Effectiveness of Nitrification Inhibitor in Reducing N2O Emissions Depends on Soil Acidification Mitigation in Acid Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Sampling
2.2. Incubation Experiment
2.3. Analyses
2.4. Calculations and Statistical Analyses
3. Results
3.1. Soil pH and Mineral N Concentrations
3.2. Soil N2O Emissions
3.3. Related N Transformation Rates and Microbial Properties
3.4. Relationships Between N2O Emissions and Soil Properties, N Transformation Rates, and Functional Gene Abundances
4. Discussion
4.1. Effect of Elevated pH Under Soil Acidification Mitigation Strategies on N Transformation Rates
4.2. Effect of Shifted Soil Physicochemical and Microbial Properties Under Soil Acidification Mitigation Strategies on N2O Emissions
4.3. Soil Acidification Mitigation Strategies Based on Optimal N Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, Z.M.; Zhang, X.J.; Tang, C.; Muhammad, N.; Wu, J.J.; Brookes, P.C.; Xu, J.M. Potential role of biochars in decreasing soil acidification—A critical review. Sci. Total Environ. 2017, 581–582, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Yang, Y.H.; Ji, C.J.; Ma, W.H.; Wang, S.F.; Wang, S.P.; Han, W.X.; Mohammat, A.; Robinson, D.; Smith, P. Significant soil acidification across northern China’s grasslands during 1980s–2000s. Glob. Change Biol. 2012, 18, 2292–2300. [Google Scholar] [CrossRef]
- Mok, J.S.; Yoo, H.D.; Kim, P.H.; Yoon, H.D.; Park, Y.C.; Lee, T.S.; Kwon, J.Y.; Son, K.T.; Lee, H.J.; Ha, K.S.; et al. Bioaccumulation of heavy metals in oysters from the southern coast of Korea: Assessment of potential risk to human health. Bull. Environ. Contam. Toxicol. 2015, 94, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Kalkhoran, S.S.; Pannell, D.J.; Thamo, T.; White, B.; Polyakov, M. Soil acidity, lime application, nitrogen fertility, and greenhouse gas emissions: Optimizing their joint economic management. Agric. Syst. 2019, 176, 02684. [Google Scholar] [CrossRef]
- Kätterer, T.; Roobroeck, D.; Andrén, O.; Kimutai, G.; Karltun, E.; Kirchmann, H.; Nyberg, G.; Vanlauwe, B.; de Nowina, R.K. Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crop. Res. 2019, 235, 18–26. [Google Scholar] [CrossRef]
- Xie, S.W.; Yang, F.; Feng, H.X.; Yu, Z.Z.; Liu, C.S.; Wei, C.H.; Liang, T. Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations: Evidence in nutrient contents and isotope fractionations. Sci. Total Environ. 2021, 762, 143059. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.H.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change 2013; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. [Google Scholar] [CrossRef]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef]
- Fellmann, T.; Witzke, P.; Weiss, F.; Van Doorslaer, B.; Drabik, D.; Huck, I.; Salputra, G.; Jansson, T.; Leip, A. Major challenges of integrating agriculture into climate change mitigation policy frameworks. Mitig. Adapt. Strateg. Glob. Change 2018, 23, 451–468. [Google Scholar] [CrossRef]
