Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = microwave sounding instruments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6832 KiB  
Article
Evaluations of Microwave Sounding Instruments Onboard FY-3F Satellites for Tropical Cyclone Monitoring
by Zhe Wang, Fuzhong Weng, Yang Han, Hao Hu and Jun Yang
Remote Sens. 2024, 16(23), 4546; https://doi.org/10.3390/rs16234546 - 4 Dec 2024
Cited by 1 | Viewed by 1027
Abstract
Fengyun-3F (FY-3F) satellite was launched in 2023 with a MicroWave Temperature Sounder (MWTS) and a MicroWave Humidity Sounder (MWHS) onboard. This study evaluates the in-orbit performances of these two instruments and compares them with similar instruments onboard FY-3E and NOAA-20 satellites. It is [...] Read more.
Fengyun-3F (FY-3F) satellite was launched in 2023 with a MicroWave Temperature Sounder (MWTS) and a MicroWave Humidity Sounder (MWHS) onboard. This study evaluates the in-orbit performances of these two instruments and compares them with similar instruments onboard FY-3E and NOAA-20 satellites. It is found that the polarization of FY-3F MWHS at channel 1 is different from FY-3E from the quasi-horizontal to quasi-vertical, whereas the rest of the channels are revised to quasi-horizontal polarization. FY-3F MWTS performance at the upper air channels is, in general, better than FY-3E MWTS, with 0.3 K smaller in biases (O-B) and 0.13 K lower in standard deviation. The striping noise between FY-3E and 3F MWHS is similar in magnitude for most of the channels. The FY-3F can form a satellite constellation with the FY-3E and NOAA-20, enabling better monitoring of many weather events, such as typhoons and hurricanes, through the use of all three satellites. Using the Global-Scene Dependent Atmospheric Retrieval Testbed (GSDART), Typhoon Yagi warm cores are retrieved from both MWTS/MWHS and ATMS. It is shown the warm core structures of Typhoon Yagi are consistent with the three satellites in terms of their magnitudes and locations. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

22 pages, 11086 KiB  
Article
Estimation of AMSU-A and MHS Antenna Emission from MetOp-A End-of-Life Deep Space View Test
by Yong Chen and Changyong Cao
Remote Sens. 2024, 16(2), 299; https://doi.org/10.3390/rs16020299 - 11 Jan 2024
Viewed by 1366
Abstract
A unique End-of-Life (EOL) Deep Space View Test (DSVT) was performed on 27 November 2021 for the Advanced Microwave Sounding Unit-A (AMSU-A) and the Microwave Humidity Sounder (MHS) onboard the first EUMETSAT MetOp-A satellite in the deorbiting process. The purpose of this test [...] Read more.
A unique End-of-Life (EOL) Deep Space View Test (DSVT) was performed on 27 November 2021 for the Advanced Microwave Sounding Unit-A (AMSU-A) and the Microwave Humidity Sounder (MHS) onboard the first EUMETSAT MetOp-A satellite in the deorbiting process. The purpose of this test is to recalibrate the antenna sidelobe, to derive antenna emission, and to quantify the in-orbit asymmetric scan biases of AMSU-A and MHS to, ultimately, improve Near Real-Time (NRT) products for MetOp-B and -C and the entire Fundamental Climate Data Records (FCDR). In this study, MetOp-A AMSU-A and MHS EOL DSVT data on 27 November 2021 have been analyzed. The deep space scene antenna temperatures were first applied for the antenna pattern correction; then, the antenna reflector channel emissivity values were derived from the corrected temperatures. For the MHS, the observed scan-angle-dependent brightness temperatures (BTs) for all channels were well behaved after the antenna pattern correction, except for channel 1. The derived antenna reflector emissivity values from this test are 0.0016, 0.0036, 0.0036, and 0.0019 for channels 1, 3, 4, and 5, respectively. For AMSU-A, the deep space view counts were not homogeneous during the test period, exhibiting large variations in the along-track and cross-track directions, mainly due to the instrument temperature’s rapid change during the test period. The large relative noise in the deep space view observations negatively impacted the data quality and limits the value of this test. The large relative noise may contribute to the different emissivity values derived from the same frequency for channels 9 to 14. We also found unexpected scan-angle-dependent BT after antenna pattern correction for quasi-vertical (QV) channels 1 and 2 when compared to the emission model. Further investigation using a simulation confirmed that channels 1 and 2 are QV channels, as designed. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Graphical abstract

