materials-logo

Journal Browser

Journal Browser

Advances in Structural Design and Numerical Modelling of Composite Materials

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Materials Simulation and Design".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 5252

Special Issue Editor


E-Mail Website
Guest Editor
Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
Interests: composite structure; morphing wing

Special Issue Information

Dear Colleagues,

Composite materials have attracted significant attention in various engineering fields due to their unique combination of properties, such as high strength, low weight, and excellent corrosion resistance. The effective design and analysis of composite structures require a comprehensive understanding of their complex behaviour, which can be achieved through advanced numerical modelling techniques. This Special Issue aims to explore recent advancements in the structural design and numerical modelling of composite materials.

The objective of this Special Issue is to provide a platform for researchers and practitioners to share their state-of-the-art findings, novel concepts, and innovative solutions addressing the challenges associated with the design and modelling of composite materials. Contributions are solicited on a wide range of topics, including but not limited to composite material characterization, failure analysis, modelling techniques, multiscale modelling, and experimental validation.

Researchers are encouraged to submit original research articles and review papers that provide new insights into the design and numerical modelling of composite materials.

Dr. Weilong Yin
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fibre-reinforced composite materials
  • microscopic modelling
  • optimization design
  • fast optimization algorithm
  • multiscale modelling
  • failure analysis
  • composite material characterization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 8576 KiB  
Article
A Study on the Failure Behavior and Force Transmission of Composite Skin-Stringer Structures Under a Compressive Load
by Guoyang Zhao, Jian Shi, Wei Xu, Nan Sun, Jianjiang Zeng, Guang Yang, Kun Song and Jie Zheng
Materials 2025, 18(6), 1380; https://doi.org/10.3390/ma18061380 - 20 Mar 2025
Viewed by 275
Abstract
Carbon fiber-reinforced composite stringers, which support aircraft skins in resisting tensile, compressive, and shear loads, are widely used in aircraft structures. These composite structures play a crucial role in enhancing the performance and safety of the structural integration of aircrafts. To better understand [...] Read more.
Carbon fiber-reinforced composite stringers, which support aircraft skins in resisting tensile, compressive, and shear loads, are widely used in aircraft structures. These composite structures play a crucial role in enhancing the performance and safety of the structural integration of aircrafts. To better understand the load-bearing capacity of composite stringer structures, this study developed a novel model to study the complex failure and load transmission behavior of T800/3900S-2B fiber-reinforced composite skin-stringer structures under compressive loading. Compression strength tests were conducted on a composite stringer/skin structure, and a three-dimensional FEM was developed using Abaqus/Standard 2022. The model incorporated the modified 3D Hashin initiation criteria and Tserpes degradation law through a UMAT subroutine, which can effectively capture the in-plane ply failure and interlaminar damage. The results revealed a high degree of similarity between the load–displacement curves and failure modes (i.e., matrix compressive cracking, fiber compressive failure, and fiber–matrix shear-out failure) obtained from the simulations and those from the experiments. This study provides an efficient and accurate model to simulate the failure and load transfer of composite skin-stringer structures, offering significant advancements in understanding and predicting the behavior of these critical components. Full article
Show Figures

Figure 1

21 pages, 10761 KiB  
Article
Vibration Characteristics Analysis of Boring Bar with Tunable Dynamic Vibration Absorber
by Yanqi Guan, Guangbin Yu, Qingming Hu, Donghui Xu, Jiao Xu and Pavel Lushchyk
Materials 2025, 18(6), 1324; https://doi.org/10.3390/ma18061324 - 17 Mar 2025
Viewed by 268
Abstract
In deep-hole boring processes, boring bars with a large length-to-diameter ratio are typically employed. However, excessive overhang significantly reduces the boring bar’s stiffness, inducing vibrational effects that severely degrade machining precision and surface quality. To address this, the research objective is to suppress [...] Read more.
In deep-hole boring processes, boring bars with a large length-to-diameter ratio are typically employed. However, excessive overhang significantly reduces the boring bar’s stiffness, inducing vibrational effects that severely degrade machining precision and surface quality. To address this, the research objective is to suppress vibrations using a tunable-parameter boring bar. This paper proposes a novel Tunable Dynamic Vibration Absorber (TDVA) boring bar and designs its fundamental parameters. Based on the derived dynamic model, the vibration characteristics of the proposed boring bar are analyzed, revealing the variation in damping performance under different excitation frequencies. By establishing the relationship between TDVA stiffness, damping, and the axial compression of rubber bushings, optimal parameter combinations can be precisely identified for specific excitation frequencies. Ultimately, adjusting the TDVA’s axial compression displacement (0.1–0.5 mm) significantly expands the effective machining frequency range compared to conventional designs while maintaining operational reliability. This study proposes a novel Tunable Dynamic Vibration Absorber (TDVA) that innovatively integrates axial compression to achieve coupled stiffness and damping adjustments, addressing the rigidity–adaptability trade-off in deep-hole boring tools. Full article
Show Figures