- Wang, J.; Sun, N.; Xu, M.G.; Wang, S.Q.; Zhang, J.B.; Cai, Z.C.; Cheng, Y. The influence of long-term animal manure and crop residue application on abiotic and biotic N immobilization in an acidified agricultural soil. Geoderma 2019, 337, 710–717. [Google Scholar] [CrossRef]
- Zhang, S.W.; Zhu, Q.C.; de Vries, W.; Ros, G.H.; Chen, X.H.; Muneer, M.A.; Zhang, F.S.; Wu, L.Q. Effects of soil amendments on soil acidity and crop yields in acidic soils: A world-wide meta-analysis. J. Environ. Manag. 2023, 345, 118531. [Google Scholar] [CrossRef] [PubMed]
- Senbayram, M.; Budai, A.; Bol, R.; Chadwick, D.; Marton, L.; Gündogan, R.; Wu, D. Soil NO3− level and O2 availability are key factors in controlling N2O reduction to N2 following long-term liming of an acidic sandy soil. Soil Biol. Biochem. 2019, 132, 165–173. [Google Scholar] [CrossRef]
- Wei, Z.J.; Well, R.; Ma, X.F.; Lewicka-Szczebak, D.; Rohe, L.; Zhang, G.B.; Li, C.L.; Ma, J.; Bol, R.; Xu, H.; et al. Organic fertilizer amendment decreased N2O/(N2O+N2) ratio by enhancing the mutualism between bacterial and fungal denitrifiers in high nitrogen loading arable soils. Soil Biol. Biochem. 2024, 198, 109550. [Google Scholar] [CrossRef]
- Bergaust, L.; Mao, Y.J.; Bakken, L.R.; Frostegård, A. Denitrification Response Patterns during the Transition to Anoxic Respiration and Posttranscriptional Effects of Suboptimal pH on Nitrogen Oxide Reductase in Paracoccus denitrificans. Appl. Environ. Microbiol. 2010, 76, 6387–6396. [Google Scholar] [CrossRef] [PubMed]
- Bakken, L.R.; Bergaust, L.; Liu, B.B.; Frostegård, Å. Regulation of denitrification at the cellular level: A clue to the understanding of N2O emissions from soils. Philos. Trans. R. Soc. B-Biol. Sci. 2012, 367, 1226–1234. [Google Scholar] [CrossRef]
- Liu, S.Y.; Chi, Q.D.; Shan, J.; Zhu, B.; Zhang, X.F.; Cheng, Y.; Cai, Z.C.; Zhang, J.B.; Yan, X.Y.; Müller, C. Evaluation of the effectiveness of N process inhibitors in paddy rice via a 15N tracing approach. Soil Biol. Biochem. 2020, 147, 107855. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, J.B.; Wang, J.; Zu, C.C.; Wang, S.Q. Soil pH is a good predictor of the dominating N2O production processes under aerobic conditions. J. Plant Nutr. Soil Sci. 2015, 178, 370–373. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; S′anchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- He, Y.H.; Zhou, X.H.; Jiang, L.L.; Li, M.; Du, Z.G.; Zhou, G.Y.; Shao, J.J.; Wang, X.H.; Xu, Z.H.; Bai, S.H.; et al. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. Glob. Change Biol. Bioenergy 2017, 9, 743–755. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yan, C.; Wang, T.; Zhang, G.X.; Bahn, M.; Mo, F.; Han, J. Biochar strategy for long-term N2O emission reduction: Insights into soil physical structure and microbial interaction. Soil Biol. Biochem. 2025, 202, 109685. [Google Scholar] [CrossRef]
- Ji, C.; Li, S.Q.; Geng, Y.Y.; Miao, Y.C.; Ding, Y.; Liu, S.W.; Zou, J.W. Differential responses of soil N2O to biochar depend on the predominant microbial pathway. Appl. Soil Ecol. 2020, 145, 103348. [Google Scholar] [CrossRef]
