Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (389)

Search Parameters:
Keywords = mineral soil amendment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2885 KiB  
Article
Effects of Modified Senna obtusifolia Straw Biochar on Organic Matter Mineralization and Nutrient Transformation in Siraitia grosvenorii Farmland
by Lening Hu, Yinnan Bai, Shu Li, Gaoyan Liu, Jingxiao Liang, Hua Deng, Anyu Li, Linxuan Li, Limei Pan and Yuan Huang
Agronomy 2025, 15(8), 1877; https://doi.org/10.3390/agronomy15081877 - 3 Aug 2025
Viewed by 145
Abstract
Biochar has garnered considerable attention as a soil amendment due to its unique physicochemical properties. Its application not only enhances soil carbon sequestration but also improves nutrient availability. Incorporating biochar into soil is regarded as a promising strategy for mitigating global climate change [...] Read more.
Biochar has garnered considerable attention as a soil amendment due to its unique physicochemical properties. Its application not only enhances soil carbon sequestration but also improves nutrient availability. Incorporating biochar into soil is regarded as a promising strategy for mitigating global climate change while delivering substantial environmental and agricultural benefits. In this study, biochar was extracted from Siraitia grosvenorii and subsequently modified through alkali treatment. A laboratory incubation experiment was conducted to assess the effects of unmodified (JMC) and modified (GXC) biochar, applied at different rates (1%, 2%, and 4%), on organic carbon mineralization and soil nutrient dynamics. Results indicated that, at equivalent application rates, JMC-treated soils exhibited lower CO2 emissions than those treated with GXC, with emissions increasing alongside biochar dosage. After the incubation, the 1% JMC treatment exhibited a mineralization rate of 17.3 mg·kg−1·d−1, which was lower than that of the control (CK, 18.8 mg·kg−1·d−1), suggesting that JMC effectively inhibited organic carbon mineralization and reduced CO2 emissions, thereby contributing positively to carbon sequestration in Siraitia grosvenorii farmland. In contrast, GXC application significantly enhanced soil nutrient levels, particularly increasing available phosphorus (AP) by 14.33% to 157.99%. Furthermore, partial least squares structural equation modeling (PLS-SEM) identified application rate and pH as the key direct factors influencing soil nutrient availability. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

27 pages, 1900 KiB  
Review
A Review of Biochar-Industrial Waste Composites for Sustainable Soil Amendment: Mechanisms and Perspectives
by Feng Tian, Yiwen Wang, Yawen Zhao, Ruyu Sun, Man Qi, Suqing Wu and Li Wang
Water 2025, 17(15), 2184; https://doi.org/10.3390/w17152184 - 22 Jul 2025
Viewed by 246
Abstract
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis [...] Read more.
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis conditions, it may contain potentially harmful substances. Industrial wastes such as fly ash, steel slag, red mud, and phosphogypsum are rich in minerals and show potential for soil improvement, but direct application may pose environmental risks. The co-application of biochar with these wastes can produce composite amendments that enhance pH buffering capacity, nutrient availability, and pollutant immobilization. Therefore, a review of biochar-industrial waste composites as soil amendments is crucial for addressing soil degradation and promoting resource utilization of wastes. In this study, the literature was retrieved from Web of Science, Scopus, and Google Scholar using keywords including biochar, fly ash, steel slag, red mud, phosphogypsum, combined application, and soil amendment. A total of 144 articles from 2000 to 2025 were analyzed. This review summarizes the physicochemical properties of biochar and representative industrial wastes, including pH, electrical conductivity, surface area, and elemental composition. It examines their synergistic mechanisms in reducing heavy metal release through adsorption, complexation, and ion exchange. Furthermore, it evaluates the effects of these composites on soil health and crop productivity, showing improvements in soil structure, nutrient balance, enzyme activity, and metal immobilization. Finally, it identifies knowledge gaps as well as future prospects and recommends long-term field trials and digital agriculture technologies to support the sustainable application of these composites in soil management. Full article
Show Figures