16 pages, 528 KiB  
Technical Note
Atmospheric Temperature Measurements Using Microwave Hyper-Spectrum from Geostationary Satellite: Band Design, Weighting Functions and Information Content
by Yanmeng Bi, Jun Yang, Caiying Wei, Fangli Dou, Weiwei Xu, Dawei An, Yinghong Luan, Jianfeng Feng and Lichang Zhang
Remote Sens. 2024, 16(2), 289; https://doi.org/10.3390/rs16020289 - 11 Jan 2024
Cited by 2 | Viewed by 1658
Abstract
A passive microwave instrument will be carried by China’s geostationary microwave satellite. A microwave hyper-spectral band included by the instrument ranges from 52.6 to 57.3 GHz, and totally has 89 channels in this spectral domain. The design of the hyper-spectral band is described [...] Read more.
A passive microwave instrument will be carried by China’s geostationary microwave satellite. A microwave hyper-spectral band included by the instrument ranges from 52.6 to 57.3 GHz, and totally has 89 channels in this spectral domain. The design of the hyper-spectral band is described from the aspects of scientific objectives and specifications. The weighting functions for each channel are calculated utilizing radiative transfer simulations under clear sky conditions. Then, the information content as well as the degree of freedom for signal are computed and analyzed to characterize this hyper-spectral sounding for atmospheric temperature profiling. Both the vertical distribution of the weighting functions and the width of retrieval averaging kernels indicate that the hyper-spectral band can provide more denser sampling for atmospheric temperature. The information content for the hyper-spectral band is approximately 46% higher than that of the ATMS-type channel 3 to 15, indicating that hyper-spectral measurement can improve the accuracy of retrieval. The most informative channels mainly locate near 57 GHz, having good consistency with the existing channels. The height range where the retrieval using the hyper-spectral observations is sensitive to the true profile, begins from about 800 to 1 hPa. Some channels can be considered as alternatives to each other since they have very similar information content and weighting functions. These results are expected to provide a valuable reference for future applications of the microwave hyper-spectral measurements. Full article
Show Figures

Figure 1

28 pages, 19220 KiB  
Article
Estimating Uncertainties of Simulated MW Sounding Sensor Brightness Temperatures
by Siena Iacovazzi, Quanhua Liu, Hu Yang, James Fuentes and Ninghai Sun
Remote Sens. 2023, 15(17), 4162; https://doi.org/10.3390/rs15174162 - 24 Aug 2023
Viewed by 1402
Abstract
Radiative transfer model (RTM) simulated microwave (MW) brightness temperatures (Tbs) are commonly used to monitor and evaluate space-based MW sensor-observed antenna temperature (Ta) data. Although these simulated Tbs are paramount to this data integrity maintenance activity, their uncertainties [...] Read more.
Radiative transfer model (RTM) simulated microwave (MW) brightness temperatures (Tbs) are commonly used to monitor and evaluate space-based MW sensor-observed antenna temperature (Ta) data. Although these simulated Tbs are paramount to this data integrity maintenance activity, their uncertainties have not been quantified. This study develops and implements a method to estimate these simulated Tb uncertainties based on a statistical comparison of two Community RTM (CRTM)-simulated operational MW sounder Tb data sets, separately generated using the European Center for Medium Range Forecasts (ECMWF) Atmospheric Model High Resolution (HRES) and Global Navigation Satellite System (GNSS) Radio Occultation (RO) sounding inputs. The study shows the smallest single-sensor CRTM-simulated Tb uncertainties, computed from differences of ECMWF HRES and GNSS RO soundings-based simulated Tbs data sets, are on the order of 10−4 relative to a 300 K Tb for the two NOAA operational MW sounder channels with low- to mid-tropospheric peak weighting function sensitivity. Meanwhile, inter-sensor-simulated Tb differences, computed from the double difference of single-sensor-simulated Tb differences, lead to CRTM-simulated Tb uncertainties on the order for 10−4 for at least nine MW sounder channels with peak sensitivity from the low-troposphere to the low-stratosphere. These findings provide the basis of future work to assess the ability to identify and quantify suspected on-orbit MW sounder calibration anomalies using RTM-driven, on-orbit MW instrument monitoring techniques. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