- Baggs, E.M. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. Curr. Opin. Environ. Sustain. 2011, 3, 321–327. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B-Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef] [PubMed]
- Prosser, J.I.; Nicol, G.W. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends Microbiol. 2012, 20, 523–531. [Google Scholar] [CrossRef]
- Daims, H.; Lebedeva, E.V.; Pjevac, P.; Han, P.; Herbold, C.; Albertsen, M.; Jehmlich, N.; Palatinszky, M.; Vierheilig, J.; Bulaev, A.; et al. Complete nitrification by Nitrospira bacteria. Nature 2015, 528, 504–509. [Google Scholar] [CrossRef]
- Tan, C.; Yin, C.; Li, W.J.; Fan, X.P.; Jiang, Y.S.; Liang, Y.C. Comammox Nitrospira play a minor role in N2O emissions from an alkaline arable soil. Soil Biol. Biochem. 2022, 171, 108720. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, Z.; Song, Z.P.; Chen, W.N.; Tian, D.S.; Tang, S.M.; Wang, X.Y.; Wang, J.S.; Liu, W.J.; Wang, Y.; et al. Variations and controlling factors of soil denitrification rate. Glob. Change Biol. 2021, 28, 2133–2145. [Google Scholar] [CrossRef]
- Harty, M.A.; McGeough, K.L.; Carolan, R.; Müller, C.; Laughlin, R.J.; Lanigan, G.J.; Richards, K.G.; Watson, C.J. Gross nitrogen transformations in grassland soil react differently to urea stabilisers under laboratory and field conditions. Soil Biol. Biochem. 2017, 109, 23–34. [Google Scholar] [CrossRef]
- Ruser, R.; Schulz, R. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils-a review. J. Plant Nutr. Soil Sci. 2015, 178, 171–188. [Google Scholar] [CrossRef]
- Byrne, M.P.; Tobin, J.T.; Forrestal, P.J.; Danaher, M.; Nkwonta, C.G.; Richards, K.; Cummins, E.; Hogan, S.A.; O’Callaghan, T.F. Urease and nitrification inhibitors-As mitigation tools for greenhouse gas emissions in sustainable dairy systems: A Review. Sustainability 2020, 12, 6018. [Google Scholar] [CrossRef]
- Aliyu, G.; Luo, J.F.; Di, H.J.; Lindsey, S.; Liu, D.Y.; Yuan, J.J.; Chen, Z.M.; Lin, Y.X.; He, T.H.; Zaman, M.; et al. Nitrous oxide emissions from China’s croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates. Sci. Total Environ. 2019, 669, 547–558. [Google Scholar] [CrossRef]
- Deveautour, C.; Rojas-Pinzon, P.A.; Veloso, M.; Rambaud, J.; Duff, A.M.; Wall, D.; Carolan, R.; Philippot, L.; Richards, K.G.; O’Flaherty, V.; et al. Biotic and abiotic predictors of potential N2O emissions from denitrification in Irish grasslands soils: A national-scale field study. Soil Biol. Biochem. 2022, 168, 108637. [Google Scholar] [CrossRef]
- Shi, X.Z.; Hu, H.W.; Müller, C.; He, J.Z.; Chen, D.L.; Suter, H.C. Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrification and nitrifiers in two contrasting agricultural soils. Appl. Environ. Microbiol. 2016, 82, 5236–5248. [Google Scholar] [CrossRef]
- Zerulla, W.; Barth, T.; Dressel, J.; Erhardt, K.; Horchler von Locquenghien, K.; Pasda, G.; Rädle, M.; Wissemeier, A. 3,4-Dimethylpyrazole phosphate (DMPP)–A new nitrification inhibitor for agriculture and horticulture. Biol. Fertil. Soils 2001, 34, 79–84. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.Y.; Yao, H.Y. Nitrate enhances N2O emission more than ammonium in a highly acidic soil. J. Soils Sediments 2014, 14, 146–154. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.B.; Tian, Y.; Zhang, H.C.; Cheng, Y.; Zhang, J.B. A soil management strategy for ameliorating soil acidification and reducing nitrification in tea plantations. Eur. J. Soil Biol. 2018, 88, 36–40. [Google Scholar] [CrossRef]