Figure 1

18 pages, 1291 KiB  
Article
Effect of Calcium Addition on Extracellular Enzymes and Soil Organic Carbon in Maize Rhizosphere Soils
by Zhaoquan He, Xue Shang and Xiaoze Jin
Agronomy 2025, 15(7), 1680; https://doi.org/10.3390/agronomy15071680 - 11 Jul 2025
Viewed by 356
Abstract
This study examined the regulatory mechanism of calcium (Ca) amendment on the dynamics of soil organic carbon (SOC) fractions and extracellular enzyme activities, elucidating the role of Ca in soil carbon cycling processes. A field experiment with maize was conducted, comparing treatments of [...] Read more.
This study examined the regulatory mechanism of calcium (Ca) amendment on the dynamics of soil organic carbon (SOC) fractions and extracellular enzyme activities, elucidating the role of Ca in soil carbon cycling processes. A field experiment with maize was conducted, comparing treatments of low calcium (T1), high calcium (T2), and a calcium-free control (CK). Measurements included inter-root SOC fractions—soluble organic carbon (DOC), microbial biomass carbon (MBC), and readily oxidizable organic carbon (ROC)—and the activities of the following extracellular enzymes: β-xylanase, β-glucosidase (β-glu), phenol oxidase (Phox), peroxidase (Pero), phosphatase (Phos), acetylaminoglucosidase (NAG), and urease. The main findings indicated the following: (1) Calcium addition significantly increased SOC content (115.04% and 99.22% higher in T1 and T2, respectively, than CK during the entire reproductive period) and enhanced microbial activity (elevated DOC and MBC). However, SOC decreased by 8.44% (T1) and 16.38% (T2) relative to CK in the late reproductive stage (irrigation–ripening), potentially reflecting microbial utilization (supported by the inverse correlation between SOC and MBC/DOC), and maize carbon reallocation during grain filling. (2) Calcium activated β-glu, Phox, Phos, NAG, and urease (p < 0.05), with pronounced increases in Phox (241.13 IU·L−1) and Phos (1126.65 U·L−1), indicating enhanced organic matter mineralization and phosphorus availability. (3) Calcium-driven MBC and ROC accumulation was associated with the positive regulation of Phox (path coefficient > 0.8) and the negative regulation of Phos. SOC was co-regulated by β-glu and Phos (R2 = 0.753). (4) Calcium dynamically optimized the short-term carbon distribution through enzyme activity while promoting long-term sequestration. Our study provides new evidence supporting multi-pathway interactions through which calcium mediates enzyme networks to influence the soil carbon cycle. The findings provide a theoretical foundation for calcium fertilizer management and soil carbon sequestration strategies in agriculture, advancing academic and practical goals for sustainable development and carbon neutrality. Full article
Show Figures