Figure 1

15 pages, 12139 KiB  
Article
Carbon Nanotubes–Gr Inspired by Geckos’ Setae Structure with Enhanced Tribological Properties
by Jing Zhang, Yang Sun, Fengqin Shang, Zihan Yan, Jiayu Yao, Binghuan Chen and Hangyan Shen
Materials 2025, 18(6), 1221; https://doi.org/10.3390/ma18061221 - 9 Mar 2025
Viewed by 609
Abstract
The setae structure of geckos’ toes can create a strong adhesion force, allowing geckos to climb almost vertical walls. Inspired by this, carbon nanotubes–graphite (CNTs-Gr) was prepared by microwave technology, where CNTs like the setae structure grew in situ on the surface of [...] Read more.
The setae structure of geckos’ toes can create a strong adhesion force, allowing geckos to climb almost vertical walls. Inspired by this, carbon nanotubes–graphite (CNTs-Gr) was prepared by microwave technology, where CNTs like the setae structure grew in situ on the surface of Gr flakes. Compared to the Gr, the coefficient of friction (COF) and wear rate of CNTs-Gr decreased by 44% and 46%, reaching 0.10 and 1.18 × 10−5 mm3·N−1·m−1, respectively. Even if the load increased from 5 N to 35 N, the CNTs-Gr maintained a low and stable COF of 0.12. The excellent tribological properties were attributed to the unique setae structure of CNTs-Gr. This structure enabled the adhesion force of CNTs-Gr to the worn surface to increase threefold, improving the coverage of the lubricating film and significantly enhancing the lubricating film’s pressure resistance. The gecko setae structure proposed in this article provides researchers with a new idea for designing lubricants with excellent lubrication performance and high load-bearing capacity. Full article
Show Figures

Figure 1

14 pages, 4592 KiB  
Article
Compressive Properties and Energy Absorption Characteristics of Co-Continuous Interlocking PDMS/PLA Lattice Composites
by Han Wang, Kedi Wang, Jincheng Lei and Xueling Fan
Materials 2024, 17(16), 3894; https://doi.org/10.3390/ma17163894 - 6 Aug 2024
Cited by 1 | Viewed by 1146
Abstract
Co-continuous interlocking lattice structures usually present superior compressive properties and energy absorption characteristics. In this study, co-continuous interlocking polydimethylsiloxane/polylactic acid (PDMS/PLA) lattice composites were designed with different strut diameters, and successfully manufactured by combining the fused deposition modeling (FDM) technique and the infiltration [...] Read more.
Co-continuous interlocking lattice structures usually present superior compressive properties and energy absorption characteristics. In this study, co-continuous interlocking polydimethylsiloxane/polylactic acid (PDMS/PLA) lattice composites were designed with different strut diameters, and successfully manufactured by combining the fused deposition modeling (FDM) technique and the infiltration method. This fabrication method can realize the change and control of structure parameters. The effects of the strut diameter on the compressive properties and energy absorption behavior of PDMS/PLA lattice composites were investigated by using quasi-static compression tests. The compressive properties of the co-continuous interlocking PDMS/PLA lattice composites can be adjusted in a narrow density range by a linear correlation. The energy absorption density of the co-continuous interlocking PDMS/PLA lattice composites increases with the increase in the PLA strut diameter and presents a higher efficiency peak and wider plateau region. The PLA lattice acts as a skeleton and plays an important role in bearing the compressive load and in energy absorption. The indexes of the compressive properties/energy absorption characteristics and PLA volume fraction of co-continuous interlocking PDMS/PLA lattice composites show linear relationships in logarithmic coordinates. The effect of the PLA volume fraction increasing on the plateau stress is more sensitive than the compressive strength and energy absorption density. Full article
Show Figures