- Zheng, X.Z.; Guo, B.L.; Liu, H.S.; Wu, Y.Q.; Yu, J.H.; Ding, H.; Jiang, X.H.; Luo, Q.D.; Zhang, Y.S. Low pH inhibits soil nosZ without affecting N2O uptake. J. Soils Sediments 2023, 23, 422–430. [Google Scholar] [CrossRef]
- Logan, K.A.B.; Floate, M.J.S.; Ironside, A.D. Determination of exchangeable acidity and exchangeable aluminium in hill soils part 1 exchangeable acidity. Commun. Soil Sci. Plant Anal. 1985, 16, 301–308. [Google Scholar] [CrossRef]
- Kochian, L.V.; Hoekenga, O.A.; Pineros, M.A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 2004, 55, 459–493. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhang, W.J.; Wu, L.; Huang, Y.P.; Cai, Z.J.; Li, D.C.; Xu, X.L.; Hartley, I.P. Long-term liming mitigates the positive responses of soil carbon mineralization to warming and labile carbon input. J. Environ. Manag. 2024, 354, 120498. [Google Scholar] [CrossRef]
- Shetty, R.; Vidya, C.S.-N.; Prakash, N.B.; Lux, A.; Vaculík, M. Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: A review. Sci. Total Environ. 2021, 765, 142744. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.Y.; Hong, Z.N.; Li, J.Y.; Jiang, J.; Baquy, M.A.; Xu, R.K.; Qian, W. Mechanisms for increasing the pH buffering capacity of an acidic ultisol by crop residue-derived biochars. J. Agric. Food Chem. 2017, 65, 8111–8119. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Hayakawa, C.; Panitkasate, T.; Maskhao, I.; Funakawa, S.; Kosaki, T.; Nawata, E. Acidification and buffering mechanisms of tropical sandy soil in northeast Thailand. Soil Tillage Res. 2017, 165, 80–87. [Google Scholar] [CrossRef]
- Shi, R.Y.; Ni, N.; Nkoh, J.N.; Dong, Y.; Zhao, W.R.; Pan, X.Y.; Li, J.Y.; Xu, R.K.; Qian, W. Biochar retards Al toxicity to maize (Zea mays L.) during soil acidification: The effects and mechanisms. Sci. Total Environ. 2020, 719, 137448. [Google Scholar] [CrossRef] [PubMed]
- Abera, G.; Wolde-meskel, E.; Bakken, L.R. Carbon and nitrogen mineralization dynamics in different soils of the tropics amended with legume residues and contrasting soil moisture contents. Biol. Fertil. Soils 2012, 48, 51–66. [Google Scholar] [CrossRef]
- Xiao, K.C.; Xu, J.M.; Tang, C.X.; Zhang, J.B.; Brookes, P.C. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments. Soil Biol. Biochem. 2013, 67, 70–84. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Wang, J.Y.; Chang, S.X.; Wang, S.Q. The quality and quantity of exogenous organic carbon input control microbial NO3−immobilization: A meta-analysis. Soil Biol. Biochem. 2017, 115, 357–363. [Google Scholar] [CrossRef]