Figure 1

20 pages, 356 KiB  
Review
Soil Properties and Microelement Availability in Crops for Human Health: An Overview
by Lucija Galić, Vesna Vukadinović, Iva Nikolin and Zdenko Lončarić
Crops 2025, 5(4), 40; https://doi.org/10.3390/crops5040040 - 7 Jul 2025
Viewed by 419
Abstract
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). [...] Read more.
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). In recent years, there has been a growing focus on vitality and longevity, which are closely associated with the sufficient intake of essential microelements. This review focuses on these nine elements, whose bioavailability in the food chain is critically determined by their geochemical behavior in soils. There is a necessity for an understanding of the sources, soil–plant transfer, and plant uptake mechanisms of these microelements, with particular emphasis on the influence of key soil properties, including pH, redox potential, organic matter content, and mineral composition. There is a dual challenge of microelement deficiencies in agricultural soils, leading to inadequate crop accumulation, and the potential for localized toxicities arising from anthropogenic inputs or geogenic enrichment. A promising solution to microelement deficiencies in crops is biofortification, which enhances nutrient content in food by improving soil and plant uptake. This strategy includes agronomic methods (e.g., fertilization, soil amendments) and genetic approaches (e.g., marker-assisted selection, genetic engineering) to boost microelement density in edible tissues. Moreover, emphasizing the need for advanced predictive modeling techniques, such as ensemble learning-based digital soil mapping, enhances regional soil microelement management. Integrating machine learning with digital covariates improves spatial prediction accuracy, optimizes soil fertility management, and supports sustainable agriculture. Given the rising global population and the consequent pressures on agricultural production, a comprehensive understanding of microelement dynamics in the soil–plant system is essential for developing sustainable strategies to mitigate deficiencies and ensure food and nutritional security. This review specifically focuses on the bioavailability of these nine essential microelements (Se, Zn, Cu, B, Mn, Mo, Fe, Ni, and Cl), examining the soil–plant transfer mechanisms and their ultimate implications for human health within the soil–plant–human system. The selection of these nine microelements for this review is based on their recognized dual importance: they are not only essential for various plant metabolic functions, but also play a critical role in human nutrition, with widespread deficiencies reported globally in diverse populations and agricultural systems. While other elements, such as cobalt (Co) and iodine (I), are vital for health, Co is primarily required by nitrogen-fixing microorganisms rather than directly by all plants, and the main pathway for iodine intake is often marine-based rather than soil-to-crop. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
27 pages, 3569 KiB  
Article
Impact of a Soil Cyanobacteria Consortium-Based Bioinoculant on Tomato Growth, Yield, and Fruit Quality
by Zineb Hakkoum, Farah Minaoui, Zakaria Tazart, Amer Chabili, Mountasser Douma, Khadija Mouhri and Mohammed Loudiki
Plants 2025, 14(13), 2034; https://doi.org/10.3390/plants14132034 - 2 Jul 2025
Viewed by 479
Abstract
Cyanobacteria-based bioinoculants represent a sustainable solution for enhancing soil fertility and crop productivity. This research assessed the biofertilizing potential of two indigenous nitrogen-fixing cyanobacteria strains (Nostoc punctiforme Har. and Anabaena cylindrica Lemmerm.) on tomato growth and yield. A greenhouse experiment was conducted [...] Read more.
Cyanobacteria-based bioinoculants represent a sustainable solution for enhancing soil fertility and crop productivity. This research assessed the biofertilizing potential of two indigenous nitrogen-fixing cyanobacteria strains (Nostoc punctiforme Har. and Anabaena cylindrica Lemmerm.) on tomato growth and yield. A greenhouse experiment was conducted to study their effects on soil properties, plant growth and physiology, and fruit yield/quality. The strains were applied individually, as a consortium, or combined with organic or mineral fertilizers at half the standard dose (50%). All bioinoculants improved soil fertility, plant growth, and fruit yield/quality compared to the control. The most significant improvement was observed in the consortium amended with 50% of conventional fertilizer (compost or NPK), compared with individual strains. Correlation analysis revealed strong positive associations between photosynthetic pigments, plant productivity, and fruit biochemical traits, indicating coordinated physiological responses under the applied treatments. The results demonstrated that the consortium of diazotrophic terrestrial cyanobacteria possesses tomato biofertilizer properties that can be efficiently used in crop production. These findings suggest that such formulations offer a cost-effective approach to tomato cultivation and present a sustainable alternative for integrated and optimized fertilizer management. Full article
Show Figures

Figure 1

22 pages, 1380 KiB  
Review
Carbon Mineralization in Basaltic Rocks: Mechanisms, Applications, and Prospects for Permanent CO2 Sequestration
by Ernest Ansah Owusu, Jiyue Wu, Elizabeth Akonobea Appiah, William Apau Marfo, Na Yuan, Xiaojing Ge, Kegang Ling and Sai Wang
Energies 2025, 18(13), 3489; https://doi.org/10.3390/en18133489 - 2 Jul 2025
Viewed by 679
Abstract
Basalt is prevalent in the Earth’s crust and makes up about 90% of all volcanic rocks. The earth is warming at an alarming rate, and there is a search for a long-term solution to this problem. Geologic carbon storage in basalt offers an [...] Read more.
Basalt is prevalent in the Earth’s crust and makes up about 90% of all volcanic rocks. The earth is warming at an alarming rate, and there is a search for a long-term solution to this problem. Geologic carbon storage in basalt offers an effective and durable solution for carbon dioxide sequestration. Basaltic rocks are widely used for road and building construction and insulation, soil amendment, and in carbon storage. There is a need to understand the parameters that affect this process in order to achieve efficient carbon mineralization. This review systematically analyzes peer-reviewed studies and project reports published over the past two decades to assess the mechanisms, effectiveness, and challenges of carbon mineralization in basaltic formations. Key factors such as mineral composition, pH, temperature and pressure are evaluated for their impact on mineral dissolution and carbonate precipitation kinetics. The presence of olivine and basaltic glass also accelerates cation release and carbonation rates. The review includes case studies from major field projects (e.g., CarbFix and Wallula) and laboratory experiments to illustrate how mineralization performs in different geological environments. It is essential to maximize mineralization kinetics while ensuring the formation of stable carbonate phases in order to achieve efficient and permanent carbon dioxide storage in basaltic rock. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
Show Figures

