73 × 10−4 and recovery accuracy of ≥0.98 and is both more universal and more stable than those of traditional sparse representation methods. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

33 pages, 2648 KiB  
Review
Microfluidic Sensors for Micropollutant Detection in Environmental Matrices: Recent Advances and Prospects
by Mohamed A. A. Abdelhamid, Mi-Ran Ki, Hyo Jik Yoon and Seung Pil Pack
Biosensors 2025, 15(8), 474; https://doi.org/10.3390/bios15080474 - 22 Jul 2025
Abstract
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic [...] Read more.
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic sensors, including biosensors, have gained prominence as versatile and transformative tools for real-time environmental monitoring, enabling precise and rapid detection of trace-level contaminants in complex environmental matrices. Their miniaturized design, low reagent consumption, and compatibility with portable and smartphone-assisted platforms make them particularly suited for on-site applications. Recent breakthroughs in nanomaterials, synthetic recognition elements (e.g., aptamers and molecularly imprinted polymers), and enzyme-free detection strategies have significantly enhanced the performance of these biosensors in terms of sensitivity, specificity, and multiplexing capabilities. Moreover, the integration of artificial intelligence (AI) and machine learning algorithms into microfluidic platforms has opened new frontiers in data analysis, enabling automated signal processing, anomaly detection, and adaptive calibration for improved diagnostic accuracy and reliability. This review presents a comprehensive overview of cutting-edge microfluidic sensor technologies for micropollutant detection, emphasizing fabrication strategies, sensing mechanisms, and their application across diverse pollutant categories. We also address current challenges, such as device robustness, scalability, and potential signal interference, while highlighting emerging solutions including biodegradable substrates, modular integration, and AI-driven interpretive frameworks. Collectively, these innovations underscore the potential of microfluidic sensors to redefine environmental diagnostics and advance sustainable pollution monitoring and management strategies. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices—2nd Edition)
Show Figures

Figure 1

20 pages, 1471 KiB  
Article
A New Approach for Interferent-Free Amperometric Biosensor Production Based on All-Electrochemically Assisted Procedures
by Rosanna Ciriello, Maria Assunta Acquavia, Giuliana Bianco, Angela Di Capua and Antonio Guerrieri
Biosensors 2025, 15(8), 470; https://doi.org/10.3390/bios15080470 - 22 Jul 2025
Viewed by 120
Abstract
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). [...] Read more.
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). Analogously, the poor selectivity of the transducer was dramatically improved by the electrosynthesis of non-conducting polymers with built-in permselectivity, permitting the formation of a thin permselective film onto the transducer surface, able to reject common interferents usually found in real samples. Since both approaches required a proper and distinct electrochemical perturbation (a pulsed current sequence for electrophoretic protein deposition and cyclic voltammetry for the electrosynthesis of non-conducting polymers), an appropriate coupling of the two all-electrochemical approaches was assured by a thorough study of the likely combinations of the electrosynthesis of permselective polymers with enzyme immobilization by electrophoretic protein deposition and by the use of several electrosynthesized polymers. For each investigated combination and for each polymer, the analytical performances and the rejection capabilities of the resulting biosensor were acquired so to gain information about their sensing abilities eventually in real sample analysis. This study shows that the proper coupling of the two all-electrochemical approaches and the appropriate choice of the electrosynthesized, permselective polymer permits the easy fabrication of novel glucose oxidase biosensors with good analytical performance and low bias in glucose measurement from typical interferent in serum. This novel approach, resembling classical electroplating procedures, is expected to allow all the advantages expected from such procedures like an easy preparation biosensor, a bi-dimensional control of enzyme immobilization and thickness, interferent- and fouling-free transduction of the electrodic sensor and, last but not the least, possibility of miniaturization of the biosensing device. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

18 pages, 20327 KiB  
Article
The Effect of Scratch-Induced Microscale Surface Roughness on Signal Transmission in Radio Frequency Coaxial Connectors
by Yuqi Zhou, Tianmeng Zhang, Gang Xie and Jinchun Gao
Micromachines 2025, 16(8), 837; https://doi.org/10.3390/mi16080837 - 22 Jul 2025
Viewed by 131
Abstract
Electrical connectors play a vital role in ensuring reliable signal transmission in high-frequency microsystems. This study explores the impact of microscale scratch-induced surface roughness on the alternating current (AC) contact impedance of RF coaxial connectors. Unlike traditional approaches that assume idealized surface conditions, [...] Read more.
Electrical connectors play a vital role in ensuring reliable signal transmission in high-frequency microsystems. This study explores the impact of microscale scratch-induced surface roughness on the alternating current (AC) contact impedance of RF coaxial connectors. Unlike traditional approaches that assume idealized surface conditions, controlled micro-defects were introduced at the central contact interface to establish a quantitative relationship between surface morphology and signal degradation. An equivalent circuit model was constructed to account for local impedance variations and the cumulative effects of cascaded connector interfaces. The model was validated using S-parameter measurements obtained from vector network analyzer (VNA) testing, showing strong agreement with simulation results. Experimental results reveal that the low-roughness (0.4 μm) contact surfaces lead to degraded signal integrity due to insufficient micro-contact formation. In contrast, scratch-induced moderate roughness (0.8–4.8 μm) improves transmission performance, although signal quality declines as roughness increases within this range. These effects are further amplified in multi-connector configurations due to accumulated impedance mismatches. This work provides new insight into the coupling between microscale surface features and frequency-domain transmission characteristics, offering practical guidance for surface engineering, contact design, and the development of miniaturized, high-reliability radio frequency interconnects for next-generation communication systems. Full article
Show Figures