- Meng, C.B.; Xing, Y.T.; Ding, Y.; Zhang, Q.C.; Di, H.J.; Tang, C.X.; Xu, J.M.; Li, Y. Soil acidification induced variation of nitrifiers and denitrifiers modulates N2O emissions in paddy fields. Sci. Total Environ. 2023, 882, 163623. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Mary, B.; Zhang, J.; Cai, Z.; Chang, S.X. Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in Central Alberta, Canada. Soil Biol. Biochem. 2013, 57, 848–857. [Google Scholar] [CrossRef]
- Elrys, A.S.; Chen, Z.X.; Wang, J.; Uwiragiye, Y.; Helmy, A.M.; Desoky, E.M.; Cheng, Y.; Zhang, J.B.; Cai, Z.C.; Müller, C. Global patterns of soil gross immobilization of ammonium and nitrate in terrestrial ecosystems. Glob. Change Biol. 2022, 28, 4472–4488. [Google Scholar] [CrossRef]
- Wang, Z.H.; Meng, Y.; Zhu-Barker, X.; He, X.H.; Horwath, W.R.; Luo, H.Y.; Zhao, Y.P.; Jiang, X.J. Responses of nitrification and ammonia oxidizers to a range of background and adjusted pH in purple soils. Geoderma 2019, 334, 9–14. [Google Scholar] [CrossRef]
- Huang, X.R.; Zhao, J.; Su, J.; Jia, Z.J.; Shi, X.L.; Wright, A.L.; Zhu-Barker, X.; Jiang, X.J. Neutrophilic bacteria are responsible for autotrophic ammonia oxidation in an acidic forest soil. Soil Biol. Biochem. 2018, 119, 83–89. [Google Scholar] [CrossRef]
- Yin, C.; Fan, X.P.; Chen, H.; Jiang, Y.S.; Ye, M.J.; Yan, G.C.; Peng, H.Y.; Wakelin, S.A.; Liang, Y.C. 3, 4-Dimethylpyrazole phosphate is an effective and specific inhibitor of soil ammonia-oxidizing bacteria. Biol. Fertil. Soils 2021, 57, 753–766. [Google Scholar] [CrossRef]
- Cui, P.Y.; Fan, F.L.; Yin, C.; Song, A.; Huang, P.R.; Tang, Y.J.; Zhu, B.; Peng, C.; Li, T.Q.; Wakelin, S.A.; et al. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biol. Biochem. 2016, 93, 131–141. [Google Scholar] [CrossRef]
- Schreiber, F.; Wunderlin, P.; Udert, K.M.; Wells, G.F. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies. Front. Microbiol. 2012, 3, 372. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.W.; Chen, D.L.; He, J.Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 2015, 39, 729–749. [Google Scholar] [CrossRef]
- Shcherbak, L.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef]
- Xu, C.; Zhu, H.S.; Wang, J.; Ji, C.; Liu, Y.B.; Chen, D.Y.; Zhang, H.; Wang, J.D.; Zhang, Y.C. Fertilizer N triggers native soil N-derived N2O emissions by priming gross N mineralization. Soil Biol. Biochem. 2023, 178, 108961. [Google Scholar] [CrossRef]
- Zhang, L.M.; Hu, H.W.; Shen, J.P.; He, J.Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. Isme J. 2012, 6, 1032–1045. [Google Scholar] [CrossRef]
- Meng, C.; Tian, D.S.; Zeng, H.; Li, Z.L.; Yi, C.X.; Niu, S.L. Global soil acidification impacts on belowground processes. Environ. Res. Lett. 2019, 14, 74003. [Google Scholar] [CrossRef]
- Wang, P.S.; Xu, D.H.; Lakshmanan, P.; Deng, Y.; Zhu, Q.C.; Zhang, F.S. Mitigation strategies for soil acidification based on optimal nitrogen management. Front. Agric. Sci. Eng. 2024, 11, 229–242. [Google Scholar] [CrossRef]
- Li, Y.; Cui, S.; Chang, S.X.; Zhang, Q.P. Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: A global meta-analysis. J. Soils Sediments 2019, 19, 1393–1406. [Google Scholar] [CrossRef]