Figure 1

21 pages, 3740 KiB  
Article
Mineral Condition Changes in Amended Soils and Woody Vegetation Installed on a Polluted Soil with Trace Metals in Lubumbashi (DR Congo): Results of a Four-Year Trial
by Serge Langunu, Jacques Kilela Mwanasomwe, Dieu-donné N’Tambwe Nghonda, Gilles Colinet and Mylor Ngoy Shutcha
Environments 2025, 12(7), 224; https://doi.org/10.3390/environments12070224 - 30 Jun 2025
Viewed by 680
Abstract
The use of trees to revegetate urban areas contaminated by mining activity is a low-cost, low-maintenance technique, of which the success will depend on the plant species, planting methods, and geochemical processes at the soil-plant interface. This study analyzed the evolution of mineral [...] Read more.
The use of trees to revegetate urban areas contaminated by mining activity is a low-cost, low-maintenance technique, of which the success will depend on the plant species, planting methods, and geochemical processes at the soil-plant interface. This study analyzed the evolution of mineral composition in the rooting soil, tree, and herbaceous vegetation on soils contaminated by As, Cd, Cu, Co, Pb, and Zn. An in-situ experiment was carried out in Lubumbashi (South-eastern DR Congo) with six tree species (Acacia auriculiformis, Albizia lebbeck, Delonix regia, Leucaena leucocephala, Mangifera indica, and Syzygium guineense), in 0.187 m3 pits amended with municipal compost and limestone. After planting in the amended and unamended (control) pits, soil samples were taken for chemical analysis. Eighteen months after planting, a floristic inventory was carried out to assess the spontaneous colonization of herbaceous species. The results show an increase in metal concentrations in the rooting soil between 2019 and 2023 (Cu: 725 ± 136 to 6141 ± 1853 mg kg−1; As: 16.2 ± 1.4 to 95 ± 28.5 mg kg−1; Cd: 2.7 ± 1.3 to 8.7 ± 2.0 mg kg−1; Co: 151 ± 36.3 to 182 ± 113 mg kg−1; Zn: 558 ± 418 to 1098 ± 1037 mg kg−1), with a stable pH and a decrease in nutrients (P, K, Ca, and Fe). The trees planted in the amended pits showed better height and diameter growth and greater survival than the controls, reaching average heights of 8 m and a DBH of up to 22 cm four years after planting. A total of 13 spontaneous herbaceous species were recorded, with an increased abundance during the second inventory. These results confirm the effectiveness of pit amendment for the rapid revegetation of urban soils polluted by trace metals. Full article
Show Figures

Figure 1

18 pages, 1601 KiB  
Article
Dual Role of Iron Oxides in Stabilizing Particulate and Mineral-Associated Organic Carbon Under Field Management in Paddies
by Hang Guo, Linxian Liao, Junzeng Xu, Wenyi Wang, Peng Chen, Zhihui Min, Yajun Luan, Yu Han and Keke Bao
Agriculture 2025, 15(13), 1385; https://doi.org/10.3390/agriculture15131385 - 27 Jun 2025
Viewed by 331
Abstract
The interactions between iron oxides and organic carbon within the particulate organic matter (POM) and mineral-associated organic matter (MAOM) fractions in paddy soils remain insufficiently understood, yet they are likely crucial for unlocking the carbon sequestration potential of these systems. In this study, [...] Read more.
The interactions between iron oxides and organic carbon within the particulate organic matter (POM) and mineral-associated organic matter (MAOM) fractions in paddy soils remain insufficiently understood, yet they are likely crucial for unlocking the carbon sequestration potential of these systems. In this study, we investigated the distribution of soil iron oxides and organic carbon within POM and MAOM fractions following 10 years of continuous irrigation and organic amendment management. We also examined the relationship between iron oxide transformation and these two SOC (soil organic carbon) fractions. Our results demonstrated that, under both flooded irrigation and controlled irrigation regimes, straw return or manure application effectively enhanced soil carbon sequestration, as evidenced by increases in both POM-C (POM-associated organic carbon) and MAOM-C (MAOM-associated organic carbon) contents. Meanwhile, exogenous carbon inputs promoted the transformation of crystalline iron oxides into short-range ordered iron oxides and iron oxide colloids, thereby enhancing the activation and complexation degree of soil iron oxides and facilitating the formation of Fe-bound organic carbon. Further regression analysis revealed that the activation degree of iron oxides had a stronger influence on POM-C, whereas the complexation degree had a greater effect on MAOM-C. This implies that exogenous carbon inputs are effective in promoting soil carbon sequestration in both flooded and water-saving irrigated rice paddies and that iron oxide transformation plays a key role in mediating this effect. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