21 pages, 8177 KiB  
Article
A Cloud Detection Neural Network Approach for the Next Generation Microwave Sounder Aboard EPS MetOp-SG A1
by Salvatore Larosa, Domenico Cimini, Donatello Gallucci, Francesco Di Paola, Saverio Teodosio Nilo, Elisabetta Ricciardelli, Ermann Ripepi and Filomena Romano
Remote Sens. 2023, 15(7), 1798; https://doi.org/10.3390/rs15071798 - 28 Mar 2023
Cited by 4 | Viewed by 2352
Abstract
This work presents an algorithm based on a neural network (NN) for cloud detection to detect clouds and their thermodynamic phase using spectral observations from spaceborne microwave radiometers. A standalone cloud detection algorithm over the ocean and land has been developed to distinguish [...] Read more.
This work presents an algorithm based on a neural network (NN) for cloud detection to detect clouds and their thermodynamic phase using spectral observations from spaceborne microwave radiometers. A standalone cloud detection algorithm over the ocean and land has been developed to distinguish clear sky versus ice and liquid clouds from microwave sounder (MWS) observations. The MWS instrument—scheduled to be onboard the first satellite of the Eumetsat Polar System Second-Generation (EPS-SG) series, MetOp-SG A1—has a direct inheritance from advanced microwave sounding unit A (AMSU-A) and the microwave humidity sounder (MHS) microwave instruments. Real observations from the MWS sensor are not currently available as its launch is foreseen in 2024. Thus, a simulated dataset of atmospheric states and associated MWS synthetic observations have been produced through radiative transfer calculations with ERA5 real atmospheric profiles and surface conditions. The developed algorithm has been validated using spectral observations from the AMSU-A and MHS sounders. While ERA5 atmospheric profiles serve as references for the model development and its validation, observations from AVHRR cloud mask products provide references for the AMSU-A/MHS model evaluation. The results clearly show the NN algorithm’s high skills to detect clear, ice and liquid cloud conditions against a benchmark. In terms of overall accuracy, the NN model features 92% (88%) on the ocean and 87% (85%) on land, for the MWS (AMSU-A/MHS)-simulated dataset, respectively. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

12 pages, 2106 KiB  
Article
A Calibrated Lunar Microwave Radiative Transfer Model Based on Satellite Observations
by Hu Yang and Martin Burgdorf
Remote Sens. 2022, 14(21), 5501; https://doi.org/10.3390/rs14215501 - 1 Nov 2022
Cited by 4 | Viewed by 2166
Abstract
As a potential external calibration reference for spaceborne microwave sounding instruments, accurate and reliable information of lunar disk-averaged radiance at millimeter band are important and fundamental. Based on study for 2-D lunar scans of the Advanced Technology Microwave Sounder (ATMS) on board the [...] Read more.
As a potential external calibration reference for spaceborne microwave sounding instruments, accurate and reliable information of lunar disk-averaged radiance at millimeter band are important and fundamental. Based on study for 2-D lunar scans of the Advanced Technology Microwave Sounder (ATMS) on board the NOAA-20 satellite, the lunar radiance spectrum from 23 to 183 GHz at full moon phase has been reported in our previous work. In this study, the performance of a lunar microwave radiative transfer model (RTM) developed by Keihm was investigated (cited as Keihm model in this paper) . By taking the ATMS observations as the reference truth, the surface emissivity in the lunar RTM can be calibrated. The calibrated RTM model was then evaluated by independent satellite observation data sets from AMSU (Advanced Microwave Sounding Unit) and MHS (Microwave Humidity Sounder) instruments on several NOAA satellites. Results show that with the calibrated model, significant improvement can be made to reduce the uncertainties in the lunar microwave RTM simulations at millimeter wavelengths. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