- Rheinheimer, D.S.; Tiecher, T.; Gonzatto, R.; Zafar, M.; Brunetto, G. Residual effect of surface-applied lime on soil acidity properties in a long-term experiment under no-till in a Southern Brazilian sandy Ultisol. Geoderma 2018, 313, 7–16. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production. Adv. Agron. 2008, 99, 345–399. [Google Scholar] [CrossRef]
- Liao, P.; Huang, S.; van Gestel, N.C.; Zeng, Y.J.; Wu, Z.M.; van Groenigen, K.J. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Res. 2018, 216, 217–224. [Google Scholar] [CrossRef]
- Liao, P.; Liu, L.; Chen, J.; Sun, Y.N.; Huang, S.; Zeng, Y.J.; van Groenigne, K.J. Liming reduces nitrogen uptake from chemical fertilizer but increases that from straw in a double rice cropping system. Soil Tillage Res. 2024, 235, 105873. [Google Scholar] [CrossRef]
- Chen, Z.X.; Elrys, A.S.; Zhang, H.M.; Tu, X.S.; Wang, J.; Cheng, Y.; Zhang, J.B.; Cai, Z.C. How does organic amendment affect soil microbial nitrate immobilization rate? Soil Biol. Biochem. 2022, 173, 108784. [Google Scholar] [CrossRef]
- Yang, F.; Cao, X.D.; Gao, B.; Zhao, L.; Li, F.Y. Short-term effects of rice straw biochar on sorption, emission, and transformation of soil NH4+-N. Environ. Sci. Pollut. Res. 2015, 22, 9184–9192. [Google Scholar] [CrossRef]
Sites | pH | SOC | TN | C/N | NH4+-N | NO3−-N | Clay | Silt | Sand |
---|---|---|---|---|---|---|---|---|---|
(g kg−1) | (mg kg−1) | (%) | |||||||
XC | 3.76 ± 0.07 b | 23.3 ± 0.5 b | 2.22 ± 0.03 c | 10.55 | 17.4 ± 0.1 c | 55.4 ± 1.1 b | 6.8 ± 0.1 b | 55.8 ± 0.3 a | 37.4 ± 0.3 c |
JR | 4.27 ± 0.04 a | 22.8 ± 0.9 b | 2.46 ± 0.02 a | 9.27 | 19.9 ± 0.6 b | 89.9 ± 1.1 a | 4.4 ± 0.1 c | 47.9 ± 0.7 d | 47.8 ± 0.7 a |
XY | 4.37 ± 0.05 a | 12.2 ± 0.3 c | 1.53 ± 0.01 d | 7.94 | 36.0 ± 0.3 a | 30.5 ± 0.83 c | 4.6 ± 0.1 c | 53.7 ± 0.6 b | 41.7 ± 0.63 b |
QZ | 3.79 ± 0.18 b | 32.0 ± 0.6 a | 2.31 ± 0.03 b | 13.65 | 2.5 ± 0.4 d | 19.3 ± 0.2 d | 15.1 ± 0.1 a | 52.0 ± 0.1 c | 32.9 ± 0.01 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Huang, Q.; Yu, D.; Zhang, Y.; Uwiragiye, Y.; Fallah, N.; Chen, M.; Cheng, Y. Effectiveness of Nitrification Inhibitor in Reducing N2O Emissions Depends on Soil Acidification Mitigation in Acid Soils. Agronomy 2025, 15, 1536. https://doi.org/10.3390/agronomy15071536
Wang J, Huang Q, Yu D, Zhang Y, Uwiragiye Y, Fallah N, Chen M, Cheng Y. Effectiveness of Nitrification Inhibitor in Reducing N2O Emissions Depends on Soil Acidification Mitigation in Acid Soils. Agronomy. 2025; 15(7):1536. https://doi.org/10.3390/agronomy15071536
Chicago/Turabian StyleWang, Jing, Qiao Huang, Debang Yu, Yuxuan Zhang, Yves Uwiragiye, Nyumah Fallah, Meiqi Chen, and Yi Cheng. 2025. "Effectiveness of Nitrification Inhibitor in Reducing N2O Emissions Depends on Soil Acidification Mitigation in Acid Soils" Agronomy 15, no. 7: 1536. https://doi.org/10.3390/agronomy15071536
APA StyleWang, J., Huang, Q., Yu, D., Zhang, Y., Uwiragiye, Y., Fallah, N., Chen, M., & Cheng, Y. (2025). Effectiveness of Nitrification Inhibitor in Reducing N2O Emissions Depends on Soil Acidification Mitigation in Acid Soils. Agronomy, 15(7), 1536. https://doi.org/10.3390/agronomy15071536