21 pages, 2030 KiB  
Article
Effect of Compost Addition on Carbon Mineralization and Kinetic Characteristics in Three Typical Agricultural Soils
by Shanglong Zhang, Xianni Chen, Aoxue Shi, Minggang Xu, Fenggang Zhang, Lu Zhang, Jiaojiao Zang, Xiaofeng Xu and Jiakai Gao
Agronomy 2025, 15(7), 1559; https://doi.org/10.3390/agronomy15071559 - 26 Jun 2025
Viewed by 321
Abstract
Soil carbon is a crucial component of the global carbon cycle, and carbon mineralization is influenced by various factors. However, there is a lack of systematic analyses on the responses of carbon mineralization in different soil types to the addition of exogenous organic [...] Read more.
Soil carbon is a crucial component of the global carbon cycle, and carbon mineralization is influenced by various factors. However, there is a lack of systematic analyses on the responses of carbon mineralization in different soil types to the addition of exogenous organic matter. This study investigates the effects of compost addition on the mineralization and kinetic characteristics of soil carbon across three typical agricultural soils: paddy soil, black soil, and cinnamon soil. A 210-day incubation study was conducted with four treatments: Control (un-amended soil), R (soil + straw), R1M (soil + straw + low compost application rate), R2M (soil + straw + high compost application rate). The results showed that the CO2 emission rates of the three soils were higher during the early stage (1–37 days) and decreased afterward. The CO2 emission rates of the paddy soil and the black soil were significantly higher than those of the cinnamon soil. The addition of compost significantly increased both the CO2 emission rate and the cumulative release of CO2, especially in the R2M treatment. At the end of the incubation, the SOC contents were higher in the R2M treatment than in the Control for all three soils (p < 0.05), with the most notable increase in the cinnamon soil (60.93%). Compost addition significantly enhanced the active carbon pool (Ca), slow carbon pool (Cs), and potentially mineralizable carbon pool (Cp), while decreasing the mineralization rate (ka) of the Ca, but the effect on the mineralization rate (ks) of the Cs and mineralization entropy (Cm) varied by soil types. The ks of the paddy soil was significantly reduced by 23.08% under the R1M and R2M treatments compared with the Control and R treatment. The ks of the black soil was significantly increased by 59.52% under the R2M treatment compared with the Control. The ks of the cinnamon soil was elevated considerably by 79.31% under the R2M treatment compared with the Control, R, and R1M treatments (averaging 0.29 × 10−2 d), and the ks of the paddy soil and black soil were significantly higher than those of the cinnamon soil under the R2M treatment. The Cm was significantly higher in the organic material added treatments than in the Control for the black soil and the paddy soil, but showed a higher value in the R treatment than in the R2M and Control for the cinnamon soil. In conclusion, compost addition stimulated soil carbon mineralization and improved the SOC content, especially in the cinnamon soil, while reducing the mineralization rate of the active carbon pool across the three soils. The mineralization rate of the slow carbon pool and the changes in mineralization entropy were dependent on soil types, primarily related to the initial soil nutrient contents, pH, and particle compositions. These findings offer valuable insights for managing the soil carbon pool in agricultural ecosystems. Full article
Show Figures