Figure 1

15 pages, 5597 KiB  
Article
Elastic Property Evaluation of Fiberglass and Epoxy Resin Composite Material Using Digital Image Correlation
by Dalferson Yoras, Sylwia Makowska, Agnė Kairytė, Jurga Šeputytė-Jucikė, Luis Roberto Centeno Drehmmer and Maikson Luiz Passaia Tonatto
Materials 2024, 17(15), 3726; https://doi.org/10.3390/ma17153726 - 27 Jul 2024
Cited by 1 | Viewed by 1134
Abstract
This study focused on evaluating the sensitivity and limitations of the simplified equipment used in the Digital Image Correlation (DIC) technique, comparing them with the analog extensometer, based on the mechanical property data of a composite made of fiberglass and epoxy resin. The [...] Read more.
This study focused on evaluating the sensitivity and limitations of the simplified equipment used in the Digital Image Correlation (DIC) technique, comparing them with the analog extensometer, based on the mechanical property data of a composite made of fiberglass and epoxy resin. The objectives included establishing a methodology based on the literature, fabricating samples through manual lamination, conducting mechanical tests according to the ASTM D3039 and D3518 standards, comparing DIC with the analog extensometer of the testing machine, and contrasting the experimental results with classical laminate theory. Three composite plates with specific stacking sequences ([0]3, [90]4, and [±45]3) were fabricated, and samples were extracted for testing to determine tensile strength, modulus of elasticity, and other properties. DIC was used to capture deformation fields during testing. Comparisons between data obtained from the analog extensometer and DIC revealed differences of 11.1% for the longitudinal modulus of elasticity E1 and 5.6% for E2. Under low deformation conditions, DIC showed lower efficiency due to equipment limitations. Finally, a theoretical analysis based on classical laminate theory, conducted using a Python script, estimated the longitudinal modulus of elasticity Ex and the shear strength of the [±45]3 laminate, highlighting a relative difference of 31.2% between the theoretical value of 7136 MPa and the experimental value of 5208 MPa for Ex. Full article
Show Figures

Figure 1

14 pages, 5500 KiB  
Article
Mechanical Property Analysis of a Boom–Membrane Structure Used for Aerospace Technologies
by Shuhong Xu, Xiaojiao Yu, Yue Gao, Sicong Wang and Lining Sun
Materials 2024, 17(13), 3204; https://doi.org/10.3390/ma17133204 - 1 Jul 2024
Viewed by 1136
Abstract
Traditional deployable truss space structures previously had upper limits on their key indicators, such as the deployed area, folded ratio and total weight, and hence, the application of new extendable mechanisms with novel deployment types is desired. Foldable extendable tape spring booms made [...] Read more.
Traditional deployable truss space structures previously had upper limits on their key indicators, such as the deployed area, folded ratio and total weight, and hence, the application of new extendable mechanisms with novel deployment types is desired. Foldable extendable tape spring booms made from FRP (fiber-reinforced polymer) laminate composites and their corresponding boom–membrane structures were invented in recent years to satisfy the needs of the large-scale requirements of spacecraft, especially for antennas, solar sails and solar arrays. This paper aimed to analyze the properties of the deployed states of extendable tape spring booms and their boom–membrane structures. By establishing an analytical model of the boom and the structure, the bending stiffness, critical buckling load of the boom and the fundamental frequency of the membrane structure were acquired. To provide more guidance on the boom–membrane structure design, a geometric and material parametric study was carried out. Meanwhile, an experimental study to investigate the deployed properties of the booms and membrane structures was introduced to afford some practical verification. Full article
Show Figures

Figure 1

Back to TopTop