19 pages, 7372 KiB  
Article
An All-Sky Scattering Index Derived from Microwave Sounding Data at Dual Oxygen Absorption Bands
by Wanlin Kan, Hao Hu and Fuzhong Weng
Remote Sens. 2022, 14(21), 5332; https://doi.org/10.3390/rs14215332 - 25 Oct 2022
Cited by 1 | Viewed by 2552
Abstract
Combining the temperature sounding channels near 118 GHz onboard Fengyun-3D (FY-3D) with channels near 50 GHz makes it possible to obtain the spatial and vertical distributions of the clouds through a cloud emission and scattering index (CESI). Previous research has shown its advantages [...] Read more.
Combining the temperature sounding channels near 118 GHz onboard Fengyun-3D (FY-3D) with channels near 50 GHz makes it possible to obtain the spatial and vertical distributions of the clouds through a cloud emission and scattering index (CESI). Previous research has shown its advantages in cloud detection over oceans. In this study, the CESI method is expanded and validated under different surface conditions, and angular corrections are conducted to remove the effect of viewing angles. The landfall process of Typhoon MANGKHUT and a case over special terrain are chosen to investigate its sensitivities to different surface types. It is found that the cloud spatial distribution is well demonstrated in both of the cases. Moreover, the CESI vertical distributions are compared with the Global Precipitation Measurement (GPM) hydrometeor profiles. The results show that CESIs are highly related to the GPM hydrometeor profiles in all of the conditions, and the correlations with the sea surface vary with the weighting functions of the matched channels, while the phenomenon is not obvious for the land surface. In addition, the validation results show that the new threshold combination for different surface types at different heights can be more effective for cloud identification. The probability density distribution for most of the channels of the screened-out clear sky data approximates a Gaussian distribution well, and these radiances can be well assimilated into the numerical weather prediction models. Full article
Show Figures

Figure 1

21 pages, 7276 KiB  
Article
Impact of Fengyun-3E Microwave Temperature and Humidity Sounder Data on CMA Global Medium Range Weather Forecasts
by Wanlin Kan, Peiming Dong, Fuzhong Weng, Hao Hu and Changjiao Dong
Remote Sens. 2022, 14(19), 5014; https://doi.org/10.3390/rs14195014 - 9 Oct 2022
Cited by 12 | Viewed by 2397
Abstract
In this study, the polarization characteristics of the newly launched Fengyun-3E (FY-3E) microwave sounding instruments are discussed, and its data quality is also assessed using one month of observation by the double-difference method. By comparison with the equivalent channels onboard Fengyun-3D (FY-3D) and [...] Read more.
In this study, the polarization characteristics of the newly launched Fengyun-3E (FY-3E) microwave sounding instruments are discussed, and its data quality is also assessed using one month of observation by the double-difference method. By comparison with the equivalent channels onboard Fengyun-3D (FY-3D) and advanced technology microwave sounder (ATMS), the data quality of FY-3E Microwave Humidity Sounder-II (MWHS-II) is improved and comparable to ATMS, while the data of FY-3E Microwave Temperature Sounder-III (MWTS-III) are slightly worse than data of FY-3D. The data of FY-3E MWTS-III are more susceptible to the early-morning orbit than the data of MWHS-II. In addition, striping noise is still present in channels 5–10 of MWTS-III. After the assessments, FY-3E microwave data are preprocessed and assimilated in the global forecast system for the Chinese Meteorology Administration (CMA-GFS). A total of six individual experiments over the period from 16 July to 15 August 2021 were conducted and the impact was evaluated with the composite score used in operation. It is shown that not only the forecasts for the southern hemisphere and tropics are improved significantly, but also the predictions for the northern hemisphere show some improvements in an overall neutral change from adding FY-3E microwave sounding instruments. The impact of FY-3E microwave radiance is equivalent to ATMS as they are assimilated individually. Furthermore, we note that the forecast impact is affected by the cloud detection scheme to a large extent. Full article
Show Figures