Figure 1

19 pages, 17113 KiB  
Article
Effectiveness of Nitrification Inhibitor in Reducing N2O Emissions Depends on Soil Acidification Mitigation in Acid Soils
by Jing Wang, Qiao Huang, Debang Yu, Yuxuan Zhang, Yves Uwiragiye, Nyumah Fallah, Meiqi Chen and Yi Cheng
Agronomy 2025, 15(7), 1536; https://doi.org/10.3390/agronomy15071536 - 25 Jun 2025
Viewed by 395
Abstract
The addition of alkaline amendments is considered an important strategy to alleviate soil acidification, with profound impacts on soil nitrogen (N) transformations such as nitrification as well as greenhouse gas (GHG) nitrous oxide (N2O) emissions. Nitrification inhibitors (NIs) have been widely [...] Read more.
The addition of alkaline amendments is considered an important strategy to alleviate soil acidification, with profound impacts on soil nitrogen (N) transformations such as nitrification as well as greenhouse gas (GHG) nitrous oxide (N2O) emissions. Nitrification inhibitors (NIs) have been widely recognized to effectively mitigate N2O emissions by depressing the nitrification process. However, the effectiveness of NIs on N2O emissions reduction under different alkaline amendments remains largely unknown, hindering our knowledge of the optimal soil acidification mitigation strategies. In this study, the effects of NIs in combination with different alkaline amendments on N2O emissions were assessed on typical acid soils collected from four sites during a 28-day aerobic incubation experiment. Treatments included four alkaline amendments (quicklime, chicken manure, cow dung, biochar) and no amendment control, designated as CaO, CM, CD, BC, and CK, combined with a typical NI (3,4 dimethylpyrazole phosphate, DMPP) applied at 2 mg soil kg−1 or non-NI applied, respectively. Both individual amendments and their combination with DMPP significantly elevated the soil pH by 4.9–64.2% compared with the CK treatment, with the effectiveness ranking as CaO > CM ≈ CD > BC. Cumulative N2O emissions were stimulated by the individual application of CaO, CM, and CD but were reduced by BC application compared with the CK treatment. Changes in N2O emissions were positively correlated with the responses of the net N mineralization and nitrification rates to individual amendments, which were regulated by changes in the soil pH. The suppressive effects of NI combined with individual amendments on N2O emissions were significant in the CaO treatment with a reduction ranging from 3.3% to 60.2%, which was attributed to decreased abundances of ammonia-oxidizing bacteria (AOB). Therefore, we concluded that the combined application of CaO and DMPP could be considered as a suitable mitigation strategy for addressing soil acidification through optimized N management. Additionally, BC can serve as a supplementary practice to simultaneously improve soil fertility. These insights are crucial for developing integrated fertilization management strategies to mitigate soil acidification with low N loss risks. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Graphical abstract

25 pages, 5001 KiB  
Article
Mixed Compost Application: A Sustainable Tool for Improving Soil Carbon Dynamics in a Peach Orchard Under Mediterranean Conditions
by Maria Roberta Bruno, Mariagrazia Piarulli, Carolina Vitti, Marcello Mastrangelo, Alessandro Azzolini, Alessandro Ciurlia, Gianfranco Rana and Rossana Monica Ferrara
Sustainability 2025, 17(12), 5613; https://doi.org/10.3390/su17125613 - 18 Jun 2025
Viewed by 355
Abstract
This study investigated carbon dynamics in a peach orchard subjected to three treatments with a mixed compost amendment (MCA, 35% organic content): a control with no amendment (A0), a full dose (A1, 10 t ha−1), and a half dose (A2, 5 [...] Read more.
This study investigated carbon dynamics in a peach orchard subjected to three treatments with a mixed compost amendment (MCA, 35% organic content): a control with no amendment (A0), a full dose (A1, 10 t ha−1), and a half dose (A2, 5 t ha−1). The sustainability of MCA was assessed in terms of (i) potential and (ii) actual soil respiration, (iii) soil carbon and physical properties and (iv) fruit quality and yield. Carbon dioxide (CO2) emissions were measured both in the laboratory, by incubating soil samples without root removal, and in the field using static chambers. Observations spanned three growing seasons (2021–2023). A correlation was found between actual and potential soil respiration, with emission peaks occurring near the time of MCA application. Cumulative actual CO2 emissions amounted to 5.6, 12.0 and 9.4 t CO2 ha−1 for A0, A1 and A2, respectively. MCA application (i) increased microbial respiration, (ii) reduced soil physical characteristics, such as bulk density and water-filled pore space, and (iii) slightly improved fruit quality, although the yield was not significantly affected. Furthermore, the MCA enhanced soil organic carbon and total nitrogen content compared to the control. These results suggest that high organic content amendments, such as MCA, could represent a strategy to maintain or increase soil organic matter in a sustainable way, although MCA does not improve carbon emission efficiency. Full article
Show Figures