Figure 1

14 pages, 3251 KiB  
Communication
Design and Optimization of a Miniaturized Wireless Power Transfer System Using Matching Media for Efficiency Enhancement at 1.6 GHz
by Aftab Ahmad, Ashfaq Ahmad and Dong-You Choi
Electronics 2025, 14(14), 2918; https://doi.org/10.3390/electronics14142918 - 21 Jul 2025
Viewed by 200
Abstract
This paper presents the design and performance analysis of a compact wireless power transfer (WPT) system operating at 1.6 GHz. The transmitter (Tx) structure consists of a circular slot and a circular radiating element, excited from the backside of the substrate, while the [...] Read more.
This paper presents the design and performance analysis of a compact wireless power transfer (WPT) system operating at 1.6 GHz. The transmitter (Tx) structure consists of a circular slot and a circular radiating element, excited from the backside of the substrate, while the receiver (Rx) comprises a slotted patch antenna miniaturized using two vertical vias. The initial power transfer efficiency (PTE), represented by the transmission coefficient S21, was measured to be −31 dB with a 25 mm separation between Tx and Rx. To enhance the efficiency of the system, a dielectric matching media (MM) was introduced between the transmitter and receiver. Through the implementation of the MM, the PTE improved significantly, with S21 increasing to −24 dB. A parametric study was conducted by varying the thickness of the MM from 1 mm to 10 mm and the relative permittivity (εr) from 5 to 30. The results demonstrate that both the thickness and dielectric constant of the MM play a crucial role in improving the coupling and overall efficiency of the WPT system. The optimal configuration was achieved with a matching media thickness of 10 mm and a relative permittivity of 25, which yielded the best improvement in transmission performance. This work offers a practical approach to enhance near-field WPT efficiency using simple matching structures and is particularly relevant for compact and low-profile energy transfer applications. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

21 pages, 2817 KiB  
Article
A Handheld IoT Vis/NIR Spectroscopic System to Assess the Soluble Solids Content of Wine Grapes
by Xu Zhang, Ziquan Qin, Ruijie Zhao, Zhuojun Xie and Xuebing Bai
Sensors 2025, 25(14), 4523; https://doi.org/10.3390/s25144523 - 21 Jul 2025
Viewed by 113
Abstract
The quality of wine largely depends on the quality of wine grapes, which is determined by their chemical composition. Therefore, measuring parameters related to grape ripeness, such as soluble solids content (SSC), is crucial for harvesting high-quality grapes. Visible–Near-Infrared (Vis/NIR) spectroscopy enables effective, [...] Read more.
The quality of wine largely depends on the quality of wine grapes, which is determined by their chemical composition. Therefore, measuring parameters related to grape ripeness, such as soluble solids content (SSC), is crucial for harvesting high-quality grapes. Visible–Near-Infrared (Vis/NIR) spectroscopy enables effective, non-destructive detection of SSC in grapes. However, commercial Vis/NIR spectrometers are often expensive, bulky, and power-consuming, making them unsuitable for on-site applications. This article integrated the AS7265X sensor to develop a low-cost handheld IoT multispectral detection device, which can collect 18 variables in the wavelength range of 410–940 nm. The data can be sent in real time to the cloud configuration, where it can be backed up and visualized. After simultaneously removing outliers detected by both Monte Carlo (MC) and principal component analysis (PCA) methods from the raw spectra, the SSC prediction model was established, resulting in an RV2 of 0.697. Eight preprocessing methods were compared, among which moving average smoothing (MAS) and Savitzky–Golay smoothing (SGS) improved the RV2 to 0.756 and 0.766, respectively. Subsequently, feature wavelengths were selected using UVE and SPA, reducing the number of variables from 18 to 5 and 6, respectively, further increasing the RV2 to 0.809 and 0.795. The results indicate that spectral data optimization methods are effective and essential for improving the performance of SSC prediction models. The IoT Vis/NIR Spectroscopic System proposed in this study offers a miniaturized, low-cost, and practical solution for SSC detection in wine grapes. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

Back to TopTop