Figure 1

28 pages, 11321 KiB  
Article
A Retrospective Satellite Analysis of the June 2012 North American Derecho
by Kenneth Pryor and Belay Demoz
Remote Sens. 2022, 14(14), 3479; https://doi.org/10.3390/rs14143479 - 20 Jul 2022
Cited by 2 | Viewed by 2791
Abstract
The North American Derecho of 29–30 June 2012 exhibits many classic progressive and serial derecho features. It remains one of the highest-impact derecho-producing convective systems (DCS) over CONUS since 2000. This research effort enhances the understanding of the science of operational forecasting of [...] Read more.
The North American Derecho of 29–30 June 2012 exhibits many classic progressive and serial derecho features. It remains one of the highest-impact derecho-producing convective systems (DCS) over CONUS since 2000. This research effort enhances the understanding of the science of operational forecasting of severe windstorms through examples of employing new satellite and ground-based microwave and vertical wind profile data. During the track of the derecho from the upper Midwestern U.S. through the Mid-Atlantic region on 29 June 2012, clear signatures associated with a severe MCS were apparent in polar-orbiting satellite imagery, especially from the EPS METOP-A Microwave Humidity Sounder (MHS), Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager Sounder (SSMIS), and NASA TERRA Moderate Resolution Imaging Spectroradiometer (MODIS). In addition, morning (descending node) and the evening (ascending node) METOP-A Infrared Atmospheric Sounding Interferometer (IASI) soundings are compared to soundings from surface-based Radiometrics Corporation MP-3000 series microwave radiometer profilers (MWRPs) along the track of the derecho system. The co-located IASI and MWRP soundings revealed a pre-convective environment that indicated a favorable volatile tropospheric profile for severe downburst wind generation. An important outcome of this study will be to formulate a functional relationship between satellite-derived parameters and signatures, and severe convective wind occurrence. Furthermore, a comprehensive approach to observational data analysis involves both surface- and satellite-based instrumentation. Because this approach utilizes operational products available to weather service forecasters, it can feasibly be used for monitoring and forecasting local-scale downburst occurrence within derecho systems, as well as larger-scale convective wind intensity associated with the entire DCS. Full article
Show Figures

Graphical abstract

12 pages, 8712 KiB  
Article
Precipitation Estimation from the NASA TROPICS Mission: Initial Retrievals and Validation
by Chris Kidd, Toshi Matsui, William Blackwell, Scott Braun, Robert Leslie and Zach Griffith
Remote Sens. 2022, 14(13), 2992; https://doi.org/10.3390/rs14132992 - 22 Jun 2022
Cited by 17 | Viewed by 2486
Abstract
This paper describes the initial results of precipitation estimates from the Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) Millimeter-wave Sounder (TMS) using the Precipitation Retrieval and Profiling Scheme (PRPS). The TROPICS mission consists of a Pathfinder [...] Read more.
This paper describes the initial results of precipitation estimates from the Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) Millimeter-wave Sounder (TMS) using the Precipitation Retrieval and Profiling Scheme (PRPS). The TROPICS mission consists of a Pathfinder CubeSat and a constellation of six CubeSats, providing a low-cost solution to the frequent sampling of precipitation systems across the Tropics. The TMS instrument is a 12-channel cross-track scanning radiometer operating at frequencies of 91.655 to 204.8 GHz, providing similar resolutions to current passive microwave sounding instruments. These retrievals showcase the potential of the TMS instrument for precipitation retrievals. The PRPS has been modified for use with the TMS using a database based upon observations from current sounding sensors. The results shown here represent the initial postlaunch version of the retrieval scheme, as analyzed for the Pathfinder CubeSat launched on 30 June 2021. In terms of monthly precipitation estimates, the results fall within the mission specifications and are similar in performance to retrievals from other sounding instruments. At the instantaneous scale, the results are very promising. Full article
(This article belongs to the Special Issue Remote Sensing of Precipitation: Part III)
Show Figures

Graphical abstract

18 pages, 6471 KiB  
Article
Intercomparison of Resampling Algorithms for Advanced Technology Microwave Sounder (ATMS)
by Yuchen Xie and Fuzhong Weng
Remote Sens. 2022, 14(12), 2781; https://doi.org/10.3390/rs14122781 - 10 Jun 2022
Cited by 3 | Viewed by 2402
Abstract
The observations from satellite microwave-sounding instruments have been widely used in weather and climate studies. Since the data resolution varies with frequency and satellite viewing angle, it is normally required that the measurements at each frequency be resampled to obtain a uniform resolution [...] Read more.
The observations from satellite microwave-sounding instruments have been widely used in weather and climate studies. Since the data resolution varies with frequency and satellite viewing angle, it is normally required that the measurements at each frequency be resampled to obtain a uniform resolution prior to various applications. In this study, the ATOVS and AVHRR pre-processing package (AAPP) Fourier transform algorithm is modified for ATMS data and the results are compared with those derived from Backus–Gilbert inversion (BGI) and the original AAPP. From the simulated and observed ATMS data, we demonstrated the new algorithm has better results in terms of imaging quality and noise suppression, compared with BGI and AAPP. In general, our modified AAPP algorithm reduces the error by at least about 0.5 K in ATMS channels 2 and 6 and at all the viewing angles. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

15 pages, 8024 KiB  
Technical Note
Preliminary Evaluation of FY-3E Microwave Temperature Sounder Performance Based on Observation Minus Simulation
by Xiaoli Qian, Zhengkun Qin, Juan Li, Yang Han and Guiqing Liu
Remote Sens. 2022, 14(9), 2250; https://doi.org/10.3390/rs14092250 - 7 May 2022
Cited by 20 | Viewed by 2981
Abstract
The FY-3E satellite was successfully launched on 5 July 2021 and carries on board the Microwave Temperature Sounder-III (MWTS-III). In this study, the biases of MWTS-III data with respect to simulations are analyzed according to the instrument field of view and location latitude [...] Read more.
The FY-3E satellite was successfully launched on 5 July 2021 and carries on board the Microwave Temperature Sounder-III (MWTS-III). In this study, the biases of MWTS-III data with respect to simulations are analyzed according to the instrument field of view and location latitude over the Pacific region. The cloud liquid water path (CLWP) over oceans is retrieved from two new window channels at 23.8 and 31.4 GHz and is used for detecting the clouds-affected microwave sounding data. The absolute bias between the observed and simulated brightness temperature (O–B) under the clear sky point is, in general, less than 2.0 K, depending on the MWTS-III channel. The standard deviations of O-B in most channels are less 1.0 K, but they are 1–1.5 K in channels 1–4 and 17. The average and the standard deviation of O−B from the channels 1–10 shows an obvious symmetrical variation with FOV. The evaluation results all indicate good prospects for the assimilation application of FY-3E microwave sounding data. Full article
Show Figures

Figure 1

16 pages, 7026 KiB  
Article
Assessments of Cloud Liquid Water and Total Precipitable Water Derived from FY-3E MWTS-III and NOAA-20 ATMS
by Changjiao Dong, Fuzhong Weng and Jun Yang
Remote Sens. 2022, 14(8), 1853; https://doi.org/10.3390/rs14081853 - 12 Apr 2022
Cited by 13 | Viewed by 3713
Abstract
Cloud liquid water (CLW) and total precipitable water (TPW) are two important parameters for weather and climate applications. Typically, microwave temperature sounding instruments onboard satellites are designed with two low-frequency channels at 23.8 and 31.4 GHz and can be used for retrieving CLW [...] Read more.
Cloud liquid water (CLW) and total precipitable water (TPW) are two important parameters for weather and climate applications. Typically, microwave temperature sounding instruments onboard satellites are designed with two low-frequency channels at 23.8 and 31.4 GHz and can be used for retrieving CLW and TPW over global oceans. Since MWTS-III polarization at above two frequencies is uncertain, we must first determine their polarization involved in retrieval algorithms. Through radiative transfer simulation, we found that uses of the quasi-horizontal polarization for MWTS-III can produce smaller biases between observations and simulations and the scan-angle dependence of the biases is also in a general frown pattern, which is similar to ATMS pitch-maneuver observations. After the characterization of MWTS-III polarization, CLW and TPW are derived from Microwave Temperature Sounder (MWTS-III) and are compared with those from ATMS. It is found that CLW and TPW derived from two instruments exhibit a high consistency in terms of their spatial distributions and magnitudes. Full article
Show Figures

Graphical abstract

11 pages, 2245 KiB  
Article
Temperature and Moisture Sounding Performance of Current and Prospective Microwave Instruments under All-Sky Conditions
by Eric S. Maddy, Stacy Bunin, Valerie J. Mikles, Narges Shahroudi, Bungo Shiotani and Sid-Ahmed Boukabara
Remote Sens. 2022, 14(7), 1624; https://doi.org/10.3390/rs14071624 - 28 Mar 2022
Cited by 4 | Viewed by 1964
Abstract
We provide consistent theoretical and empirical assessments of the major driving factors of the information content and retrieval performance for current and potential future microwave (MW) sounders. For the specific instrument concepts assessed, we find that instrument noise is a major driver, impacting [...] Read more.
We provide consistent theoretical and empirical assessments of the major driving factors of the information content and retrieval performance for current and potential future microwave (MW) sounders. For the specific instrument concepts assessed, we find that instrument noise is a major driver, impacting vertical resolution as measured by the degrees of freedom for signal as much as 50%. We also observe diminished performance in the 118 GHz temperature sounding band as compared to the 50–60 GHz band, which is largely due to the increased sensor noise in the assessed 118 GHz sensor for comparable channels—a reduction in the performance gap between 118 GHz and 50 GHz bands can be obtained with a reduction of instrument noise in the 118 GHz temperature sounding channels. As expected, scene-type also significantly impacts the vertical resolution, emphasizing the importance of separating clear, cloudy, rainy, and icy conditions when evaluating instrument performance. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

22 pages, 23684 KiB  
Article
Comparison of the Potential Impact to the Prediction of Typhoons of Various Microwave Sounders Onboard a Geostationary Satellite
by Ke Chen and Guangwei Wu
Remote Sens. 2022, 14(7), 1533; https://doi.org/10.3390/rs14071533 - 22 Mar 2022
Cited by 1 | Viewed by 2261
Abstract
A microwave radiometer onboard a geostationary satellite can provide for the continuous atmospheric sounding of rapidly evolving convective events even in the presence of clouds, which has aroused great research interest in recent decades. To approach the problem of high-spatial resolution and large-size [...] Read more.
A microwave radiometer onboard a geostationary satellite can provide for the continuous atmospheric sounding of rapidly evolving convective events even in the presence of clouds, which has aroused great research interest in recent decades. To approach the problem of high-spatial resolution and large-size antennas, three promising geostationary microwave (GEO-MW) solutions—geostationary microwave radiometer (GMR) with a 5 m real aperture antenna, geostationary synthetic thinned aperture radiometer (GeoSTAR) with a Y-shaped synthetic aperture array, and geostationary interferometric microwave sounder (GIMS) with a rotating circular synthetic aperture array—have been proposed. To compare the potential impact of assimilating the three GEO-MW sounders to typhoon prediction, observing system simulation experiments (OSSEs) with the simulated 50–60 GHz observing brightness temperature data were conducted using the mesoscale numerical model Weather Research and Forecasting (WRF) and WRF Date Assimilation-Four dimensional variational (WRFDA-4Dvar) assimilation system for Typhoons Hagibis and Bualoi which occurred in 2019. The results show that the assimilation of the three GEO-MW instruments with 4 channels of data at 50–60 GHz could lead to general positive impacts in this study. Compared with the control experiment, for the two cases of Bualoi and Hagibis, GMR improves the average 72 h typhoon track forecast accuracy by 24% and 43%, GeoSTAR by 33% and 50%, and GIMS by 10% and 29%, respectively. Overall, the three GEO-MW instruments show considerable promise in atmospheric sounding and data assimilation. The difference among these positive impacts seems to depend on the observation error of the three potential instruments. GeoSTAR is slightly better than the other two GEO-MW sounders, which may be because it has the smallest observation error of the 4 assimilation channels. Generally, this study illustrates that the performance of these three GEO-MW sounders is potentially adequate to support assimilation into numerical weather prediction models for typhoon prediction. Full article
(This article belongs to the Special Issue Satellite Observations on Earth’s Atmosphere)
Show Figures

Graphical abstract

Back to TopTop