Figure 1

20 pages, 3756 KiB  
Article
Reducing Cd Uptake by Wheat Through Rhizosphere Soil N-C Cycling and Bacterial Community Modulation by Urease-Producing Bacteria and Organo-Fe Hydroxide Coprecipitates
by Junqing Zhang, Shuangjiao Tang, Hao Wei, Lunguang Yao, Zhaojin Chen, Hui Han, Mingfei Ji and Jianjun Yang
Microorganisms 2025, 13(6), 1412; https://doi.org/10.3390/microorganisms13061412 - 17 Jun 2025
Viewed by 457
Abstract
The bioavailability of heavy metals is profoundly influenced by their interactions with active soil components (microorganisms, organic matter, and iron minerals). However, the effects of urease-producing bacteria combined with organo-Fe hydroxide coprecipitates (OFCs) on Cd accumulation in wheat, as well as the mechanisms [...] Read more.
The bioavailability of heavy metals is profoundly influenced by their interactions with active soil components (microorganisms, organic matter, and iron minerals). However, the effects of urease-producing bacteria combined with organo-Fe hydroxide coprecipitates (OFCs) on Cd accumulation in wheat, as well as the mechanisms underlying these effects, remain unclear. In this study, pot experiments integrated with high-throughput sequencing were employed to investigate the impacts of the urease-producing bacterial strain TJ6, ferrihydrite (Fh), and OFCs on Cd enrichment in wheat grains, alongside the underlying soil–microbial mechanisms. The results demonstrate that the strain TJ6-Fh/OFC consortium significantly (p < 0.05) reduced (50.1–66.7%) the bioavailable Cd content in rhizosphere soil while increasing residual Cd fractions, thereby decreasing (77.4%) Cd accumulation in grains. The combined amendments elevated rhizosphere pH (7.35), iron oxide content, and electrical conductivity while reducing (14.5–21.1%) dissolved organic carbon levels. These changes enhanced soil-colloid-mediated Cd immobilization and reduced Cd mobility. Notably, the NH4+ content and NH4+/NO3 ratio were significantly (p < 0.05) increased, attributed to the ureolytic activity of TJ6, which concurrently alkalinized the soil and inhibited Cd uptake via competitive ion channel interactions. Furthermore, the relative abundance of functional bacterial taxa (Proteobacteria, Gemmatimonadota, Enterobacter, Rhodanobacter, Massilia, Nocardioides, and Arthrobacter) was markedly increased in the rhizosphere soil. These microbes exhibited enhanced abilities to produce extracellular polymeric substances, induce phosphate precipitation, facilitate biosorption, and promote nutrient (C/N) cycling, synergizing with the amendments to immobilize Cd. This study for the first time analyzed the effect and soil science mechanism of urease-producing bacteria combined with OFCs in blocking wheat’s absorption of Cd. Moreover, this study provides foundational insights and a practical framework for the remediation of Cd-contaminated wheat fields through microbial–organic–mineral collaborative strategies. Full article
Show Figures

Figure 1

18 pages, 737 KiB  
Article
Assessing the Effect of Organic and Inorganic Resources on Carbon Fractions in Soggy Sodic Soil at Sege in Ada West District, Ghana
by Benedicta Yayra Fosu-Mensah, Diawudeen Mutaru, Dilys Sefakor MacCarthy and Michael Mensah
Soil Syst. 2025, 9(2), 62; https://doi.org/10.3390/soilsystems9020062 - 11 Jun 2025
Viewed by 436
Abstract
Labile organic carbon (OC), a dynamic component of soil organic carbon (SOC), is essential for improving soil health, fertility, and crop productivity, particularly when organic and inorganic amendments are combined. However, limited research exists on the best amendment strategies for restoring degraded gleyic [...] Read more.
Labile organic carbon (OC), a dynamic component of soil organic carbon (SOC), is essential for improving soil health, fertility, and crop productivity, particularly when organic and inorganic amendments are combined. However, limited research exists on the best amendment strategies for restoring degraded gleyic solonetz soggy sodic (GSSS) soils in West Africa’s coastal zones. A three-year field study (2017–2019) assessed the effects of various combinations of organic (mature or composted cow dung, with or without biochar) and inorganic inputs on soil organic carbon fractions, total carbon stocks, and the Carbon Management Index (CMI) in GSSS soils of Sege, Ada West District, Ghana. The results showed that organic and inorganic combinations outperformed the sole inorganic NPK treatment and the control, particularly in the topsoil. Composted cow dung with mineral fertilizer (CCfert) was especially effective, significantly increasing labile OC, SOC stock, and CMI by 35.3%, 140.5%, and 26% in the topsoil compared to the control and by 28%, 77.8%, and 4.3% compared to NPK alone. In the subsoil, mature cow dung-based treatments performed better. These findings highlight the potential of integrated organic and inorganic strategies, especially those based on composted manure, to rehabilitate degraded sodic soils, build carbon stocks, and improve soil quality for sustainable agriculture in coastal West Africa. Full article
Show Figures

