Emerging Micro Manufacturing Technologies and Applications, 3rd Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "D:Materials and Processing".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 1294

Special Issue Editor


E-Mail Website
Guest Editor
Department of Industrial Engineering and Management, School of Engineering, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece
Interests: manufacturing and processing; manufacturing simulation; cloud manufacturing; machine tools; gear manufacturing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, the field of micromachining has gained a lot of traction owing to the drive towards lightweighting, electrification, and sustainability. Industrial sectors that have shown increasing interest in micromachining include the medical, space, aerospace, and consumer electronics fields.

Research in academia has focused on the experimental investigation of micromachining processes such as micromilling, microturning, and microgrinding. In addition, numerical and finite element models have been developed to predict the performance of micromachined parts. Over the last few years, a series of manufacturing processes have emerged in the macromanufacturing sector that have shown great potential in the improvement of said processes; however, their use in the microscale has not been thoroughly modeled and understood.

Therefore, we invite contributions to showcase recent advances in novel and emerging manufacturing technologies and applications on the microscale. Papers in all areas of micromachining technologies will be considered, including, but not limited to, microcutting, micromilling, microgrinding, polishing, laser micromachining, simulation and modeling in the microscale, and hybrid micromachining. Original research papers and review articles are all welcome.

We look forward to receiving your contributions to this Special Issue.

Dr. Nikolaos Tapoglou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • machining
  • micromachining
  • emerging technologies
  • simulation
  • 3D printing
  • microcutting
  • microgears

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 6680 KiB  
Article
Research on Machining Parameter Optimization and an Electrode Wear Compensation Method of Microgroove Micro-EDM
by Xiaodong Zhang, Wentong Zhang, Peng Yu and Yiquan Li
Micromachines 2025, 16(4), 481; https://doi.org/10.3390/mi16040481 - 18 Apr 2025
Viewed by 196
Abstract
In the process of micro-EDM, tool electrode wear is inevitable, especially for complex three-dimensional cavities or microgroove structures. Tool electrode wear accumulates during machining, which will finally affect machining accuracy and machining quality. It is necessary to reduce electrode wear and compensate it [...] Read more.
In the process of micro-EDM, tool electrode wear is inevitable, especially for complex three-dimensional cavities or microgroove structures. Tool electrode wear accumulates during machining, which will finally affect machining accuracy and machining quality. It is necessary to reduce electrode wear and compensate it through micro-EDM. Therefore, based on an established L27 orthogonal experiment, this paper uses the grey relational analysis (GRA) method to realize multi-objective optimization of machining time and electrode wear, so as to achieve the shortest machining time and the minimum electrode wear during machining under the optimal machining parameter combination. Then, the orthogonal experiment results are used as dataset of artificial neural networks (ANNs), and an ANN prediction model is established. Combined with image processing technology, the bottom profile of the machined microgroove is extracted and then an electrode axial wear compensation equation is fitted, and a fixed-length nonlinear compensation method for electrode axial wear is proposed. Finally, the GRA optimal experiment shows that machining time, electrode axial wear and radial wear are reduced by 13.89%, 3.31%, and 10.80%, respectively, compared with the H17 orthogonal experiment with the largest grey relational grade. For the study of electrode axial wear compensation methods, the consistency of the depth and width of the machined microgroove structure with compensation is significantly better than that of the microgroove structure without compensation. This result shows that the proposed fixed-length nonlinear compensation method can effectively compensate electrode axial wear in micro-EDM and improve machining quality to a certain extent. Full article
Show Figures

Figure 1

17 pages, 9182 KiB  
Article
Investigation into the Influence of Polishing Depth and Speed on the Nano-Polishing Process of Nickel–Phosphorus Alloys via Molecular Dynamics
by Jiadai Xue, Yutao Liu, Qiuyan Liao, Ziteng Li, Fei Ding, Yuan Jin, Duo Li, Yanwen Liu, Chuanrui Zhu, Yangong Wu and Bo Wang
Micromachines 2025, 16(4), 444; https://doi.org/10.3390/mi16040444 - 9 Apr 2025
Viewed by 240
Abstract
Nickel–phosphorus (NiP) alloys have been widely used in many engineering fields such as aerospace, automotive, and optics; however, it is difficult to study the material removal mechanism and microscopic size changes in the polishing process of nickel–phosphorus alloys through simple experiments. In light [...] Read more.
Nickel–phosphorus (NiP) alloys have been widely used in many engineering fields such as aerospace, automotive, and optics; however, it is difficult to study the material removal mechanism and microscopic size changes in the polishing process of nickel–phosphorus alloys through simple experiments. In light of these difficulties, there is a need to improve our understanding of the surface friction and wear mechanisms of NiP materials. In the present study, molecular dynamics simulations are employed for the first time to investigate the material removal mechanism, mechanical response, phase transformation, and stress distribution of two NiP alloys with different phosphorus contents during the nano-polishing process by adjusting the polishing depth and speed. Our simulation results indicate that the mechanical response of the low-phosphorus alloy is slightly higher than that of the high-phosphorus NiP alloy. Larger polishing depths and higher speeds reduce the surface quality and lead to increased residual stress. The findings presented herein provide an atomic-level understanding of the material removal mechanism of NiP alloys via MD methodology and offer valuable guidance for selecting alloys with an appropriate NiP ratio as engineering materials and for developing processing methods to improve surface quality. Full article
Show Figures

Figure 1

25 pages, 40092 KiB  
Article
Innovative Solutions in the Design of Microfinishing Attachments for Surface Finishing with Abrasive Films
by Wojciech Kacalak, Katarzyna Tandecka, Zbigniew Budniak and Thomas G. Mathia
Micromachines 2025, 16(2), 165; https://doi.org/10.3390/mi16020165 - 30 Jan 2025
Viewed by 586
Abstract
The study introduces new technologies of microfinishing, which are primarily aimed at cylindrical surfaces but with machining effectiveness, precision, and surface longevity. In the newly proposed dual-zone microfinishing method, symmetrical abrasive film feeding systems are adapted with a lever mechanism and a pivoting [...] Read more.
The study introduces new technologies of microfinishing, which are primarily aimed at cylindrical surfaces but with machining effectiveness, precision, and surface longevity. In the newly proposed dual-zone microfinishing method, symmetrical abrasive film feeding systems are adapted with a lever mechanism and a pivoting pressing assembly to simultaneously conduct processing in two zones. With such a design, uniform force distribution is ensured, while mechanical deformation is reduced to raise the utility of the abrasive film and lower scraps for better economic performance. Also, the application of microfinishing operations combined with carbon layer deposition using graphite-impregnated abrasive films is introduced as a novel method. This process combines surface refinement and the forming of wear-resistant carbon coatings into one single operation, resulting in increased wear resistance and reduced forces of friction. Further stabilization of the conditions for microfinishing is achieved by immersing the processing zone in a fluid medium due to increased lubrication, improvement in heat dissipation, and the optimization of surface properties. It is particularly suitable for high-precision applications and a maintenance-free environment such as military, vacuum, and low-temperature systems. The experimental results show the effectiveness of the proposed methodologies, underscoring their ability to create remarkably smooth surfaces and very robust carbon textures simultaneously. Full article
Show Figures

Figure 1

Back to TopTop