Graphical abstract

13 pages, 2357 KiB  
Article
Effect of Coal Gangue Powder Addition on Hydraulic Properties of Aeolian Sandy Soil and Plant Growth
by Xiaoyun Ding, Ruimin He, Zhenguo Xing, Haoyan Wei, Jiping Niu, Shi Chen and Min Li
Horticulturae 2025, 11(6), 634; https://doi.org/10.3390/horticulturae11060634 - 5 Jun 2025
Viewed by 449
Abstract
Coal gangue is a fine-grained mineral with nutrient content, which can be used as a potential soil amendment. Nevertheless, current research on using coal gangue to improve soil water and support plant growth is still insufficient. In this study, coal gangue powder (CGP) [...] Read more.
Coal gangue is a fine-grained mineral with nutrient content, which can be used as a potential soil amendment. Nevertheless, current research on using coal gangue to improve soil water and support plant growth is still insufficient. In this study, coal gangue powder (CGP) was added to aeolian sandy soil. We compared the soil hydraulic properties and plant growth of original aeolian sandy soil (CK) and different CGP application rates (10% and 20%). The results indicated that the application of CGP transformed the soil texture from sandy to loamy, significantly reduced soil bulk density and saturated hydraulic conductivity (Ks) values, altered the soil water characteristic curve, enhanced soil water-holding capacity, and increased plant-available water. Compared with the CK group, the emergence rate of alfalfa seeds increased from approximately 50% to over 70% after CGP application. During the growth process, CGP application significantly elevated the net photosynthetic rate, transpiration rate, and stomatal conductance of alfalfa leaves. Rapid fluorescence kinetics monitoring of leaves demonstrated that alfalfa treated with CGP had a higher efficiency in light energy utilization. However, the photosynthetic capacity of leaves did not improve as the CGP application rate increased from 10% to 20%, suggesting that excessive CGP addition did not continuously benefit plant gas exchange. In conclusion, CGP application can improve the soil hydraulic properties of aeolian sandy soil and support plant growth and development, which is conducive to reducing the accumulated amount of coal gangue, alleviating plant water stress, and promoting ecological restoration in arid mining areas. We recommend a 10% addition of coal gangue powder as the optimal amount for similar soils. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

17 pages, 3950 KiB  
Article
Performance of Microbially Induced Carbonate Precipitation for Reinforcing Cohesive Soil in the Reservoir Area
by Xinfa Li, Dingxiang Zhuang and Ru Hu
Crystals 2025, 15(6), 540; https://doi.org/10.3390/cryst15060540 - 5 Jun 2025
Viewed by 649
Abstract
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and [...] Read more.
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and no pollution. Different combinations of Bacillus subtilis bacterial solution (BS) concentrations and cementing solution (CS) concentrations were set to perform MICP solidification treatment. The characterization of cohesive soil before MICP was carried out by means of Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and Laser Particle Size Analyzer (LPSA). The results showed that the unreinforced soil showed an amorphous state with low strength and the particle size distribution was dominated by powder particles. However, with the addition of BS concentrations and CS concentrations, SEM results showed that spherical and rhombohedral minerals filled the pores of the cohesive soil, which increased the content of precipitations and enhanced the cementitious characteristics. When the concentrations of CS or BS were fixed, CaCO3 content, deviatoric stress, shear strength, cohesive force, and internal friction angle all showed a trend of first increasing and then decreasing with the increase in CS or BS concentration. The optimal combination of CS and BS concentration was 1.5 mol/L and OD600 = 1.8. Thermochemical analyses showed an improved thermal stability of the reinforcing cohesive soil, with the lowest mass loss (32%) and the highest pyrolysis temperature (812 °C) of the samples at the optimal combination of BS and CS concentration. This study is expected to improve the understanding of the MICP reinforcement process and contribute to the optimal design of future biologically mediated soil amendments, promoting bioremediation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop